Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57637 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ 1.5181 1.7752 0.8552 [X:[], M:[0.6861, 0.6861, 0.9648], q:[0.4824, 0.4824], qb:[0.4865, 0.4784], phi:[0.3451]] [X:[], M:[[-5, 1, -5, 1], [1, -5, -5, 1], [3, 3, 3, 3]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}$ -6 2*t^2.06 + t^2.07 + 2*t^2.88 + t^2.89 + 2*t^2.91 + 2*t^3.92 + 3*t^4.12 + 2*t^4.13 + t^4.14 + 4*t^4.94 + 6*t^4.95 + 5*t^4.96 + 4*t^4.98 + t^5.36 + 2*t^5.38 + t^5.39 + 3*t^5.76 + 2*t^5.78 + 5*t^5.79 + 2*t^5.8 + 3*t^5.81 + 3*t^5.98 + 2*t^5.99 - 6*t^6. - t^6.02 + 4*t^6.17 + 3*t^6.19 + 2*t^6.2 + t^6.21 + t^6.4 + 2*t^6.41 + t^6.42 + 4*t^6.8 + 2*t^6.81 + 4*t^6.82 + 6*t^7. + 10*t^7.01 + 12*t^7.02 + 4*t^7.04 + 4*t^7.05 - t^7.06 + t^7.41 + 2*t^7.42 + 5*t^7.44 + 6*t^7.45 + t^7.46 + t^7.48 + 6*t^7.82 + 14*t^7.84 + 12*t^7.85 + 16*t^7.86 + 8*t^7.87 + 7*t^7.88 + 4*t^8.03 + 2*t^8.05 - 10*t^8.06 - 10*t^8.07 - 2*t^8.08 - 2*t^8.09 + 5*t^8.23 + 4*t^8.24 + 2*t^8.25 + 8*t^8.26 + 8*t^8.27 + 6*t^8.28 + 2*t^8.3 + t^8.47 - 3*t^8.49 - 2*t^8.51 + 4*t^8.65 + 3*t^8.66 + 8*t^8.67 + 5*t^8.68 + 8*t^8.7 + 3*t^8.71 + 4*t^8.72 + 6*t^8.86 + 11*t^8.87 - 6*t^8.88 + t^8.89 - 16*t^8.91 - t^8.92 - 2*t^8.93 - t^4.04/y - t^5.07/y - (2*t^6.09)/y - t^6.11/y - (2*t^6.92)/y - t^6.93/y - (2*t^6.94)/y + t^7.12/y - t^7.14/y + (4*t^7.94)/y + (2*t^7.95)/y + (5*t^7.96)/y + (2*t^7.98)/y - (3*t^8.15)/y - (2*t^8.16)/y - t^8.18/y + t^8.76/y + (2*t^8.78)/y + (4*t^8.79)/y + (2*t^8.8)/y + t^8.81/y - (4*t^8.99)/y - t^4.04*y - t^5.07*y - 2*t^6.09*y - t^6.11*y - 2*t^6.92*y - t^6.93*y - 2*t^6.94*y + t^7.12*y - t^7.14*y + 4*t^7.94*y + 2*t^7.95*y + 5*t^7.96*y + 2*t^7.98*y - 3*t^8.15*y - 2*t^8.16*y - t^8.18*y + t^8.76*y + 2*t^8.78*y + 4*t^8.79*y + 2*t^8.8*y + t^8.81*y - 4*t^8.99*y (g1*g4*t^2.06)/(g2^5*g3^5) + (g2*g4*t^2.06)/(g1^5*g3^5) + t^2.07/(g1^2*g2^2*g3^2*g4^2) + g1^6*g4^6*t^2.88 + g2^6*g4^6*t^2.88 + g1^3*g2^3*g3^3*g4^3*t^2.89 + g1^6*g3^6*t^2.91 + g2^6*g3^6*t^2.91 + (g1^5*g4^5*t^3.92)/(g2*g3) + (g2^5*g4^5*t^3.92)/(g1*g3) + (g1^2*g4^2*t^4.12)/(g2^10*g3^10) + (g4^2*t^4.12)/(g1^4*g2^4*g3^10) + (g2^2*g4^2*t^4.12)/(g1^10*g3^10) + t^4.13/(g1*g2^7*g3^7*g4) + t^4.13/(g1^7*g2*g3^7*g4) + t^4.14/(g1^4*g2^4*g3^4*g4^4) + (g1^7*g4^7*t^4.94)/(g2^5*g3^5) + (2*g1*g2*g4^7*t^4.94)/g3^5 + (g2^7*g4^7*t^4.94)/(g1^5*g3^5) + (3*g1^4*g4^4*t^4.95)/(g2^2*g3^2) + (3*g2^4*g4^4*t^4.95)/(g1^2*g3^2) + (g1^7*g3*g4*t^4.96)/g2^5 + 3*g1*g2*g3*g4*t^4.96 + (g2^7*g3*g4*t^4.96)/g1^5 + (2*g1^4*g3^4*t^4.98)/(g2^2*g4^2) + (2*g2^4*g3^4*t^4.98)/(g1^2*g4^2) + (g3^5*g4^11*t^5.36)/(g1*g2) + (g1^11*g2^5*t^5.38)/(g3*g4) + (g1^5*g2^11*t^5.38)/(g3*g4) + (g3^11*g4^5*t^5.39)/(g1*g2) + g1^12*g4^12*t^5.76 + g1^6*g2^6*g4^12*t^5.76 + g2^12*g4^12*t^5.76 + g1^9*g2^3*g3^3*g4^9*t^5.78 + g1^3*g2^9*g3^3*g4^9*t^5.78 + g1^12*g3^6*g4^6*t^5.79 + 3*g1^6*g2^6*g3^6*g4^6*t^5.79 + g2^12*g3^6*g4^6*t^5.79 + g1^9*g2^3*g3^9*g4^3*t^5.8 + g1^3*g2^9*g3^9*g4^3*t^5.8 + g1^12*g3^12*t^5.81 + g1^6*g2^6*g3^12*t^5.81 + g2^12*g3^12*t^5.81 + (g4^6*t^5.98)/g3^6 + (g1^6*g4^6*t^5.98)/(g2^6*g3^6) + (g2^6*g4^6*t^5.98)/(g1^6*g3^6) + (g1^3*g4^3*t^5.99)/(g2^3*g3^3) + (g2^3*g4^3*t^5.99)/(g1^3*g3^3) - 4*t^6. - (g1^6*t^6.)/g2^6 - (g2^6*t^6.)/g1^6 - (g3^6*t^6.02)/g4^6 + (g1^3*g4^3*t^6.17)/(g2^15*g3^15) + (g4^3*t^6.17)/(g1^3*g2^9*g3^15) + (g4^3*t^6.17)/(g1^9*g2^3*g3^15) + (g2^3*g4^3*t^6.17)/(g1^15*g3^15) + t^6.19/(g1^12*g3^12) + t^6.19/(g2^12*g3^12) + t^6.19/(g1^6*g2^6*g3^12) + t^6.2/(g1^3*g2^9*g3^9*g4^3) + t^6.2/(g1^9*g2^3*g3^9*g4^3) + t^6.21/(g1^6*g2^6*g3^6*g4^6) + (g3^4*g4^10*t^6.4)/(g1^2*g2^2) + (g1^10*g2^4*t^6.41)/(g3^2*g4^2) + (g1^4*g2^10*t^6.41)/(g3^2*g4^2) + (g3^10*g4^4*t^6.42)/(g1^2*g2^2) + (g1^11*g4^11*t^6.8)/(g2*g3) + (2*g1^5*g2^5*g4^11*t^6.8)/g3 + (g2^11*g4^11*t^6.8)/(g1*g3) + g1^8*g2^2*g3^2*g4^8*t^6.81 + g1^2*g2^8*g3^2*g4^8*t^6.81 + (g1^11*g3^5*g4^5*t^6.82)/g2 + 2*g1^5*g2^5*g3^5*g4^5*t^6.82 + (g2^11*g3^5*g4^5*t^6.82)/g1 + (g1^8*g4^8*t^7.)/(g2^10*g3^10) + (2*g1^2*g4^8*t^7.)/(g2^4*g3^10) + (2*g2^2*g4^8*t^7.)/(g1^4*g3^10) + (g2^8*g4^8*t^7.)/(g1^10*g3^10) + (3*g1^5*g4^5*t^7.01)/(g2^7*g3^7) + (4*g4^5*t^7.01)/(g1*g2*g3^7) + (3*g2^5*g4^5*t^7.01)/(g1^7*g3^7) + (g1^8*g4^2*t^7.02)/(g2^10*g3^4) + (5*g1^2*g4^2*t^7.02)/(g2^4*g3^4) + (5*g2^2*g4^2*t^7.02)/(g1^4*g3^4) + (g2^8*g4^2*t^7.02)/(g1^10*g3^4) + (g1^5*t^7.04)/(g2^7*g3*g4) + (2*t^7.04)/(g1*g2*g3*g4) + (g2^5*t^7.04)/(g1^7*g3*g4) + (2*g1^2*g3^2*t^7.05)/(g2^4*g4^4) + (2*g2^2*g3^2*t^7.05)/(g1^4*g4^4) - (g3^5*t^7.06)/(g1*g2*g4^7) + (g4^15*t^7.41)/(g1^3*g2^3*g3^3) + (g4^12*t^7.42)/g1^6 + (g4^12*t^7.42)/g2^6 + (g1^12*t^7.44)/g3^6 + (g1^6*g2^6*t^7.44)/g3^6 + (g2^12*t^7.44)/g3^6 + (2*g3^3*g4^9*t^7.44)/(g1^3*g2^3) + (g1^15*t^7.45)/(g2^3*g3^3*g4^3) + (2*g1^9*g2^3*t^7.45)/(g3^3*g4^3) + (2*g1^3*g2^9*t^7.45)/(g3^3*g4^3) + (g2^15*t^7.45)/(g1^3*g3^3*g4^3) - (g1^6*g2^6*t^7.46)/g4^6 + (2*g3^9*g4^3*t^7.46)/(g1^3*g2^3) + (g3^15*t^7.48)/(g1^3*g2^3*g4^3) + (g1^13*g4^13*t^7.82)/(g2^5*g3^5) + (2*g1^7*g2*g4^13*t^7.82)/g3^5 + (2*g1*g2^7*g4^13*t^7.82)/g3^5 + (g2^13*g4^13*t^7.82)/(g1^5*g3^5) + (4*g1^10*g4^10*t^7.84)/(g2^2*g3^2) + (6*g1^4*g2^4*g4^10*t^7.84)/g3^2 + (4*g2^10*g4^10*t^7.84)/(g1^2*g3^2) + (g1^13*g3*g4^7*t^7.85)/g2^5 + 5*g1^7*g2*g3*g4^7*t^7.85 + 5*g1*g2^7*g3*g4^7*t^7.85 + (g2^13*g3*g4^7*t^7.85)/g1^5 + (4*g1^10*g3^4*g4^4*t^7.86)/g2^2 + 8*g1^4*g2^4*g3^4*g4^4*t^7.86 + (4*g2^10*g3^4*g4^4*t^7.86)/g1^2 + (g1^13*g3^7*g4*t^7.87)/g2^5 + 3*g1^7*g2*g3^7*g4*t^7.87 + 3*g1*g2^7*g3^7*g4*t^7.87 + (g2^13*g3^7*g4*t^7.87)/g1^5 + (2*g1^10*g3^10*t^7.88)/(g2^2*g4^2) + (3*g1^4*g2^4*g3^10*t^7.88)/g4^2 + (2*g2^10*g3^10*t^7.88)/(g1^2*g4^2) + (g1^7*g4^7*t^8.03)/(g2^11*g3^11) + (g1*g4^7*t^8.03)/(g2^5*g3^11) + (g2*g4^7*t^8.03)/(g1^5*g3^11) + (g2^7*g4^7*t^8.03)/(g1^11*g3^11) + (g1^4*g4^4*t^8.05)/(g2^8*g3^8) + (g2^4*g4^4*t^8.05)/(g1^8*g3^8) - (g1^7*g4*t^8.06)/(g2^11*g3^5) - (4*g1*g4*t^8.06)/(g2^5*g3^5) - (4*g2*g4*t^8.06)/(g1^5*g3^5) - (g2^7*g4*t^8.06)/(g1^11*g3^5) - (2*g1^4*t^8.07)/(g2^8*g3^2*g4^2) - (6*t^8.07)/(g1^2*g2^2*g3^2*g4^2) - (2*g2^4*t^8.07)/(g1^8*g3^2*g4^2) - (g1*g3*t^8.08)/(g2^5*g4^5) - (g2*g3*t^8.08)/(g1^5*g4^5) - (2*g3^4*t^8.09)/(g1^2*g2^2*g4^8) + (g1^4*g4^4*t^8.23)/(g2^20*g3^20) + (g4^4*t^8.23)/(g1^2*g2^14*g3^20) + (g4^4*t^8.23)/(g1^8*g2^8*g3^20) + (g4^4*t^8.23)/(g1^14*g2^2*g3^20) + (g2^4*g4^4*t^8.23)/(g1^20*g3^20) + (g1*g4*t^8.24)/(g2^17*g3^17) + (g4*t^8.24)/(g1^5*g2^11*g3^17) + (g4*t^8.24)/(g1^11*g2^5*g3^17) + (g2*g4*t^8.24)/(g1^17*g3^17) + (g1^5*g3^5*g4^17*t^8.25)/g2 + (g2^5*g3^5*g4^17*t^8.25)/g1 + t^8.26/(g1^2*g2^14*g3^14*g4^2) + t^8.26/(g1^8*g2^8*g3^14*g4^2) + t^8.26/(g1^14*g2^2*g3^14*g4^2) + (g1^17*g2^5*g4^5*t^8.26)/g3 + (2*g1^11*g2^11*g4^5*t^8.26)/g3 + (g1^5*g2^17*g4^5*t^8.26)/g3 + g1^2*g2^2*g3^8*g4^14*t^8.26 + t^8.27/(g1^5*g2^11*g3^11*g4^5) + t^8.27/(g1^11*g2^5*g3^11*g4^5) + g1^14*g2^8*g3^2*g4^2*t^8.27 + g1^8*g2^14*g3^2*g4^2*t^8.27 + (2*g1^5*g3^11*g4^11*t^8.27)/g2 + (2*g2^5*g3^11*g4^11*t^8.27)/g1 + t^8.28/(g1^8*g2^8*g3^8*g4^8) + (g1^17*g2^5*g3^5*t^8.28)/g4 + (2*g1^11*g2^11*g3^5*t^8.28)/g4 + (g1^5*g2^17*g3^5*t^8.28)/g4 + g1^2*g2^2*g3^14*g4^8*t^8.28 + (g1^5*g3^17*g4^5*t^8.3)/g2 + (g2^5*g3^17*g4^5*t^8.3)/g1 + (g3^2*g4^8*t^8.47)/(g1^4*g2^4) + (g1^8*g2^2*t^8.48)/(g3^4*g4^4) + (g1^2*g2^8*t^8.48)/(g3^4*g4^4) - (g3^5*g4^5*t^8.48)/(g1*g2^7) - (g3^5*g4^5*t^8.48)/(g1^7*g2) - (g1^11*t^8.49)/(g2*g3*g4^7) - (2*g1^5*g2^5*t^8.49)/(g3*g4^7) - (g2^11*t^8.49)/(g1*g3*g4^7) + (g3^8*g4^2*t^8.49)/(g1^4*g2^4) - (g3^11*t^8.51)/(g1*g2^7*g4) - (g3^11*t^8.51)/(g1^7*g2*g4) + g1^18*g4^18*t^8.65 + g1^12*g2^6*g4^18*t^8.65 + g1^6*g2^12*g4^18*t^8.65 + g2^18*g4^18*t^8.65 + g1^15*g2^3*g3^3*g4^15*t^8.66 + g1^9*g2^9*g3^3*g4^15*t^8.66 + g1^3*g2^15*g3^3*g4^15*t^8.66 + g1^18*g3^6*g4^12*t^8.67 + 3*g1^12*g2^6*g3^6*g4^12*t^8.67 + 3*g1^6*g2^12*g3^6*g4^12*t^8.67 + g2^18*g3^6*g4^12*t^8.67 + g1^15*g2^3*g3^9*g4^9*t^8.68 + 3*g1^9*g2^9*g3^9*g4^9*t^8.68 + g1^3*g2^15*g3^9*g4^9*t^8.68 + g1^18*g3^12*g4^6*t^8.7 + 3*g1^12*g2^6*g3^12*g4^6*t^8.7 + 3*g1^6*g2^12*g3^12*g4^6*t^8.7 + g2^18*g3^12*g4^6*t^8.7 + g1^15*g2^3*g3^15*g4^3*t^8.71 + g1^9*g2^9*g3^15*g4^3*t^8.71 + g1^3*g2^15*g3^15*g4^3*t^8.71 + g1^18*g3^18*t^8.72 + g1^12*g2^6*g3^18*t^8.72 + g1^6*g2^12*g3^18*t^8.72 + g2^18*g3^18*t^8.72 + (2*g1^6*g4^12*t^8.86)/g3^6 + (g1^12*g4^12*t^8.86)/(g2^6*g3^6) + (2*g2^6*g4^12*t^8.86)/g3^6 + (g2^12*g4^12*t^8.86)/(g1^6*g3^6) + (3*g1^9*g4^9*t^8.87)/(g2^3*g3^3) + (5*g1^3*g2^3*g4^9*t^8.87)/g3^3 + (3*g2^9*g4^9*t^8.87)/(g1^3*g3^3) - 3*g1^6*g4^6*t^8.88 - 3*g2^6*g4^6*t^8.88 + (g1^9*g3^3*g4^3*t^8.89)/g2^3 - g1^3*g2^3*g3^3*g4^3*t^8.89 + (g2^9*g3^3*g4^3*t^8.89)/g1^3 - 7*g1^6*g3^6*t^8.91 - (g1^12*g3^6*t^8.91)/g2^6 - 7*g2^6*g3^6*t^8.91 - (g2^12*g3^6*t^8.91)/g1^6 - (g1^3*g2^3*g3^9*t^8.92)/g4^3 - (g1^6*g3^12*t^8.93)/g4^6 - (g2^6*g3^12*t^8.93)/g4^6 - t^4.04/(g1*g2*g3*g4*y) - t^5.07/(g1^2*g2^2*g3^2*g4^2*y) - t^6.09/(g1^6*g3^6*y) - t^6.09/(g2^6*g3^6*y) - t^6.11/(g1^3*g2^3*g3^3*g4^3*y) - (g1^5*g4^5*t^6.92)/(g2*g3*y) - (g2^5*g4^5*t^6.92)/(g1*g3*y) - (g1^2*g2^2*g3^2*g4^2*t^6.93)/y - (g1^5*g3^5*t^6.94)/(g2*g4*y) - (g2^5*g3^5*t^6.94)/(g1*g4*y) + (g4^2*t^7.12)/(g1^4*g2^4*g3^10*y) - t^7.14/(g1^4*g2^4*g3^4*g4^4*y) + (g1^7*g4^7*t^7.94)/(g2^5*g3^5*y) + (2*g1*g2*g4^7*t^7.94)/(g3^5*y) + (g2^7*g4^7*t^7.94)/(g1^5*g3^5*y) + (g1^4*g4^4*t^7.95)/(g2^2*g3^2*y) + (g2^4*g4^4*t^7.95)/(g1^2*g3^2*y) + (g1^7*g3*g4*t^7.96)/(g2^5*y) + (3*g1*g2*g3*g4*t^7.96)/y + (g2^7*g3*g4*t^7.96)/(g1^5*y) + (g1^4*g3^4*t^7.98)/(g2^2*g4^2*y) + (g2^4*g3^4*t^7.98)/(g1^2*g4^2*y) - (g1*g4*t^8.15)/(g2^11*g3^11*y) - (g4*t^8.15)/(g1^5*g2^5*g3^11*y) - (g2*g4*t^8.15)/(g1^11*g3^11*y) - t^8.16/(g1^2*g2^8*g3^8*g4^2*y) - t^8.16/(g1^8*g2^2*g3^8*g4^2*y) - t^8.18/(g1^5*g2^5*g3^5*g4^5*y) + (g1^6*g2^6*g4^12*t^8.76)/y + (g1^9*g2^3*g3^3*g4^9*t^8.78)/y + (g1^3*g2^9*g3^3*g4^9*t^8.78)/y + (g1^12*g3^6*g4^6*t^8.79)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.79)/y + (g2^12*g3^6*g4^6*t^8.79)/y + (g1^9*g2^3*g3^9*g4^3*t^8.8)/y + (g1^3*g2^9*g3^9*g4^3*t^8.8)/y + (g1^6*g2^6*g3^12*t^8.81)/y - (2*g1^3*g4^3*t^8.99)/(g2^3*g3^3*y) - (2*g2^3*g4^3*t^8.99)/(g1^3*g3^3*y) - (t^4.04*y)/(g1*g2*g3*g4) - (t^5.07*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.09*y)/(g1^6*g3^6) - (t^6.09*y)/(g2^6*g3^6) - (t^6.11*y)/(g1^3*g2^3*g3^3*g4^3) - (g1^5*g4^5*t^6.92*y)/(g2*g3) - (g2^5*g4^5*t^6.92*y)/(g1*g3) - g1^2*g2^2*g3^2*g4^2*t^6.93*y - (g1^5*g3^5*t^6.94*y)/(g2*g4) - (g2^5*g3^5*t^6.94*y)/(g1*g4) + (g4^2*t^7.12*y)/(g1^4*g2^4*g3^10) - (t^7.14*y)/(g1^4*g2^4*g3^4*g4^4) + (g1^7*g4^7*t^7.94*y)/(g2^5*g3^5) + (2*g1*g2*g4^7*t^7.94*y)/g3^5 + (g2^7*g4^7*t^7.94*y)/(g1^5*g3^5) + (g1^4*g4^4*t^7.95*y)/(g2^2*g3^2) + (g2^4*g4^4*t^7.95*y)/(g1^2*g3^2) + (g1^7*g3*g4*t^7.96*y)/g2^5 + 3*g1*g2*g3*g4*t^7.96*y + (g2^7*g3*g4*t^7.96*y)/g1^5 + (g1^4*g3^4*t^7.98*y)/(g2^2*g4^2) + (g2^4*g3^4*t^7.98*y)/(g1^2*g4^2) - (g1*g4*t^8.15*y)/(g2^11*g3^11) - (g4*t^8.15*y)/(g1^5*g2^5*g3^11) - (g2*g4*t^8.15*y)/(g1^11*g3^11) - (t^8.16*y)/(g1^2*g2^8*g3^8*g4^2) - (t^8.16*y)/(g1^8*g2^2*g3^8*g4^2) - (t^8.18*y)/(g1^5*g2^5*g3^5*g4^5) + g1^6*g2^6*g4^12*t^8.76*y + g1^9*g2^3*g3^3*g4^9*t^8.78*y + g1^3*g2^9*g3^3*g4^9*t^8.78*y + g1^12*g3^6*g4^6*t^8.79*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.79*y + g2^12*g3^6*g4^6*t^8.79*y + g1^9*g2^3*g3^9*g4^3*t^8.8*y + g1^3*g2^9*g3^9*g4^3*t^8.8*y + g1^6*g2^6*g3^12*t^8.81*y - (2*g1^3*g4^3*t^8.99*y)/(g2^3*g3^3) - (2*g2^3*g4^3*t^8.99*y)/(g1^3*g3^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
59030 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ 1.5181 1.7749 0.8553 [X:[], M:[0.6859, 0.6899, 0.9652], q:[0.4846, 0.4806], qb:[0.4846, 0.4806], phi:[0.3449]] t^2.06 + 2*t^2.07 + t^2.88 + 3*t^2.9 + t^2.91 + t^3.92 + t^3.93 + t^4.12 + 2*t^4.13 + 3*t^4.14 + t^4.94 + 6*t^4.95 + 9*t^4.97 + 3*t^4.98 + 2*t^5.37 + 2*t^5.38 + t^5.77 + 3*t^5.78 + 7*t^5.79 + 3*t^5.8 + t^5.82 + t^5.98 + t^5.99 - 2*t^6. - t^4.03/y - t^5.07/y - t^4.03*y - t^5.07*y detail
58966 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ 1.5388 1.8146 0.848 [X:[], M:[0.6886, 0.6848, 0.9671, 0.6886], q:[0.4817, 0.4855], qb:[0.4855, 0.4817], phi:[0.3443]] t^2.05 + 3*t^2.07 + t^2.89 + 3*t^2.9 + t^2.91 + t^3.92 + t^4.11 + 3*t^4.12 + 6*t^4.13 + t^4.94 + 7*t^4.96 + 12*t^4.97 + 4*t^4.98 + 2*t^5.38 + 2*t^5.39 + t^5.78 + 3*t^5.79 + 7*t^5.8 + 3*t^5.81 + t^5.83 + t^5.98 + t^5.99 - 4*t^6. - t^4.03/y - t^5.07/y - t^4.03*y - t^5.07*y detail
59531 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ 1.5172 1.7684 0.858 [X:[], M:[0.6716, 0.7019, 0.991, 0.9797], q:[0.5107, 0.4804], qb:[0.4814, 0.5096], phi:[0.3363]] t^2.01 + t^2.02 + t^2.11 + t^2.89 + t^2.94 + 2*t^2.97 + t^2.98 + t^3.98 + 2*t^4.03 + t^4.04 + t^4.07 + 2*t^4.12 + t^4.21 + 3*t^4.9 + t^4.95 + t^4.96 + t^4.98 + 8*t^4.99 + t^5.04 + 4*t^5.08 + t^5.42 + t^5.43 + 2*t^5.51 + t^5.77 + t^5.82 + 3*t^5.86 + t^5.88 + t^5.91 + 2*t^5.94 + 4*t^5.95 + t^5.99 - 3*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail
58898 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ 1.5169 1.7693 0.8574 [X:[], M:[0.6965, 0.6765, 0.9821], q:[0.4811, 0.5011], qb:[0.4831, 0.4989], phi:[0.3393]] t^2.03 + t^2.04 + t^2.09 + t^2.89 + t^2.94 + 2*t^2.95 + t^3. + t^3.96 + t^4.02 + t^4.06 + 2*t^4.07 + t^4.12 + t^4.13 + t^4.18 + t^4.92 + 2*t^4.93 + t^4.97 + 6*t^4.98 + 2*t^4.99 + 2*t^5.03 + 4*t^5.04 + t^5.09 + 2*t^5.41 + t^5.46 + t^5.47 + t^5.79 + t^5.83 + t^5.84 + t^5.85 + t^5.88 + 4*t^5.89 + t^5.9 + t^5.91 + t^5.95 + 2*t^5.99 - 3*t^6. - t^4.02/y - t^5.04/y - t^4.02*y - t^5.04*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47933 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ 1.5159 1.7676 0.8576 [M:[0.6732, 0.6732], q:[0.4941, 0.4941], qb:[0.4955, 0.4927], phi:[0.3373]] 2*t^2.019 + t^2.024 + 2*t^2.96 + 2*t^2.969 + t^3.036 + 2*t^3.972 + 3*t^4.039 + 2*t^4.043 + t^4.047 + 4*t^4.98 + 4*t^4.984 + 4*t^4.988 + 4*t^4.992 + 2*t^5.055 + t^5.059 + t^5.454 + 2*t^5.458 + t^5.463 + 3*t^5.92 + 4*t^5.929 + 3*t^5.937 + 3*t^5.992 + 4*t^5.996 - 6*t^6. - t^4.012/y - t^5.024/y - t^4.012*y - t^5.024*y detail