Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59030 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.5181 | 1.7749 | 0.8553 | [X:[], M:[0.6859, 0.6899, 0.9652], q:[0.4846, 0.4806], qb:[0.4846, 0.4806], phi:[0.3449]] | [X:[], M:[[-2, -5, 1], [-2, -2, 0], [3, 3, 0]], q:[[3, 3, -1], [3, 0, 0]], qb:[[0, 3, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | ${}\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | -2 | t^2.06 + 2*t^2.07 + t^2.88 + 3*t^2.9 + t^2.91 + t^3.92 + t^3.93 + t^4.12 + 2*t^4.13 + 3*t^4.14 + t^4.94 + 6*t^4.95 + 9*t^4.97 + 3*t^4.98 + 2*t^5.37 + 2*t^5.38 + t^5.77 + 3*t^5.78 + 7*t^5.79 + 3*t^5.8 + t^5.82 + t^5.98 + t^5.99 - 2*t^6. - 2*t^6.01 + t^6.17 + 2*t^6.18 + 3*t^6.2 + 4*t^6.21 + 2*t^6.41 + 2*t^6.42 + t^6.8 + 4*t^6.81 + 4*t^6.83 + t^6.84 + t^7. + 6*t^7.01 + 12*t^7.02 + 13*t^7.03 + 3*t^7.05 + 4*t^7.43 + 6*t^7.44 + 4*t^7.45 + 2*t^7.47 + t^7.82 + 7*t^7.84 + 18*t^7.85 + 23*t^7.86 + 11*t^7.87 + 3*t^7.88 + t^8.03 + t^8.05 - 5*t^8.06 - 9*t^8.07 - 6*t^8.08 + t^8.23 + 2*t^8.24 + 3*t^8.25 + 2*t^8.26 + 12*t^8.27 + 13*t^8.28 + 2*t^8.29 - 2*t^8.49 - 2*t^8.5 + t^8.65 + 3*t^8.66 + 7*t^8.67 + 13*t^8.69 + 7*t^8.7 + 3*t^8.71 + t^8.72 + t^8.86 + 5*t^8.87 + 4*t^8.88 - 7*t^8.9 - 8*t^8.91 - 2*t^8.92 - t^4.03/y - t^5.07/y - t^6.09/y - (2*t^6.1)/y - t^6.92/y - (3*t^6.93)/y - t^6.94/y + t^7.13/y - t^7.14/y + t^7.94/y + (4*t^7.95)/y + (6*t^7.97)/y + (2*t^7.98)/y - t^8.15/y - (2*t^8.16)/y - (3*t^8.17)/y + (3*t^8.78)/y + (4*t^8.79)/y + (3*t^8.8)/y - (3*t^8.99)/y - t^4.03*y - t^5.07*y - t^6.09*y - 2*t^6.1*y - t^6.92*y - 3*t^6.93*y - t^6.94*y + t^7.13*y - t^7.14*y + t^7.94*y + 4*t^7.95*y + 6*t^7.97*y + 2*t^7.98*y - t^8.15*y - 2*t^8.16*y - 3*t^8.17*y + 3*t^8.78*y + 4*t^8.79*y + 3*t^8.8*y - 3*t^8.99*y | (g3*t^2.06)/(g1^2*g2^5) + (2*t^2.07)/(g1^2*g2^2) + g1^3*g3*t^2.88 + 3*g1^3*g2^3*t^2.9 + (g1^3*g2^6*t^2.91)/g3 + (g1^2*g3*t^3.92)/g2 + g1^2*g2^2*t^3.93 + (g3^2*t^4.12)/(g1^4*g2^10) + (2*g3*t^4.13)/(g1^4*g2^7) + (3*t^4.14)/(g1^4*g2^4) + (g1*g3^2*t^4.94)/g2^5 + (6*g1*g3*t^4.95)/g2^2 + 9*g1*g2*t^4.97 + (3*g1*g2^4*t^4.98)/g3 + (g1^8*g2^2*t^5.37)/g3 + (g2^2*g3^2*t^5.37)/g1 + (g1^8*g2^5*t^5.38)/g3^2 + (g2^5*g3*t^5.38)/g1 + g1^6*g3^2*t^5.77 + 3*g1^6*g2^3*g3*t^5.78 + 7*g1^6*g2^6*t^5.79 + (3*g1^6*g2^9*t^5.8)/g3 + (g1^6*g2^12*t^5.82)/g3^2 + (g3^2*t^5.98)/g2^6 + (g3*t^5.99)/g2^3 - 2*t^6. - (2*g2^3*t^6.01)/g3 + (g3^3*t^6.17)/(g1^6*g2^15) + (2*g3^2*t^6.18)/(g1^6*g2^12) + (3*g3*t^6.2)/(g1^6*g2^9) + (4*t^6.21)/(g1^6*g2^6) + (g1^7*g2*t^6.41)/g3 + (g2*g3^2*t^6.41)/g1^2 + (g1^7*g2^4*t^6.42)/g3^2 + (g2^4*g3*t^6.42)/g1^2 + (g1^5*g3^2*t^6.8)/g2 + 4*g1^5*g2^2*g3*t^6.81 + 4*g1^5*g2^5*t^6.83 + (g1^5*g2^8*t^6.84)/g3 + (g3^3*t^7.)/(g1*g2^10) + (6*g3^2*t^7.01)/(g1*g2^7) + (12*g3*t^7.02)/(g1*g2^4) + (13*t^7.03)/(g1*g2) + (3*g2^2*t^7.05)/(g1*g3) + (2*g1^6*t^7.43)/g2^3 + (2*g3^3*t^7.43)/(g1^3*g2^3) + (3*g1^6*t^7.44)/g3 + (3*g3^2*t^7.44)/g1^3 + (2*g1^6*g2^3*t^7.45)/g3^2 + (2*g2^3*g3*t^7.45)/g1^3 + (g2^6*t^7.47)/g1^3 + (g1^6*g2^6*t^7.47)/g3^3 + (g1^4*g3^3*t^7.82)/g2^5 + (7*g1^4*g3^2*t^7.84)/g2^2 + 18*g1^4*g2*g3*t^7.85 + 23*g1^4*g2^4*t^7.86 + (11*g1^4*g2^7*t^7.87)/g3 + (3*g1^4*g2^10*t^7.88)/g3^2 + (g3^3*t^8.03)/(g1^2*g2^11) + (g3^2*t^8.05)/(g1^2*g2^8) - (5*g3*t^8.06)/(g1^2*g2^5) - (9*t^8.07)/(g1^2*g2^2) - (6*g2*t^8.08)/(g1^2*g3) + (g3^4*t^8.23)/(g1^8*g2^20) + (2*g3^3*t^8.24)/(g1^8*g2^17) + (3*g3^2*t^8.25)/(g1^8*g2^14) + g1^11*g2^2*t^8.26 + g1^2*g2^2*g3^3*t^8.26 + (4*g1^11*g2^5*t^8.27)/g3 + (4*g3*t^8.27)/(g1^8*g2^11) + 4*g1^2*g2^5*g3^2*t^8.27 + (5*t^8.28)/(g1^8*g2^8) + (4*g1^11*g2^8*t^8.28)/g3^2 + 4*g1^2*g2^8*g3*t^8.28 + g1^2*g2^11*t^8.29 + (g1^11*g2^11*t^8.29)/g3^3 - (g1^5*g2^2*t^8.49)/g3^2 - (g2^2*g3*t^8.49)/g1^4 - (g2^5*t^8.5)/g1^4 - (g1^5*g2^5*t^8.5)/g3^3 + g1^9*g3^3*t^8.65 + 3*g1^9*g2^3*g3^2*t^8.66 + 7*g1^9*g2^6*g3*t^8.67 + 13*g1^9*g2^9*t^8.69 + (7*g1^9*g2^12*t^8.7)/g3 + (3*g1^9*g2^15*t^8.71)/g3^2 + (g1^9*g2^18*t^8.72)/g3^3 + (g1^3*g3^3*t^8.86)/g2^6 + (5*g1^3*g3^2*t^8.87)/g2^3 + 4*g1^3*g3*t^8.88 - 7*g1^3*g2^3*t^8.9 - (8*g1^3*g2^6*t^8.91)/g3 - (2*g1^3*g2^9*t^8.92)/g3^2 - t^4.03/(g1*g2*y) - t^5.07/(g1^2*g2^2*y) - (g3*t^6.09)/(g1^3*g2^6*y) - (2*t^6.1)/(g1^3*g2^3*y) - (g1^2*g3*t^6.92)/(g2*y) - (3*g1^2*g2^2*t^6.93)/y - (g1^2*g2^5*t^6.94)/(g3*y) + (g3*t^7.13)/(g1^4*g2^7*y) - t^7.14/(g1^4*g2^4*y) + (g1*g3^2*t^7.94)/(g2^5*y) + (4*g1*g3*t^7.95)/(g2^2*y) + (6*g1*g2*t^7.97)/y + (2*g1*g2^4*t^7.98)/(g3*y) - (g3^2*t^8.15)/(g1^5*g2^11*y) - (2*g3*t^8.16)/(g1^5*g2^8*y) - (3*t^8.17)/(g1^5*g2^5*y) + (3*g1^6*g2^3*g3*t^8.78)/y + (4*g1^6*g2^6*t^8.79)/y + (3*g1^6*g2^9*t^8.8)/(g3*y) - (3*g3*t^8.99)/(g2^3*y) - (t^4.03*y)/(g1*g2) - (t^5.07*y)/(g1^2*g2^2) - (g3*t^6.09*y)/(g1^3*g2^6) - (2*t^6.1*y)/(g1^3*g2^3) - (g1^2*g3*t^6.92*y)/g2 - 3*g1^2*g2^2*t^6.93*y - (g1^2*g2^5*t^6.94*y)/g3 + (g3*t^7.13*y)/(g1^4*g2^7) - (t^7.14*y)/(g1^4*g2^4) + (g1*g3^2*t^7.94*y)/g2^5 + (4*g1*g3*t^7.95*y)/g2^2 + 6*g1*g2*t^7.97*y + (2*g1*g2^4*t^7.98*y)/g3 - (g3^2*t^8.15*y)/(g1^5*g2^11) - (2*g3*t^8.16*y)/(g1^5*g2^8) - (3*t^8.17*y)/(g1^5*g2^5) + 3*g1^6*g2^3*g3*t^8.78*y + 4*g1^6*g2^6*t^8.79*y + (3*g1^6*g2^9*t^8.8*y)/g3 - (3*g3*t^8.99*y)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57637 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.5181 | 1.7752 | 0.8552 | [X:[], M:[0.6861, 0.6861, 0.9648], q:[0.4824, 0.4824], qb:[0.4865, 0.4784], phi:[0.3451]] | 2*t^2.06 + t^2.07 + 2*t^2.88 + t^2.89 + 2*t^2.91 + 2*t^3.92 + 3*t^4.12 + 2*t^4.13 + t^4.14 + 4*t^4.94 + 6*t^4.95 + 5*t^4.96 + 4*t^4.98 + t^5.36 + 2*t^5.38 + t^5.39 + 3*t^5.76 + 2*t^5.78 + 5*t^5.79 + 2*t^5.8 + 3*t^5.81 + 3*t^5.98 + 2*t^5.99 - 6*t^6. - t^4.04/y - t^5.07/y - t^4.04*y - t^5.07*y | detail |