Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59464 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 1.4344 1.673 0.8574 [X:[], M:[0.9091, 0.9091], q:[0.5455, 0.3636], qb:[0.5455, 0.3636], phi:[0.3636]] [X:[], M:[[0, 0], [0, 0]], q:[[-1, 0], [0, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2 {a: 15273/10648, c: 8907/5324, M1: 10/11, M2: 10/11, q1: 6/11, q2: 4/11, qb1: 6/11, qb2: 4/11, phi1: 4/11}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$ ${}\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 6 2*t^2.18 + 4*t^2.73 + t^3.27 + 2*t^3.82 + 5*t^4.36 + 12*t^4.91 + 13*t^5.45 + 6*t^6. + 17*t^6.55 + 26*t^7.09 + 37*t^7.64 + 34*t^8.18 + 27*t^8.73 - t^4.09/y - t^5.18/y - (2*t^6.27)/y - (4*t^6.82)/y - t^7.36/y + (5*t^7.91)/y + (4*t^8.45)/y - t^4.09*y - t^5.18*y - 2*t^6.27*y - 4*t^6.82*y - t^7.36*y + 5*t^7.91*y + 4*t^8.45*y 2*t^2.18 + 2*t^2.73 + (g1*t^2.73)/g2 + (g2*t^2.73)/g1 + t^3.27 + (g1*t^3.82)/g2 + (g2*t^3.82)/g1 + 5*t^4.36 + 4*t^4.91 + t^4.91/(g1*g2^2) + (3*g1*t^4.91)/g2 + (3*g2*t^4.91)/g1 + g1*g2^2*t^4.91 + 7*t^5.45 + (g1^2*t^5.45)/g2^2 + t^5.45/(g1^2*g2) + (g1*t^5.45)/g2 + (g2*t^5.45)/g1 + g1^2*g2*t^5.45 + (g2^2*t^5.45)/g1^2 - 2*t^6. + t^6./(g1*g2^2) + (3*g1*t^6.)/g2 + (3*g2*t^6.)/g1 + g1*g2^2*t^6. + 11*t^6.55 + t^6.55/g2^3 + (g1^2*t^6.55)/g2^2 + t^6.55/(g1^2*g2) + g1^2*g2*t^6.55 + (g2^2*t^6.55)/g1^2 + g2^3*t^6.55 + 6*t^7.09 + (3*t^7.09)/(g1*g2^2) - t^7.09/(g1^2*g2) + (8*g1*t^7.09)/g2 + (8*g2*t^7.09)/g1 - g1^2*g2*t^7.09 + 3*g1*g2^2*t^7.09 + 17*t^7.64 + t^7.64/g2^3 + (4*g1^2*t^7.64)/g2^2 + (4*t^7.64)/(g1^2*g2) + (g1*t^7.64)/g2 + (g2*t^7.64)/g1 + 4*g1^2*g2*t^7.64 + (4*g2^2*t^7.64)/g1^2 + g2^3*t^7.64 - 2*t^8.18 + (2*t^8.18)/g1^3 + 2*g1^3*t^8.18 - t^8.18/g2^3 + (g1^3*t^8.18)/g2^3 + (4*t^8.18)/(g1*g2^2) + (g1^2*t^8.18)/g2^2 + (11*g1*t^8.18)/g2 + (11*g2*t^8.18)/g1 + (g2^2*t^8.18)/g1^2 + 4*g1*g2^2*t^8.18 - g2^3*t^8.18 + (g2^3*t^8.18)/g1^3 + 19*t^8.73 - t^8.73/g1^3 - g1^3*t^8.73 + (4*t^8.73)/g2^3 - (2*t^8.73)/(g1*g2^2) + (4*g1^2*t^8.73)/g2^2 + (4*t^8.73)/(g1^2*g2) - (5*g1*t^8.73)/g2 - (5*g2*t^8.73)/g1 + 4*g1^2*g2*t^8.73 + (4*g2^2*t^8.73)/g1^2 - 2*g1*g2^2*t^8.73 + 4*g2^3*t^8.73 - t^4.09/y - t^5.18/y - (2*t^6.27)/y - (2*t^6.82)/y - (g1*t^6.82)/(g2*y) - (g2*t^6.82)/(g1*y) - t^7.36/y + (3*t^7.91)/y + (g1*t^7.91)/(g2*y) + (g2*t^7.91)/(g1*y) + (2*g1*t^8.45)/(g2*y) + (2*g2*t^8.45)/(g1*y) - t^4.09*y - t^5.18*y - 2*t^6.27*y - 2*t^6.82*y - (g1*t^6.82*y)/g2 - (g2*t^6.82*y)/g1 - t^7.36*y + 3*t^7.91*y + (g1*t^7.91*y)/g2 + (g2*t^7.91*y)/g1 + (2*g1*t^8.45*y)/g2 + (2*g2*t^8.45*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57650 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4954 1.7253 0.8667 [X:[], M:[0.992, 0.6879], q:[0.504, 0.4881], qb:[0.504, 0.4881], phi:[0.336]] t^2.02 + t^2.06 + t^2.93 + 3*t^2.98 + t^3.02 + 2*t^3.98 + 2*t^4.03 + t^4.08 + t^4.13 + 2*t^4.94 + 6*t^4.99 + 5*t^5.04 + t^5.09 + 2*t^5.45 + 2*t^5.5 + t^5.86 + 3*t^5.9 + 5*t^5.95 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail