Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59388 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ | 1.3534 | 1.5722 | 0.8609 | [X:[1.375], M:[0.875, 1.0], q:[0.5625, 0.3125], qb:[0.5625, 0.3125], phi:[0.375]] | [X:[[0, 0]], M:[[0, 0], [0, 0]], q:[[-1, 0], [0, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 | {a: 44349/32768, c: 51517/32768, X1: 11/8, M1: 7/8, M2: 1, q1: 9/16, q2: 5/16, qb1: 9/16, qb2: 5/16, phi1: 3/8} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | 2 | t^2.25 + 3*t^2.62 + t^3. + t^3.38 + 2*t^3.75 + 2*t^4.12 + 2*t^4.5 + 2*t^4.69 + 5*t^4.88 + 5*t^5.25 + 2*t^5.44 + 5*t^5.62 + 2*t^5.81 + 2*t^6. + 2*t^6.19 + 7*t^6.38 + 2*t^6.56 + 8*t^6.75 + 2*t^6.94 + 9*t^7.12 + 4*t^7.31 + 12*t^7.5 + 4*t^7.69 + 13*t^7.88 + 4*t^8.06 + 13*t^8.25 + 10*t^8.44 + 7*t^8.62 + 6*t^8.81 - t^4.12/y - t^5.25/y - t^6.38/y - (3*t^6.75)/y - (2*t^7.5)/y + t^7.88/y + (2*t^8.25)/y + (2*t^8.62)/y - t^4.12*y - t^5.25*y - t^6.38*y - 3*t^6.75*y - 2*t^7.5*y + t^7.88*y + 2*t^8.25*y + 2*t^8.62*y | t^2.25 + t^2.62 + (g1*t^2.62)/g2 + (g2*t^2.62)/g1 + t^3. + t^3.38 + (g1*t^3.75)/g2 + (g2*t^3.75)/g1 + 2*t^4.12 + 2*t^4.5 + t^4.69/(g1*g2^2) + g1*g2^2*t^4.69 + t^4.88 + (2*g1*t^4.88)/g2 + (2*g2*t^4.88)/g1 + 3*t^5.25 + (g1^2*t^5.25)/g2^2 + (g2^2*t^5.25)/g1^2 + t^5.44/(g1^2*g2) + g1^2*g2*t^5.44 + 3*t^5.62 + (g1*t^5.62)/g2 + (g2*t^5.62)/g1 + t^5.81/(g1*g2^2) + g1*g2^2*t^5.81 - 2*t^6. + (2*g1*t^6.)/g2 + (2*g2*t^6.)/g1 + t^6.19/g2^3 + g2^3*t^6.19 + 5*t^6.38 + (g1^2*t^6.38)/g2^2 + (g2^2*t^6.38)/g1^2 + t^6.56/(g1^2*g2) + g1^2*g2*t^6.56 + 4*t^6.75 + (2*g1*t^6.75)/g2 + (2*g2*t^6.75)/g1 + (2*t^6.94)/(g1*g2^2) - t^6.94/(g1^2*g2) - g1^2*g2*t^6.94 + 2*g1*g2^2*t^6.94 + t^7.12 + (4*g1*t^7.12)/g2 + (4*g2*t^7.12)/g1 + t^7.31/g2^3 + t^7.31/(g1^2*g2) + g1^2*g2*t^7.31 + g2^3*t^7.31 + 8*t^7.5 + (3*g1^2*t^7.5)/g2^2 - (g1*t^7.5)/g2 - (g2*t^7.5)/g1 + (3*g2^2*t^7.5)/g1^2 + (2*t^7.69)/(g1^2*g2) + 2*g1^2*g2*t^7.69 + 3*t^7.88 + (g1^3*t^7.88)/g2^3 + (4*g1*t^7.88)/g2 + (4*g2*t^7.88)/g1 + (g2^3*t^7.88)/g1^3 + t^8.06/g1^3 + g1^3*t^8.06 - t^8.06/g2^3 + (3*t^8.06)/(g1*g2^2) - t^8.06/(g1^2*g2) - g1^2*g2*t^8.06 + 3*g1*g2^2*t^8.06 - g2^3*t^8.06 + t^8.25 + (g1^2*t^8.25)/g2^2 + (5*g1*t^8.25)/g2 + (5*g2*t^8.25)/g1 + (g2^2*t^8.25)/g1^2 + t^8.44/g1^3 + g1^3*t^8.44 + (3*t^8.44)/g2^3 - t^8.44/(g1*g2^2) + (2*t^8.44)/(g1^2*g2) + 2*g1^2*g2*t^8.44 - g1*g2^2*t^8.44 + 3*g2^3*t^8.44 + 9*t^8.62 + (3*g1^2*t^8.62)/g2^2 - (4*g1*t^8.62)/g2 - (4*g2*t^8.62)/g1 + (3*g2^2*t^8.62)/g1^2 - t^8.81/g1^3 - g1^3*t^8.81 + (g1*t^8.81)/g2^4 + t^8.81/(g1*g2^2) + (2*t^8.81)/(g1^2*g2) + 2*g1^2*g2*t^8.81 + g1*g2^2*t^8.81 + (g2^4*t^8.81)/g1 - t^4.12/y - t^5.25/y - t^6.38/y - t^6.75/y - (g1*t^6.75)/(g2*y) - (g2*t^6.75)/(g1*y) - (2*t^7.5)/y + t^7.88/y + (g1*t^8.25)/(g2*y) + (g2*t^8.25)/(g1*y) + (g1*t^8.62)/(g2*y) + (g2*t^8.62)/(g1*y) - t^4.12*y - t^5.25*y - t^6.38*y - t^6.75*y - (g1*t^6.75*y)/g2 - (g2*t^6.75*y)/g1 - 2*t^7.5*y + t^7.88*y + (g1*t^8.25*y)/g2 + (g2*t^8.25*y)/g1 + (g1*t^8.62*y)/g2 + (g2*t^8.62*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57650 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4954 | 1.7253 | 0.8667 | [X:[], M:[0.992, 0.6879], q:[0.504, 0.4881], qb:[0.504, 0.4881], phi:[0.336]] | t^2.02 + t^2.06 + t^2.93 + 3*t^2.98 + t^3.02 + 2*t^3.98 + 2*t^4.03 + t^4.08 + t^4.13 + 2*t^4.94 + 6*t^4.99 + 5*t^5.04 + t^5.09 + 2*t^5.45 + 2*t^5.5 + t^5.86 + 3*t^5.9 + 5*t^5.95 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |