Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59489 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.5162 1.7667 0.8582 [X:[], M:[0.9921, 0.6877, 0.671], q:[0.5035, 0.4887], qb:[0.5044, 0.4877], phi:[0.336]] [X:[], M:[[3, 0, 3], [-8, 0, -8], [-8, -1, 1]], q:[[-3, -1, -3], [9, 0, 0]], qb:[[0, 1, 0], [0, 0, 9]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ ${}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 0 t^2.01 + t^2.02 + t^2.06 + t^2.93 + t^2.97 + 2*t^2.98 + t^3.02 + t^3.98 + 4*t^4.03 + 2*t^4.08 + t^4.13 + 3*t^4.94 + 9*t^4.99 + 6*t^5.04 + t^5.09 + 2*t^5.45 + t^5.49 + t^5.5 + t^5.86 + t^5.9 + 2*t^5.91 + 4*t^5.95 + t^5.96 + t^5.99 + 4*t^6.04 + 2*t^6.05 + 4*t^6.09 + 2*t^6.14 + t^6.19 + 2*t^6.46 + t^6.5 + t^6.51 + t^6.91 + 2*t^6.95 + 5*t^6.96 + 4*t^7. + 13*t^7.01 + 6*t^7.05 + 7*t^7.06 + 5*t^7.1 + t^7.11 + t^7.15 + t^7.41 + t^7.42 + 3*t^7.46 + t^7.47 + 6*t^7.51 + t^7.55 + 3*t^7.56 + 3*t^7.87 + 11*t^7.92 + 4*t^7.96 + 13*t^7.97 + 6*t^8.01 + 3*t^8.02 + 2*t^8.05 + 6*t^8.06 - t^8.07 + 2*t^8.1 + 4*t^8.11 + 2*t^8.15 + 2*t^8.16 + 2*t^8.2 + t^8.25 + 2*t^8.38 + 3*t^8.42 + 3*t^8.43 + 6*t^8.47 + 2*t^8.52 + t^8.79 + 2*t^8.83 + t^8.84 + 4*t^8.88 + t^8.89 + 2*t^8.92 + 2*t^8.93 + t^8.94 + 6*t^8.97 - 2*t^8.98 - t^4.01/y - t^5.02/y - (2*t^6.02)/y - t^6.07/y - t^6.94/y - (2*t^6.98)/y - t^6.99/y - (2*t^7.03)/y + t^7.08/y + (2*t^7.94)/y + (6*t^7.99)/y - t^8.03/y + (2*t^8.04)/y - t^8.08/y - t^8.13/y + t^8.9/y + (2*t^8.91)/y + t^8.95/y + t^8.96/y - t^4.01*y - t^5.02*y - 2*t^6.02*y - t^6.07*y - t^6.94*y - 2*t^6.98*y - t^6.99*y - 2*t^7.03*y + t^7.08*y + 2*t^7.94*y + 6*t^7.99*y - t^8.03*y + 2*t^8.04*y - t^8.08*y - t^8.13*y + t^8.9*y + 2*t^8.91*y + t^8.95*y + t^8.96*y (g3*t^2.01)/(g1^8*g2) + t^2.02/(g1^2*g3^2) + t^2.06/(g1^8*g3^8) + g1^9*g3^9*t^2.93 + (g3^6*t^2.97)/(g1^3*g2) + g1^9*g2*t^2.98 + g1^3*g3^3*t^2.98 + t^3.02/(g1^3*g3^3) + (g3^5*t^3.98)/(g1^4*g2) + (2*t^4.03)/(g1^4*g3^4) + t^4.03/(g1^10*g2*g3) + (g3^2*t^4.03)/(g1^16*g2^2) + t^4.08/(g1^10*g3^10) + t^4.08/(g1^16*g2*g3^7) + t^4.13/(g1^16*g3^16) + 2*g1^7*g3^7*t^4.94 + (g1*g3^10*t^4.94)/g2 + (2*g1^7*g2*t^4.99)/g3^2 + 3*g1*g3*t^4.99 + (3*g3^4*t^4.99)/(g1^5*g2) + (g3^7*t^4.99)/(g1^11*g2^2) + (g1*g2*t^5.04)/g3^8 + (3*t^5.04)/(g1^5*g3^5) + (2*t^5.04)/(g1^11*g2*g3^2) + t^5.09/(g1^11*g3^11) + (g1^14*t^5.45)/(g2*g3^4) + (g2*g3^17*t^5.45)/g1 + (g1^2*t^5.49)/(g2^2*g3^7) + (g2^2*g3^8*t^5.5)/g1 + g1^18*g3^18*t^5.86 + (g1^6*g3^15*t^5.9)/g2 + g1^18*g2*g3^9*t^5.91 + g1^12*g3^12*t^5.91 + 3*g1^6*g3^6*t^5.95 + (g3^12*t^5.95)/(g1^6*g2^2) + g1^18*g2^2*t^5.96 + (g3^6*t^5.99)/(g1^12*g2^2) - 3*t^6. + (g1^6*g2*t^6.)/g3^3 + (2*g3^3*t^6.)/(g1^6*g2) + t^6.04/(g1^18*g2^2) + (2*t^6.04)/(g1^12*g2*g3^3) + (g3^3*t^6.04)/(g1^24*g2^3) - (g2*t^6.05)/g3^9 + (3*t^6.05)/(g1^6*g3^6) + (2*t^6.09)/(g1^12*g3^12) + t^6.09/(g1^18*g2*g3^9) + t^6.09/(g1^24*g2^2*g3^6) + t^6.14/(g1^18*g3^18) + t^6.14/(g1^24*g2*g3^15) + t^6.19/(g1^24*g3^24) + (g1^13*t^6.46)/(g2*g3^5) + (g2*g3^16*t^6.46)/g1^2 + (g1*t^6.5)/(g2^2*g3^8) + (g2^2*g3^7*t^6.51)/g1^2 + (g1^5*g3^14*t^6.91)/g2 + (2*g3^11*t^6.95)/(g1^7*g2^2) - g1^11*g2*g3^2*t^6.96 + 4*g1^5*g3^5*t^6.96 + (2*g3^8*t^6.96)/(g1*g2) + (3*g3^5*t^7.)/(g1^13*g2^2) + (g3^8*t^7.)/(g1^19*g2^3) + (3*g1^5*g2*t^7.01)/g3^4 + (3*t^7.01)/(g1*g3) + (7*g3^2*t^7.01)/(g1^7*g2) + (4*t^7.05)/(g1^13*g2*g3^4) + (2*t^7.05)/(g1^19*g2^2*g3) + (g2*t^7.06)/(g1*g3^10) + (6*t^7.06)/(g1^7*g3^7) + (3*t^7.1)/(g1^13*g3^13) + (2*t^7.1)/(g1^19*g2*g3^10) + (g2*t^7.11)/(g1^7*g3^16) + t^7.15/(g1^19*g3^19) + (g3^24*t^7.41)/g1^3 + (g1^24*t^7.42)/g3^3 + (2*g2*g3^15*t^7.46)/g1^3 + (g3^18*t^7.46)/g1^9 + (2*g1^12*t^7.47)/(g2*g3^6) - g1^3*g2^2*g3^12*t^7.47 + (2*t^7.51)/(g2^2*g3^9) + t^7.51/(g1^6*g2^3*g3^6) + (2*g2^2*g3^6*t^7.51)/g1^3 + (g2*g3^9*t^7.51)/g1^9 + t^7.55/(g1^12*g2^3*g3^12) + (g2^2*t^7.56)/g1^9 + t^7.56/(g1^6*g2^2*g3^15) + (g2^3*t^7.56)/(g1^3*g3^3) + 2*g1^16*g3^16*t^7.87 + (g1^10*g3^19*t^7.87)/g2 + 3*g1^16*g2*g3^7*t^7.92 + 3*g1^10*g3^10*t^7.92 + (4*g1^4*g3^13*t^7.92)/g2 + (g3^16*t^7.92)/(g1^2*g2^2) + (3*g3^10*t^7.96)/(g1^8*g2^2) + (g3^13*t^7.96)/(g1^14*g2^3) + (2*g1^16*g2^2*t^7.97)/g3^2 + g1^10*g2*g3*t^7.97 + 7*g1^4*g3^4*t^7.97 + (3*g3^7*t^7.97)/(g1^2*g2) + (2*g3*t^8.01)/(g1^8*g2) + (3*g3^4*t^8.01)/(g1^14*g2^2) + (g3^7*t^8.01)/(g1^20*g2^3) + (g1^10*g2^2*t^8.02)/g3^8 + (3*g1^4*g2*t^8.02)/g3^5 - t^8.02/(g1^2*g3^2) + (g3*t^8.05)/(g1^26*g2^3) + (g3^4*t^8.05)/(g1^32*g2^4) + t^8.06/(g1^8*g3^8) + (3*t^8.06)/(g1^14*g2*g3^5) + (2*t^8.06)/(g1^20*g2^2*g3^2) - (g2*t^8.07)/(g1^2*g3^11) + t^8.1/(g1^26*g2^2*g3^8) + t^8.1/(g1^32*g2^3*g3^5) - (g2*t^8.11)/(g1^8*g3^17) + (3*t^8.11)/(g1^14*g3^14) + (2*t^8.11)/(g1^20*g2*g3^11) + t^8.15/(g1^26*g2*g3^17) + t^8.15/(g1^32*g2^2*g3^14) + (2*t^8.16)/(g1^20*g3^20) + t^8.2/(g1^26*g3^26) + t^8.2/(g1^32*g2*g3^23) + t^8.25/(g1^32*g3^32) + (g1^23*g3^5*t^8.38)/g2 + g1^8*g2*g3^26*t^8.38 + (2*g1^11*g3^2*t^8.42)/g2^2 + (g3^23*t^8.42)/g1^4 + (g1^23*t^8.43)/g3^4 + 2*g1^8*g2^2*g3^17*t^8.43 + (3*g1^11*t^8.47)/(g2*g3^7) + t^8.47/(g1*g2^3*g3) - g1^2*g2^2*g3^11*t^8.47 + (3*g2*g3^14*t^8.47)/g1^4 - (g1^17*t^8.48)/g3^10 + g1^8*g2^3*g3^8*t^8.48 - (g1^5*t^8.52)/(g2*g3^13) + (2*t^8.52)/(g1*g2^2*g3^10) - g1^2*g2^3*g3^2*t^8.52 + (2*g2^2*g3^5*t^8.52)/g1^4 + g1^27*g3^27*t^8.79 + g1^21*g3^21*t^8.83 + (g1^15*g3^24*t^8.83)/g2 + g1^27*g2*g3^18*t^8.84 + 3*g1^15*g3^15*t^8.88 + (g1^3*g3^21*t^8.88)/g2^2 + g1^27*g2^2*g3^9*t^8.89 + (g3^15*t^8.92)/(g1^3*g2^2) + (g3^18*t^8.92)/(g1^9*g2^3) + 2*g1^15*g2*g3^6*t^8.93 - 4*g1^9*g3^9*t^8.93 + (4*g1^3*g3^12*t^8.93)/g2 + g1^27*g2^3*t^8.94 - (g3^6*t^8.97)/(g1^3*g2) + (5*g3^9*t^8.97)/(g1^9*g2^2) + (2*g3^12*t^8.97)/(g1^15*g2^3) - 7*g1^9*g2*t^8.98 + (g1^15*g2^2*t^8.98)/g3^3 + 4*g1^3*g3^3*t^8.98 - t^4.01/(g1*g3*y) - t^5.02/(g1^2*g3^2*y) - t^6.02/(g1^9*g2*y) - t^6.02/(g1^3*g3^3*y) - t^6.07/(g1^9*g3^9*y) - (g1^8*g3^8*t^6.94)/y - (g1^2*g3^2*t^6.98)/y - (g3^5*t^6.98)/(g1^4*g2*y) - (g1^8*g2*t^6.99)/(g3*y) - (2*t^7.03)/(g1^4*g3^4*y) + t^7.08/(g1^16*g2*g3^7*y) + (g1^7*g3^7*t^7.94)/y + (g1*g3^10*t^7.94)/(g2*y) + (g1^7*g2*t^7.99)/(g3^2*y) + (3*g1*g3*t^7.99)/y + (g3^4*t^7.99)/(g1^5*g2*y) + (g3^7*t^7.99)/(g1^11*g2^2*y) - (g3*t^8.03)/(g1^17*g2^2*y) + (g1*g2*t^8.04)/(g3^8*y) + t^8.04/(g1^11*g2*g3^2*y) - t^8.08/(g1^17*g2*g3^8*y) - t^8.13/(g1^17*g3^17*y) + (g1^6*g3^15*t^8.9)/(g2*y) + (g1^18*g2*g3^9*t^8.91)/y + (g1^12*g3^12*t^8.91)/y + (g1^6*g3^6*t^8.95)/y + (g1^12*g2*g3^3*t^8.96)/y - (t^4.01*y)/(g1*g3) - (t^5.02*y)/(g1^2*g3^2) - (t^6.02*y)/(g1^9*g2) - (t^6.02*y)/(g1^3*g3^3) - (t^6.07*y)/(g1^9*g3^9) - g1^8*g3^8*t^6.94*y - g1^2*g3^2*t^6.98*y - (g3^5*t^6.98*y)/(g1^4*g2) - (g1^8*g2*t^6.99*y)/g3 - (2*t^7.03*y)/(g1^4*g3^4) + (t^7.08*y)/(g1^16*g2*g3^7) + g1^7*g3^7*t^7.94*y + (g1*g3^10*t^7.94*y)/g2 + (g1^7*g2*t^7.99*y)/g3^2 + 3*g1*g3*t^7.99*y + (g3^4*t^7.99*y)/(g1^5*g2) + (g3^7*t^7.99*y)/(g1^11*g2^2) - (g3*t^8.03*y)/(g1^17*g2^2) + (g1*g2*t^8.04*y)/g3^8 + (t^8.04*y)/(g1^11*g2*g3^2) - (t^8.08*y)/(g1^17*g2*g3^8) - (t^8.13*y)/(g1^17*g3^17) + (g1^6*g3^15*t^8.9*y)/g2 + g1^18*g2*g3^9*t^8.91*y + g1^12*g3^12*t^8.91*y + g1^6*g3^6*t^8.95*y + g1^12*g2*g3^3*t^8.96*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57650 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4954 1.7253 0.8667 [X:[], M:[0.992, 0.6879], q:[0.504, 0.4881], qb:[0.504, 0.4881], phi:[0.336]] t^2.02 + t^2.06 + t^2.93 + 3*t^2.98 + t^3.02 + 2*t^3.98 + 2*t^4.03 + t^4.08 + t^4.13 + 2*t^4.94 + 6*t^4.99 + 5*t^5.04 + t^5.09 + 2*t^5.45 + 2*t^5.5 + t^5.86 + 3*t^5.9 + 5*t^5.95 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail