Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60052 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.4811 1.711 0.8657 [X:[], M:[0.9935, 0.6841], q:[0.5707, 0.523], qb:[0.4358, 0.4573], phi:[0.3355]] [X:[], M:[[3, 3], [-8, -8]], q:[[-4, -3], [9, 7]], qb:[[1, 0], [0, 2]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ -1 t^2.01 + t^2.05 + t^2.88 + t^2.94 + t^2.98 + t^3.02 + t^3.08 + t^3.88 + 2*t^4.03 + t^4.07 + t^4.09 + t^4.1 + 2*t^4.89 + t^4.93 + 2*t^4.95 + 3*t^4.99 + 3*t^5.03 + t^5.06 + t^5.07 + 2*t^5.1 + t^5.14 + t^5.75 + t^5.82 + t^5.86 + t^5.88 + 2*t^5.9 + t^5.92 + 3*t^5.96 - t^6. + t^6.03 + 3*t^6.04 + t^6.06 + 2*t^6.08 + 2*t^6.1 + t^6.12 + t^6.16 + t^6.17 + t^6.76 + t^6.82 + t^6.86 + 4*t^6.9 + 2*t^6.94 + 4*t^6.97 + t^6.98 + 4*t^7.01 + t^7.03 + 6*t^7.05 + 2*t^7.07 + 3*t^7.09 + 4*t^7.11 + t^7.12 + t^7.14 + t^7.15 + t^7.17 + t^7.19 + t^7.73 + 3*t^7.77 + t^7.81 + 3*t^7.83 + 3*t^7.87 + 2*t^7.9 + 4*t^7.91 + 4*t^7.93 + 6*t^7.97 + t^8. + 2*t^8.01 + 3*t^8.04 + 3*t^8.05 + 3*t^8.08 + 3*t^8.09 + 4*t^8.12 + 2*t^8.13 + t^8.14 + t^8.16 + t^8.17 + 2*t^8.18 + t^8.21 + t^8.22 + t^8.63 + t^8.69 + t^8.73 + t^8.76 + 2*t^8.77 + t^8.8 + t^8.82 + 4*t^8.84 + t^8.86 + 3*t^8.9 + 5*t^8.92 + 3*t^8.96 + t^8.97 + 3*t^8.98 + 2*t^8.99 - t^4.01/y - t^5.01/y - t^6.02/y - t^6.06/y - t^6.88/y - t^6.95/y - t^6.99/y - (2*t^7.03)/y - t^7.09/y + t^7.93/y + t^7.95/y + (2*t^7.99)/y - t^8.11/y + t^8.14/y + t^8.82/y + t^8.86/y + t^8.92/y + t^8.96/y - t^4.01*y - t^5.01*y - t^6.02*y - t^6.06*y - t^6.88*y - t^6.95*y - t^6.99*y - 2*t^7.03*y - t^7.09*y + t^7.93*y + t^7.95*y + 2*t^7.99*y - t^8.11*y + t^8.14*y + t^8.82*y + t^8.86*y + t^8.92*y + t^8.96*y t^2.01/(g1^2*g2^2) + t^2.05/(g1^8*g2^8) + g1^10*g2^7*t^2.88 + g1^9*g2^9*t^2.94 + g1^3*g2^3*t^2.98 + t^3.02/(g1^3*g2^3) + t^3.08/(g1^4*g2) + g1^9*g2^6*t^3.88 + (2*t^4.03)/(g1^4*g2^4) + t^4.07/(g1^10*g2^10) + t^4.09/(g1^5*g2^2) + t^4.1/(g1^16*g2^16) + 2*g1^8*g2^5*t^4.89 + (g1^2*t^4.93)/g2 + 2*g1^7*g2^7*t^4.95 + 3*g1*g2*t^4.99 + (3*t^5.03)/(g1^5*g2^5) + g2^3*t^5.06 + t^5.07/(g1^11*g2^11) + (2*t^5.1)/(g1^6*g2^3) + t^5.14/(g1^12*g2^9) + g1^20*g2^14*t^5.75 + g1^19*g2^16*t^5.82 + g1^13*g2^10*t^5.86 + g1^18*g2^18*t^5.88 + 2*g1^7*g2^4*t^5.9 + g1^12*g2^12*t^5.92 + 3*g1^6*g2^6*t^5.96 - t^6. + g1^5*g2^8*t^6.03 + (3*t^6.04)/(g1^6*g2^6) + (g2^2*t^6.06)/g1 + (2*t^6.08)/(g1^12*g2^12) + (2*t^6.1)/(g1^7*g2^4) + t^6.12/(g1^18*g2^18) + t^6.16/(g1^24*g2^24) + t^6.17/(g1^8*g2^2) + g1^19*g2^13*t^6.76 + g1^18*g2^15*t^6.82 + g1^12*g2^9*t^6.86 + 4*g1^6*g2^3*t^6.9 + (2*t^6.94)/g2^3 + 4*g1^5*g2^5*t^6.97 + t^6.98/(g1^6*g2^9) + (4*t^7.01)/(g1*g2) + g1^4*g2^7*t^7.03 + (6*t^7.05)/(g1^7*g2^7) + (2*g2*t^7.07)/g1^2 + (3*t^7.09)/(g1^13*g2^13) + (4*t^7.11)/(g1^8*g2^5) + t^7.12/(g1^19*g2^19) + (g2^3*t^7.14)/g1^3 + t^7.15/(g1^14*g2^11) + t^7.17/(g1^9*g2^3) + t^7.19/(g1^20*g2^17) + g1^24*g2^18*t^7.73 + 3*g1^18*g2^12*t^7.77 + g1^12*g2^6*t^7.81 + 3*g1^17*g2^14*t^7.83 + 3*g1^11*g2^8*t^7.87 + 2*g1^16*g2^16*t^7.9 + 4*g1^5*g2^2*t^7.91 + 4*g1^10*g2^10*t^7.93 + 6*g1^4*g2^4*t^7.97 + g1^9*g2^12*t^8. + (2*t^8.01)/(g1^2*g2^2) + 3*g1^3*g2^6*t^8.04 + (3*t^8.05)/(g1^8*g2^8) + (3*t^8.08)/g1^3 + (3*t^8.09)/(g1^14*g2^14) + (4*t^8.12)/(g1^9*g2^6) + (2*t^8.13)/(g1^20*g2^20) + (g2^2*t^8.14)/g1^4 + t^8.16/(g1^15*g2^12) + t^8.17/(g1^26*g2^26) + (2*t^8.18)/(g1^10*g2^4) + t^8.21/(g1^32*g2^32) + t^8.22/(g1^16*g2^10) + g1^30*g2^21*t^8.63 + g1^29*g2^23*t^8.69 + g1^23*g2^17*t^8.73 + g1^28*g2^25*t^8.76 + 2*g1^17*g2^11*t^8.77 + g1^22*g2^19*t^8.8 + g1^27*g2^27*t^8.82 + 4*g1^16*g2^13*t^8.84 + g1^21*g2^21*t^8.86 + 3*g1^15*g2^15*t^8.9 + 5*g1^4*g2*t^8.92 + (3*t^8.96)/(g1^2*g2^5) + g1^14*g2^17*t^8.97 + 3*g1^3*g2^3*t^8.98 + (2*t^8.99)/(g1^8*g2^11) - t^4.01/(g1*g2*y) - t^5.01/(g1^2*g2^2*y) - t^6.02/(g1^3*g2^3*y) - t^6.06/(g1^9*g2^9*y) - (g1^9*g2^6*t^6.88)/y - (g1^8*g2^8*t^6.95)/y - (g1^2*g2^2*t^6.99)/y - (2*t^7.03)/(g1^4*g2^4*y) - t^7.09/(g1^5*g2^2*y) + (g1^2*t^7.93)/(g2*y) + (g1^7*g2^7*t^7.95)/y + (2*g1*g2*t^7.99)/y - t^8.11/(g1^17*g2^17*y) + t^8.14/(g1^12*g2^9*y) + (g1^19*g2^16*t^8.82)/y + (g1^13*g2^10*t^8.86)/y + (g1^12*g2^12*t^8.92)/y + (g1^6*g2^6*t^8.96)/y - (t^4.01*y)/(g1*g2) - (t^5.01*y)/(g1^2*g2^2) - (t^6.02*y)/(g1^3*g2^3) - (t^6.06*y)/(g1^9*g2^9) - g1^9*g2^6*t^6.88*y - g1^8*g2^8*t^6.95*y - g1^2*g2^2*t^6.99*y - (2*t^7.03*y)/(g1^4*g2^4) - (t^7.09*y)/(g1^5*g2^2) + (g1^2*t^7.93*y)/g2 + g1^7*g2^7*t^7.95*y + 2*g1*g2*t^7.99*y - (t^8.11*y)/(g1^17*g2^17) + (t^8.14*y)/(g1^12*g2^9) + g1^19*g2^16*t^8.82*y + g1^13*g2^10*t^8.86*y + g1^12*g2^12*t^8.92*y + g1^6*g2^6*t^8.96*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57650 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4954 1.7253 0.8667 [X:[], M:[0.992, 0.6879], q:[0.504, 0.4881], qb:[0.504, 0.4881], phi:[0.336]] t^2.02 + t^2.06 + t^2.93 + 3*t^2.98 + t^3.02 + 2*t^3.98 + 2*t^4.03 + t^4.08 + t^4.13 + 2*t^4.94 + 6*t^4.99 + 5*t^5.04 + t^5.09 + 2*t^5.45 + 2*t^5.5 + t^5.86 + 3*t^5.9 + 5*t^5.95 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail