Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59051 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ | 1.4953 | 1.7252 | 0.8667 | [X:[], M:[0.993, 0.6852], q:[0.5, 0.493], qb:[0.507, 0.4861], phi:[0.3357]] | [X:[], M:[[-3, 3], [8, -8]], q:[[-6, -3], [-9, 0]], qb:[[9, 0], [0, 9]], phi:[[1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | ${}$ | -2 | t^2.01 + t^2.06 + t^2.94 + t^2.96 + t^2.98 + t^3. + t^3.02 + t^3.97 + t^4.01 + 2*t^4.03 + t^4.07 + t^4.11 + 2*t^4.95 + 2*t^4.97 + 2*t^4.99 + 3*t^5.01 + 3*t^5.03 + t^5.06 + t^5.08 + t^5.44 + t^5.46 + t^5.49 + t^5.51 + t^5.87 + t^5.9 + 2*t^5.92 + t^5.94 + 3*t^5.96 + 2*t^5.98 - 2*t^6. + 2*t^6.02 + 3*t^6.04 + 2*t^6.08 + t^6.13 + t^6.17 + t^6.45 + t^6.47 + t^6.49 + t^6.51 + t^6.9 + t^6.92 + t^6.94 + 5*t^6.97 + 4*t^6.99 + 2*t^7.01 + 5*t^7.03 + 5*t^7.05 + 2*t^7.07 + 3*t^7.09 + t^7.11 + t^7.13 + t^7.4 + 2*t^7.46 + t^7.48 + 2*t^7.5 + 3*t^7.52 + t^7.54 + t^7.56 + t^7.58 + 2*t^7.89 + 3*t^7.91 + 5*t^7.93 + 3*t^7.95 + 9*t^7.97 + 5*t^7.99 + t^8.01 + 5*t^8.03 + 3*t^8.06 + 3*t^8.1 + 2*t^8.14 + t^8.18 + t^8.22 + t^8.38 + 2*t^8.4 + 2*t^8.42 + 2*t^8.44 + 3*t^8.47 + t^8.49 + t^8.51 + t^8.53 - t^8.55 + t^8.81 + t^8.83 + 2*t^8.85 + 2*t^8.87 + 3*t^8.9 + 4*t^8.92 - t^8.96 + 7*t^8.98 - t^4.01/y - t^5.01/y - t^6.02/y - t^6.06/y - t^6.94/y - t^6.97/y - t^6.99/y - t^7.01/y - (2*t^7.03)/y + t^7.95/y + (2*t^7.99)/y + t^8.01/y + t^8.06/y - t^8.12/y + t^8.9/y + t^8.92/y + (2*t^8.94)/y + t^8.96/y + t^8.98/y - t^4.01*y - t^5.01*y - t^6.02*y - t^6.06*y - t^6.94*y - t^6.97*y - t^6.99*y - t^7.01*y - 2*t^7.03*y + t^7.95*y + 2*t^7.99*y + t^8.01*y + t^8.06*y - t^8.12*y + t^8.9*y + t^8.92*y + 2*t^8.94*y + t^8.96*y + t^8.98*y | (g1^2*t^2.01)/g2^2 + (g1^8*t^2.06)/g2^8 + (g2^9*t^2.94)/g1^9 + (g2^6*t^2.96)/g1^6 + (g2^3*t^2.98)/g1^3 + t^3. + (g1^3*t^3.02)/g2^3 + (g2^5*t^3.97)/g1^5 + (g1*t^4.01)/g2 + (2*g1^4*t^4.03)/g2^4 + (g1^10*t^4.07)/g2^10 + (g1^16*t^4.11)/g2^16 + (2*g2^7*t^4.95)/g1^7 + (2*g2^4*t^4.97)/g1^4 + (2*g2*t^4.99)/g1 + (3*g1^2*t^5.01)/g2^2 + (3*g1^5*t^5.03)/g2^5 + (g1^8*t^5.06)/g2^8 + (g1^11*t^5.08)/g2^11 + g1^10*g2^17*t^5.44 + t^5.46/(g1^23*g2^4) + t^5.49/(g1^20*g2^7) + g1^19*g2^8*t^5.51 + (g2^18*t^5.87)/g1^18 + (g2^15*t^5.9)/g1^15 + (2*g2^12*t^5.92)/g1^12 + (g2^9*t^5.94)/g1^9 + (3*g2^6*t^5.96)/g1^6 + (2*g2^3*t^5.98)/g1^3 - 2*t^6. + (2*g1^3*t^6.02)/g2^3 + (3*g1^6*t^6.04)/g2^6 + (2*g1^12*t^6.08)/g2^12 + (g1^18*t^6.13)/g2^18 + (g1^24*t^6.17)/g2^24 + g1^11*g2^16*t^6.45 + t^6.47/(g1^22*g2^5) + t^6.49/(g1^19*g2^8) + g1^20*g2^7*t^6.51 + (g2^14*t^6.9)/g1^14 + (g2^11*t^6.92)/g1^11 + (g2^8*t^6.94)/g1^8 + (5*g2^5*t^6.97)/g1^5 + (4*g2^2*t^6.99)/g1^2 + (2*g1*t^7.01)/g2 + (5*g1^4*t^7.03)/g2^4 + (5*g1^7*t^7.05)/g2^7 + (2*g1^10*t^7.07)/g2^10 + (3*g1^13*t^7.09)/g2^13 + (g1^16*t^7.11)/g2^16 + (g1^19*t^7.13)/g2^19 + g1^3*g2^24*t^7.4 + 2*g1^12*g2^15*t^7.46 + (2*t^7.48)/(g1^21*g2^6) - g1^15*g2^12*t^7.48 + (2*t^7.5)/(g1^18*g2^9) + t^7.52/(g1^15*g2^12) + 2*g1^21*g2^6*t^7.52 + t^7.54/(g1^12*g2^15) + g1^27*t^7.56 + (g1^30*t^7.58)/g2^3 + (2*g2^16*t^7.89)/g1^16 + (3*g2^13*t^7.91)/g1^13 + (5*g2^10*t^7.93)/g1^10 + (3*g2^7*t^7.95)/g1^7 + (9*g2^4*t^7.97)/g1^4 + (5*g2*t^7.99)/g1 + (g1^2*t^8.01)/g2^2 + (5*g1^5*t^8.03)/g2^5 + (3*g1^8*t^8.06)/g2^8 + (3*g1^14*t^8.1)/g2^14 + (2*g1^20*t^8.14)/g2^20 + (g1^26*t^8.18)/g2^26 + (g1^32*t^8.22)/g2^32 + g1*g2^26*t^8.38 + (g2^5*t^8.4)/g1^32 + g1^4*g2^23*t^8.4 + (2*g2^2*t^8.42)/g1^29 + t^8.44/(g1^26*g2) + g1^10*g2^17*t^8.44 + 3*g1^13*g2^14*t^8.47 + (2*t^8.49)/(g1^20*g2^7) - g1^16*g2^11*t^8.49 + t^8.51/(g1^17*g2^10) - t^8.53/(g1^14*g2^13) + 2*g1^22*g2^5*t^8.53 - g1^25*g2^2*t^8.55 + (g2^27*t^8.81)/g1^27 + (g2^24*t^8.83)/g1^24 + (2*g2^21*t^8.85)/g1^21 + (2*g2^18*t^8.87)/g1^18 + (3*g2^15*t^8.9)/g1^15 + (4*g2^12*t^8.92)/g1^12 - (g2^6*t^8.96)/g1^6 + (7*g2^3*t^8.98)/g1^3 - (g1*t^4.01)/(g2*y) - (g1^2*t^5.01)/(g2^2*y) - (g1^3*t^6.02)/(g2^3*y) - (g1^9*t^6.06)/(g2^9*y) - (g2^8*t^6.94)/(g1^8*y) - (g2^5*t^6.97)/(g1^5*y) - (g2^2*t^6.99)/(g1^2*y) - (g1*t^7.01)/(g2*y) - (2*g1^4*t^7.03)/(g2^4*y) + (g2^7*t^7.95)/(g1^7*y) + (2*g2*t^7.99)/(g1*y) + (g1^2*t^8.01)/(g2^2*y) + (g1^8*t^8.06)/(g2^8*y) - (g1^17*t^8.12)/(g2^17*y) + (g2^15*t^8.9)/(g1^15*y) + (g2^12*t^8.92)/(g1^12*y) + (2*g2^9*t^8.94)/(g1^9*y) + (g2^6*t^8.96)/(g1^6*y) + (g2^3*t^8.98)/(g1^3*y) - (g1*t^4.01*y)/g2 - (g1^2*t^5.01*y)/g2^2 - (g1^3*t^6.02*y)/g2^3 - (g1^9*t^6.06*y)/g2^9 - (g2^8*t^6.94*y)/g1^8 - (g2^5*t^6.97*y)/g1^5 - (g2^2*t^6.99*y)/g1^2 - (g1*t^7.01*y)/g2 - (2*g1^4*t^7.03*y)/g2^4 + (g2^7*t^7.95*y)/g1^7 + (2*g2*t^7.99*y)/g1 + (g1^2*t^8.01*y)/g2^2 + (g1^8*t^8.06*y)/g2^8 - (g1^17*t^8.12*y)/g2^17 + (g2^15*t^8.9*y)/g1^15 + (g2^12*t^8.92*y)/g1^12 + (2*g2^9*t^8.94*y)/g1^9 + (g2^6*t^8.96*y)/g1^6 + (g2^3*t^8.98*y)/g1^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57650 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4954 | 1.7253 | 0.8667 | [X:[], M:[0.992, 0.6879], q:[0.504, 0.4881], qb:[0.504, 0.4881], phi:[0.336]] | t^2.02 + t^2.06 + t^2.93 + 3*t^2.98 + t^3.02 + 2*t^3.98 + 2*t^4.03 + t^4.08 + t^4.13 + 2*t^4.94 + 6*t^4.99 + 5*t^5.04 + t^5.09 + 2*t^5.45 + 2*t^5.5 + t^5.86 + 3*t^5.9 + 5*t^5.95 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |