Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59531 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ | 1.5172 | 1.7684 | 0.858 | [X:[], M:[0.6716, 0.7019, 0.991, 0.9797], q:[0.5107, 0.4804], qb:[0.4814, 0.5096], phi:[0.3363]] | [X:[], M:[[-5, 1, -5, 1], [1, -5, -5, 1], [3, 3, 3, 3], [-6, 0, 0, -6]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{4}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | -3 | t^2.01 + t^2.02 + t^2.11 + t^2.89 + t^2.94 + 2*t^2.97 + t^2.98 + t^3.98 + 2*t^4.03 + t^4.04 + t^4.07 + 2*t^4.12 + t^4.21 + 3*t^4.9 + t^4.95 + t^4.96 + t^4.98 + 8*t^4.99 + t^5.04 + 4*t^5.08 + t^5.42 + t^5.43 + 2*t^5.51 + t^5.77 + t^5.82 + 3*t^5.86 + t^5.88 + t^5.91 + 2*t^5.94 + 4*t^5.95 + t^5.99 - 3*t^6. + t^6.04 + 3*t^6.05 + t^6.08 + 3*t^6.14 + t^6.18 + 2*t^6.23 + t^6.32 + t^6.43 + t^6.44 + 2*t^6.52 + t^6.86 + t^6.91 + 3*t^6.92 + 2*t^6.95 + 2*t^6.96 + 2*t^6.97 + t^6.98 + 4*t^7. + 10*t^7.01 + 2*t^7.04 + t^7.05 + 2*t^7.06 + 4*t^7.09 + 5*t^7.1 + t^7.15 + 3*t^7.18 + t^7.19 + t^7.35 + t^7.36 + 4*t^7.44 + 6*t^7.53 + t^7.61 + 3*t^7.62 + 3*t^7.79 + 3*t^7.84 + 5*t^7.87 + 6*t^7.88 + t^7.89 + t^7.9 + 3*t^7.93 + t^7.95 + 14*t^7.96 + 5*t^7.97 + t^7.98 - t^8.01 - 4*t^8.02 + 6*t^8.05 + 5*t^8.06 + 3*t^8.07 + t^8.1 - 6*t^8.11 + t^8.14 + 2*t^8.15 + 2*t^8.16 + 2*t^8.19 - t^8.2 + 2*t^8.24 + t^8.25 + t^8.28 + 2*t^8.31 + 2*t^8.33 + t^8.39 + 7*t^8.4 + t^8.42 + t^8.45 - t^8.46 + 3*t^8.48 + 3*t^8.49 + t^8.66 + t^8.71 + 2*t^8.74 + t^8.75 + t^8.76 + t^8.8 + t^8.82 + 5*t^8.83 + t^8.84 + t^8.85 + 3*t^8.88 - 5*t^8.89 + 2*t^8.91 + 6*t^8.92 + 5*t^8.93 - t^8.94 + t^8.96 - 5*t^8.98 + 3*t^8.99 - t^4.01/y - t^5.02/y - t^6.02/y - t^6.03/y - t^6.11/y - t^6.89/y - t^6.95/y - (2*t^6.98)/y - t^6.99/y - t^7.04/y + t^7.12/y + (2*t^7.9)/y + t^7.95/y + t^7.98/y + (5*t^7.99)/y - (2*t^8.04)/y + (3*t^8.08)/y - (2*t^8.13)/y - t^8.22/y + t^8.82/y + (3*t^8.86)/y + t^8.92/y + t^8.94/y + (2*t^8.95)/y - t^8.96/y - t^8.97/y - t^4.01*y - t^5.02*y - t^6.02*y - t^6.03*y - t^6.11*y - t^6.89*y - t^6.95*y - 2*t^6.98*y - t^6.99*y - t^7.04*y + t^7.12*y + 2*t^7.9*y + t^7.95*y + t^7.98*y + 5*t^7.99*y - 2*t^8.04*y + 3*t^8.08*y - 2*t^8.13*y - t^8.22*y + t^8.82*y + 3*t^8.86*y + t^8.92*y + t^8.94*y + 2*t^8.95*y - t^8.96*y - t^8.97*y | (g2*g4*t^2.01)/(g1^5*g3^5) + t^2.02/(g1^2*g2^2*g3^2*g4^2) + (g1*g4*t^2.11)/(g2^5*g3^5) + g2^6*g3^6*t^2.89 + t^2.94/(g1^6*g4^6) + g1^3*g2^3*g3^3*g4^3*t^2.97 + g2^6*g4^6*t^2.97 + g1^6*g3^6*t^2.98 + (g2^5*g4^5*t^3.98)/(g1*g3) + t^4.03/(g1^7*g2*g3^7*g4) + (g2^2*g4^2*t^4.03)/(g1^10*g3^10) + t^4.04/(g1^4*g2^4*g3^4*g4^4) + (g1^5*g4^5*t^4.07)/(g2*g3) + t^4.12/(g1*g2^7*g3^7*g4) + (g4^2*t^4.12)/(g1^4*g2^4*g3^10) + (g1^2*g4^2*t^4.21)/(g2^10*g3^10) + (2*g2^4*g3^4*t^4.9)/(g1^2*g4^2) + (g2^7*g3*g4*t^4.9)/g1^5 + (g2*t^4.95)/(g1^11*g3^5*g4^5) + t^4.96/(g1^8*g2^2*g3^2*g4^8) + (g2^7*g4^7*t^4.98)/(g1^5*g3^5) + (2*g1^4*g3^4*t^4.99)/(g2^2*g4^2) + 3*g1*g2*g3*g4*t^4.99 + (3*g2^4*g4^4*t^4.99)/(g1^2*g3^2) + t^5.04/(g1^5*g2^5*g3^5*g4^5) + (g1^7*g3*g4*t^5.08)/g2^5 + (2*g1^4*g4^4*t^5.08)/(g2^2*g3^2) + (g1*g2*g4^7*t^5.08)/g3^5 + (g1^5*g2^11*t^5.42)/(g3*g4) + (g3^11*g4^5*t^5.43)/(g1*g2) + (g1^11*g2^5*t^5.51)/(g3*g4) + (g3^5*g4^11*t^5.51)/(g1*g2) + g2^12*g3^12*t^5.77 + (g2^6*g3^6*t^5.82)/(g1^6*g4^6) + g1^6*g2^6*g3^12*t^5.86 + g1^3*g2^9*g3^9*g4^3*t^5.86 + g2^12*g3^6*g4^6*t^5.86 + t^5.88/(g1^12*g4^12) + (g2^3*g3^3*t^5.91)/(g1^3*g4^3) + g1^3*g2^9*g3^3*g4^9*t^5.94 + g2^12*g4^12*t^5.94 + g1^12*g3^12*t^5.95 + g1^9*g2^3*g3^9*g4^3*t^5.95 + 2*g1^6*g2^6*g3^6*g4^6*t^5.95 + (g2^6*g4^6*t^5.99)/(g1^6*g3^6) - 4*t^6. + (g2^3*g4^3*t^6.)/(g1^3*g3^3) + (g2^3*g4^3*t^6.04)/(g1^15*g3^15) + t^6.05/(g1^12*g3^12) + t^6.05/(g1^6*g2^6*g3^6*g4^6) + t^6.05/(g1^9*g2^3*g3^9*g4^3) + (g4^6*t^6.08)/g3^6 - (g1^6*t^6.09)/g2^6 + (g1^3*g4^3*t^6.09)/(g2^3*g3^3) + t^6.14/(g1^6*g2^6*g3^12) + t^6.14/(g1^3*g2^9*g3^9*g4^3) + (g4^3*t^6.14)/(g1^9*g2^3*g3^15) + (g1^6*g4^6*t^6.18)/(g2^6*g3^6) + t^6.23/(g2^12*g3^12) + (g4^3*t^6.23)/(g1^3*g2^9*g3^15) + (g1^3*g4^3*t^6.32)/(g2^15*g3^15) + (g1^4*g2^10*t^6.43)/(g3^2*g4^2) + (g3^10*g4^4*t^6.44)/(g1^2*g2^2) + (g1^10*g2^4*t^6.52)/(g3^2*g4^2) + (g3^4*g4^10*t^6.52)/(g1^2*g2^2) + (g2^11*g3^5*g4^5*t^6.86)/g1 + (g2^8*g4^2*t^6.91)/(g1^10*g3^4) - (g3^5*t^6.92)/(g1*g2*g4^7) + (2*g2^2*g3^2*t^6.92)/(g1^4*g4^4) + (2*g2^5*t^6.92)/(g1^7*g3*g4) + g1^2*g2^8*g3^2*g4^8*t^6.95 + (g2^11*g4^11*t^6.95)/(g1*g3) + 2*g1^5*g2^5*g3^5*g4^5*t^6.96 + t^6.97/(g1^13*g2*g3^7*g4^7) + (g2^2*t^6.97)/(g1^16*g3^10*g4^4) + t^6.98/(g1^10*g2^4*g3^4*g4^10) + (3*g2^5*g4^5*t^7.)/(g1^7*g3^7) + (g2^8*g4^8*t^7.)/(g1^10*g3^10) + (2*g1^2*g3^2*t^7.01)/(g2^4*g4^4) + (3*t^7.01)/(g1*g2*g3*g4) + (5*g2^2*g4^2*t^7.01)/(g1^4*g3^4) + g1^8*g2^2*g3^2*g4^8*t^7.04 + (g1^5*g2^5*g4^11*t^7.04)/g3 + (g1^11*g3^5*g4^5*t^7.05)/g2 + t^7.06/(g1^7*g2^7*g3^7*g4^7) + t^7.06/(g1^10*g2^4*g3^10*g4^4) + (3*g4^5*t^7.09)/(g1*g2*g3^7) + (g2^2*g4^8*t^7.09)/(g1^4*g3^10) + (g1^5*t^7.1)/(g2^7*g3*g4) + (4*g1^2*g4^2*t^7.1)/(g2^4*g3^4) + t^7.15/(g1^4*g2^10*g3^10*g4^4) + (2*g1^5*g4^5*t^7.18)/(g2^7*g3^7) + (g1^2*g4^8*t^7.18)/(g2^4*g3^10) + (g1^8*g4^2*t^7.19)/(g2^10*g3^4) + (g2^15*t^7.35)/(g1^3*g3^3*g4^3) + (g3^15*t^7.36)/(g1^3*g2^3*g4^3) + (g2^12*t^7.44)/g3^6 - (g1^6*g2^6*t^7.44)/g4^6 + (2*g1^3*g2^9*t^7.44)/(g3^3*g4^3) + (2*g3^9*g4^3*t^7.44)/(g1^3*g2^3) + (g1^6*g2^6*t^7.53)/g3^6 + (2*g1^9*g2^3*t^7.53)/(g3^3*g4^3) + (2*g3^3*g4^9*t^7.53)/(g1^3*g2^3) + (g4^12*t^7.53)/g1^6 + (g4^15*t^7.61)/(g1^3*g2^3*g3^3) + (g1^12*t^7.62)/g3^6 + (g1^15*t^7.62)/(g2^3*g3^3*g4^3) + (g4^12*t^7.62)/g2^6 + (2*g2^10*g3^10*t^7.79)/(g1^2*g4^2) + (g2^13*g3^7*g4*t^7.79)/g1^5 + (2*g2^4*g3^4*t^7.84)/(g1^8*g4^8) + (g2^7*g3*t^7.84)/(g1^11*g4^5) + (4*g2^10*g3^4*g4^4*t^7.87)/g1^2 + (g2^13*g3*g4^7*t^7.87)/g1^5 + (3*g1^4*g2^4*g3^10*t^7.88)/g4^2 + 3*g1*g2^7*g3^7*g4*t^7.88 + (g2*t^7.89)/(g1^17*g3^5*g4^11) + t^7.9/(g1^14*g2^2*g3^2*g4^14) + (2*g2*g3*t^7.93)/(g1^5*g4^5) + (g2^4*t^7.93)/(g1^8*g3^2*g4^2) + (g2^13*g4^13*t^7.95)/(g1^5*g3^5) + 6*g1^4*g2^4*g3^4*g4^4*t^7.96 + 4*g1*g2^7*g3*g4^7*t^7.96 + (4*g2^10*g4^10*t^7.96)/(g1^2*g3^2) + (2*g1^10*g3^10*t^7.97)/(g2^2*g4^2) + 3*g1^7*g2*g3^7*g4*t^7.97 + t^7.98/(g1^11*g2^5*g3^5*g4^11) - (3*g2*g4*t^8.01)/(g1^5*g3^5) + (g2^4*g4^4*t^8.01)/(g1^8*g3^8) + (g2^7*g4^7*t^8.01)/(g1^11*g3^11) - (4*t^8.02)/(g1^2*g2^2*g3^2*g4^2) + 2*g1^7*g2*g3*g4^7*t^8.05 + (3*g1^4*g2^4*g4^10*t^8.05)/g3^2 + (g1*g2^7*g4^13*t^8.05)/g3^5 + (g2*g4*t^8.06)/(g1^17*g3^17) + (g1^13*g3^7*g4*t^8.06)/g2^5 + (g2^4*g4^4*t^8.06)/(g1^20*g3^20) + (2*g1^10*g3^4*g4^4*t^8.06)/g2^2 + t^8.07/(g1^8*g2^8*g3^8*g4^8) + t^8.07/(g1^11*g2^5*g3^11*g4^5) + t^8.07/(g1^14*g2^2*g3^14*g4^2) + (g2*g4^7*t^8.1)/(g1^5*g3^11) - (2*g1^4*t^8.11)/(g2^8*g3^2*g4^2) - (4*g1*g4*t^8.11)/(g2^5*g3^5) + (g1^10*g4^10*t^8.14)/(g2^2*g3^2) + (g4*t^8.15)/(g1^11*g2^5*g3^17) + (g4^4*t^8.15)/(g1^14*g2^2*g3^20) + t^8.16/(g1^5*g2^11*g3^11*g4^5) + t^8.16/(g1^8*g2^8*g3^14*g4^2) + (g1^4*g4^4*t^8.19)/(g2^8*g3^8) + (g1*g4^7*t^8.19)/(g2^5*g3^11) - (g1^7*g4*t^8.2)/(g2^11*g3^5) + (g4*t^8.24)/(g1^5*g2^11*g3^17) + (g4^4*t^8.24)/(g1^8*g2^8*g3^20) + t^8.25/(g1^2*g2^14*g3^14*g4^2) + (g1^7*g4^7*t^8.28)/(g2^11*g3^11) + (g1^5*g2^17*g3^5*t^8.31)/g4 + (g2^5*g3^17*g4^5*t^8.31)/g1 + (g1*g4*t^8.33)/(g2^17*g3^17) + (g4^4*t^8.33)/(g1^2*g2^14*g3^20) + (g1^5*g2^17*g4^5*t^8.39)/g3 + (2*g1^11*g2^11*g3^5*t^8.4)/g4 + g1^8*g2^14*g3^2*g4^2*t^8.4 + (g1^5*g3^17*g4^5*t^8.4)/g2 + g1^2*g2^2*g3^14*g4^8*t^8.4 + (2*g2^5*g3^11*g4^11*t^8.4)/g1 + (g1^4*g4^4*t^8.42)/(g2^20*g3^20) - (g1^5*g2^5*t^8.45)/(g3*g4^7) + (g1^2*g2^8*t^8.45)/(g3^4*g4^4) + (g3^8*g4^2*t^8.45)/(g1^4*g2^4) - (g3^11*t^8.46)/(g1*g2^7*g4) + (g1^11*g2^11*g4^5*t^8.48)/g3 + g1^2*g2^2*g3^8*g4^14*t^8.48 + (g2^5*g3^5*g4^17*t^8.48)/g1 + (g1^17*g2^5*g3^5*t^8.49)/g4 + g1^14*g2^8*g3^2*g4^2*t^8.49 + (g1^5*g3^11*g4^11*t^8.49)/g2 - (g1^11*t^8.54)/(g2*g3*g4^7) + (g1^8*g2^2*t^8.54)/(g3^4*g4^4) - (g3^5*g4^5*t^8.54)/(g1*g2^7) + (g3^2*g4^8*t^8.54)/(g1^4*g2^4) + g2^18*g3^18*t^8.66 + (g2^12*g3^12*t^8.71)/(g1^6*g4^6) + g1^3*g2^15*g3^15*g4^3*t^8.74 + g2^18*g3^12*g4^6*t^8.74 + g1^6*g2^12*g3^18*t^8.75 + (g2^6*g3^6*t^8.76)/(g1^12*g4^12) + (g2^9*g3^9*t^8.8)/(g1^3*g4^3) + t^8.82/(g1^18*g4^18) + g1^9*g2^9*g3^15*g4^3*t^8.83 + 2*g1^6*g2^12*g3^12*g4^6*t^8.83 + g1^3*g2^15*g3^9*g4^9*t^8.83 + g2^18*g3^6*g4^12*t^8.83 + g1^12*g2^6*g3^18*t^8.84 + (g2^3*g3^3*t^8.85)/(g1^9*g4^9) + (2*g2^9*g3^3*g4^3*t^8.88)/g1^3 + (g2^12*g4^6*t^8.88)/g1^6 - 5*g2^6*g3^6*t^8.89 + g1^3*g2^15*g3^3*g4^15*t^8.91 + g2^18*g4^18*t^8.91 + 2*g1^12*g2^6*g3^12*g4^6*t^8.92 + 2*g1^9*g2^9*g3^9*g4^9*t^8.92 + 2*g1^6*g2^12*g3^6*g4^12*t^8.92 + (2*g2^6*t^8.93)/(g1^12*g3^6) + g1^18*g3^18*t^8.93 + (g2^9*g4^3*t^8.93)/(g1^15*g3^9) + g1^15*g2^3*g3^15*g4^3*t^8.93 - (g3^3*t^8.94)/(g1^3*g2^3*g4^9) - (2*t^8.94)/(g1^6*g4^6) + (2*g2^3*t^8.94)/(g1^9*g3^3*g4^3) + (g2^12*g4^12*t^8.96)/(g1^6*g3^6) - g1^3*g2^3*g3^3*g4^3*t^8.97 - 2*g2^6*g4^6*t^8.97 + (3*g2^9*g4^9*t^8.97)/(g1^3*g3^3) - 6*g1^6*g3^6*t^8.98 + (g2^3*t^8.98)/(g1^21*g3^15*g4^3) + t^8.99/(g1^12*g2^6*g3^6*g4^12) + t^8.99/(g1^15*g2^3*g3^9*g4^9) + t^8.99/(g1^18*g3^12*g4^6) - t^4.01/(g1*g2*g3*g4*y) - t^5.02/(g1^2*g2^2*g3^2*g4^2*y) - t^6.02/(g1^6*g3^6*y) - t^6.03/(g1^3*g2^3*g3^3*g4^3*y) - t^6.11/(g2^6*g3^6*y) - (g2^5*g3^5*t^6.89)/(g1*g4*y) - t^6.95/(g1^7*g2*g3*g4^7*y) - (g1^2*g2^2*g3^2*g4^2*t^6.98)/y - (g2^5*g4^5*t^6.98)/(g1*g3*y) - (g1^5*g3^5*t^6.99)/(g2*g4*y) - t^7.04/(g1^4*g2^4*g3^4*g4^4*y) + (g4^2*t^7.12)/(g1^4*g2^4*g3^10*y) + (g2^4*g3^4*t^7.9)/(g1^2*g4^2*y) + (g2^7*g3*g4*t^7.9)/(g1^5*y) + (g2*t^7.95)/(g1^11*g3^5*g4^5*y) + (g2^7*g4^7*t^7.98)/(g1^5*g3^5*y) + (g1^4*g3^4*t^7.99)/(g2^2*g4^2*y) + (3*g1*g2*g3*g4*t^7.99)/y + (g2^4*g4^4*t^7.99)/(g1^2*g3^2*y) - t^8.04/(g1^8*g2^2*g3^8*g4^2*y) - (g2*g4*t^8.04)/(g1^11*g3^11*y) + (g1^7*g3*g4*t^8.08)/(g2^5*y) + (g1^4*g4^4*t^8.08)/(g2^2*g3^2*y) + (g1*g2*g4^7*t^8.08)/(g3^5*y) - t^8.13/(g1^2*g2^8*g3^8*g4^2*y) - (g4*t^8.13)/(g1^5*g2^5*g3^11*y) - (g1*g4*t^8.22)/(g2^11*g3^11*y) + (g2^6*g3^6*t^8.82)/(g1^6*g4^6*y) + (g1^6*g2^6*g3^12*t^8.86)/y + (g1^3*g2^9*g3^9*g4^3*t^8.86)/y + (g2^12*g3^6*g4^6*t^8.86)/y + (g3^6*t^8.92)/(g4^6*y) + (g1^3*g2^9*g3^3*g4^9*t^8.94)/y + (g1^9*g2^3*g3^9*g4^3*t^8.95)/y + (g1^6*g2^6*g3^6*g4^6*t^8.95)/y - t^8.96/(g1^12*g3^6*g4^6*y) - t^8.97/(g1^9*g2^3*g3^3*g4^9*y) - (t^4.01*y)/(g1*g2*g3*g4) - (t^5.02*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.02*y)/(g1^6*g3^6) - (t^6.03*y)/(g1^3*g2^3*g3^3*g4^3) - (t^6.11*y)/(g2^6*g3^6) - (g2^5*g3^5*t^6.89*y)/(g1*g4) - (t^6.95*y)/(g1^7*g2*g3*g4^7) - g1^2*g2^2*g3^2*g4^2*t^6.98*y - (g2^5*g4^5*t^6.98*y)/(g1*g3) - (g1^5*g3^5*t^6.99*y)/(g2*g4) - (t^7.04*y)/(g1^4*g2^4*g3^4*g4^4) + (g4^2*t^7.12*y)/(g1^4*g2^4*g3^10) + (g2^4*g3^4*t^7.9*y)/(g1^2*g4^2) + (g2^7*g3*g4*t^7.9*y)/g1^5 + (g2*t^7.95*y)/(g1^11*g3^5*g4^5) + (g2^7*g4^7*t^7.98*y)/(g1^5*g3^5) + (g1^4*g3^4*t^7.99*y)/(g2^2*g4^2) + 3*g1*g2*g3*g4*t^7.99*y + (g2^4*g4^4*t^7.99*y)/(g1^2*g3^2) - (t^8.04*y)/(g1^8*g2^2*g3^8*g4^2) - (g2*g4*t^8.04*y)/(g1^11*g3^11) + (g1^7*g3*g4*t^8.08*y)/g2^5 + (g1^4*g4^4*t^8.08*y)/(g2^2*g3^2) + (g1*g2*g4^7*t^8.08*y)/g3^5 - (t^8.13*y)/(g1^2*g2^8*g3^8*g4^2) - (g4*t^8.13*y)/(g1^5*g2^5*g3^11) - (g1*g4*t^8.22*y)/(g2^11*g3^11) + (g2^6*g3^6*t^8.82*y)/(g1^6*g4^6) + g1^6*g2^6*g3^12*t^8.86*y + g1^3*g2^9*g3^9*g4^3*t^8.86*y + g2^12*g3^6*g4^6*t^8.86*y + (g3^6*t^8.92*y)/g4^6 + g1^3*g2^9*g3^3*g4^9*t^8.94*y + g1^9*g2^3*g3^9*g4^3*t^8.95*y + g1^6*g2^6*g3^6*g4^6*t^8.95*y - (t^8.96*y)/(g1^12*g3^6*g4^6) - (t^8.97*y)/(g1^9*g2^3*g3^3*g4^9) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57637 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.5181 | 1.7752 | 0.8552 | [X:[], M:[0.6861, 0.6861, 0.9648], q:[0.4824, 0.4824], qb:[0.4865, 0.4784], phi:[0.3451]] | 2*t^2.06 + t^2.07 + 2*t^2.88 + t^2.89 + 2*t^2.91 + 2*t^3.92 + 3*t^4.12 + 2*t^4.13 + t^4.14 + 4*t^4.94 + 6*t^4.95 + 5*t^4.96 + 4*t^4.98 + t^5.36 + 2*t^5.38 + t^5.39 + 3*t^5.76 + 2*t^5.78 + 5*t^5.79 + 2*t^5.8 + 3*t^5.81 + 3*t^5.98 + 2*t^5.99 - 6*t^6. - t^4.04/y - t^5.07/y - t^4.04*y - t^5.07*y | detail |