Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58966 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ 1.5388 1.8146 0.848 [X:[], M:[0.6886, 0.6848, 0.9671, 0.6886], q:[0.4817, 0.4855], qb:[0.4855, 0.4817], phi:[0.3443]] [X:[], M:[[-5, 1, -5, 1], [1, -5, -5, 1], [3, 3, 3, 3], [1, -5, 1, -5]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ ${}$ -4 t^2.05 + 3*t^2.07 + t^2.89 + 3*t^2.9 + t^2.91 + t^3.92 + t^4.11 + 3*t^4.12 + 6*t^4.13 + t^4.94 + 7*t^4.96 + 12*t^4.97 + 4*t^4.98 + 2*t^5.38 + 2*t^5.39 + t^5.78 + 3*t^5.79 + 7*t^5.8 + 3*t^5.81 + t^5.83 + t^5.98 + t^5.99 - 4*t^6. - 2*t^6.01 + t^6.16 + 3*t^6.17 + 6*t^6.19 + 10*t^6.2 + 2*t^6.41 + 2*t^6.42 + t^6.81 + 3*t^6.82 + t^6.84 + t^7. + 7*t^7.01 + 19*t^7.02 + 25*t^7.03 + 7*t^7.04 + 4*t^7.43 + 8*t^7.44 + 6*t^7.46 + 2*t^7.47 + t^7.83 + 8*t^7.85 + 20*t^7.86 + 29*t^7.87 + 14*t^7.88 + 4*t^7.89 + t^8.03 + t^8.04 - 6*t^8.05 - 16*t^8.07 - 8*t^8.08 + t^8.22 + 3*t^8.23 + 6*t^8.24 + 10*t^8.25 + 15*t^8.26 + 2*t^8.27 + 8*t^8.28 + 8*t^8.29 + 2*t^8.3 + 2*t^8.48 - 2*t^8.5 + t^8.67 + 3*t^8.68 + 7*t^8.69 + 13*t^8.7 + 7*t^8.72 + 3*t^8.73 + t^8.74 + t^8.87 + 5*t^8.88 + t^8.89 - 15*t^8.9 - 11*t^8.91 - 2*t^8.92 - t^4.03/y - t^5.07/y - t^6.09/y - (3*t^6.1)/y - t^6.92/y - (3*t^6.93)/y - t^6.95/y + (2*t^7.12)/y + t^7.94/y + (5*t^7.96)/y + (10*t^7.97)/y + (3*t^7.98)/y - t^8.14/y - (3*t^8.15)/y - (6*t^8.16)/y + (3*t^8.79)/y + (4*t^8.8)/y + (3*t^8.81)/y - (4*t^8.99)/y - t^4.03*y - t^5.07*y - t^6.09*y - 3*t^6.1*y - t^6.92*y - 3*t^6.93*y - t^6.95*y + 2*t^7.12*y + t^7.94*y + 5*t^7.96*y + 10*t^7.97*y + 3*t^7.98*y - t^8.14*y - 3*t^8.15*y - 6*t^8.16*y + 3*t^8.79*y + 4*t^8.8*y + 3*t^8.81*y - 4*t^8.99*y (g1*g4*t^2.05)/(g2^5*g3^5) + (g1*g3*t^2.07)/(g2^5*g4^5) + t^2.07/(g1^2*g2^2*g3^2*g4^2) + (g2*g4*t^2.07)/(g1^5*g3^5) + g1^6*g4^6*t^2.89 + g1^6*g3^6*t^2.9 + g1^3*g2^3*g3^3*g4^3*t^2.9 + g2^6*g4^6*t^2.9 + g2^6*g3^6*t^2.91 + (g1^5*g4^5*t^3.92)/(g2*g3) + (g1^2*g4^2*t^4.11)/(g2^10*g3^10) + (g1^2*t^4.12)/(g2^10*g3^4*g4^4) + t^4.12/(g1*g2^7*g3^7*g4) + (g4^2*t^4.12)/(g1^4*g2^4*g3^10) + (g1^2*g3^2*t^4.13)/(g2^10*g4^10) + t^4.13/(g1*g2^7*g3*g4^7) + (2*t^4.13)/(g1^4*g2^4*g3^4*g4^4) + t^4.13/(g1^7*g2*g3^7*g4) + (g2^2*g4^2*t^4.13)/(g1^10*g3^10) + (g1^7*g4^7*t^4.94)/(g2^5*g3^5) + (2*g1^7*g3*g4*t^4.96)/g2^5 + (3*g1^4*g4^4*t^4.96)/(g2^2*g3^2) + (2*g1*g2*g4^7*t^4.96)/g3^5 + (g1^7*g3^7*t^4.97)/(g2^5*g4^5) + (3*g1^4*g3^4*t^4.97)/(g2^2*g4^2) + 4*g1*g2*g3*g4*t^4.97 + (3*g2^4*g4^4*t^4.97)/(g1^2*g3^2) + (g2^7*g4^7*t^4.97)/(g1^5*g3^5) + (g1*g2*g3^7*t^4.98)/g4^5 + (2*g2^4*g3^4*t^4.98)/(g1^2*g4^2) + (g2^7*g3*g4*t^4.98)/g1^5 + (g1^11*g2^5*t^5.38)/(g3*g4) + (g3^5*g4^11*t^5.38)/(g1*g2) + (g1^5*g2^11*t^5.39)/(g3*g4) + (g3^11*g4^5*t^5.39)/(g1*g2) + g1^12*g4^12*t^5.78 + g1^12*g3^6*g4^6*t^5.79 + g1^9*g2^3*g3^3*g4^9*t^5.79 + g1^6*g2^6*g4^12*t^5.79 + g1^12*g3^12*t^5.8 + g1^9*g2^3*g3^9*g4^3*t^5.8 + 3*g1^6*g2^6*g3^6*g4^6*t^5.8 + g1^3*g2^9*g3^3*g4^9*t^5.8 + g2^12*g4^12*t^5.8 + g1^6*g2^6*g3^12*t^5.81 + g1^3*g2^9*g3^9*g4^3*t^5.81 + g2^12*g3^6*g4^6*t^5.81 + g2^12*g3^12*t^5.83 + (g1^6*g4^6*t^5.98)/(g2^6*g3^6) + (g1^3*g4^3*t^5.99)/(g2^3*g3^3) - 4*t^6. - (g2^6*t^6.01)/g1^6 - (g3^6*t^6.01)/g4^6 + (g1^3*g4^3*t^6.16)/(g2^15*g3^15) + t^6.17/(g2^12*g3^12) + (g1^3*t^6.17)/(g2^15*g3^9*g4^3) + (g4^3*t^6.17)/(g1^3*g2^9*g3^15) + t^6.19/(g1^6*g2^6*g3^12) + (g1^3*t^6.19)/(g2^15*g3^3*g4^9) + t^6.19/(g2^12*g3^6*g4^6) + (2*t^6.19)/(g1^3*g2^9*g3^9*g4^3) + (g4^3*t^6.19)/(g1^9*g2^3*g3^15) + t^6.2/(g1^12*g3^12) + (g1^3*g3^3*t^6.2)/(g2^15*g4^15) + t^6.2/(g2^12*g4^12) + (2*t^6.2)/(g1^3*g2^9*g3^3*g4^9) + (2*t^6.2)/(g1^6*g2^6*g3^6*g4^6) + (2*t^6.2)/(g1^9*g2^3*g3^9*g4^3) + (g2^3*g4^3*t^6.2)/(g1^15*g3^15) + (g1^10*g2^4*t^6.41)/(g3^2*g4^2) + (g3^4*g4^10*t^6.41)/(g1^2*g2^2) + (g1^4*g2^10*t^6.42)/(g3^2*g4^2) + (g3^10*g4^4*t^6.42)/(g1^2*g2^2) + (g1^11*g4^11*t^6.81)/(g2*g3) + (g1^11*g3^5*g4^5*t^6.82)/g2 + g1^8*g2^2*g3^2*g4^8*t^6.82 + (g1^5*g2^5*g4^11*t^6.82)/g3 + g1^5*g2^5*g3^5*g4^5*t^6.84 + (g1^8*g4^8*t^7.)/(g2^10*g3^10) + (2*g1^8*g4^2*t^7.01)/(g2^10*g3^4) + (3*g1^5*g4^5*t^7.01)/(g2^7*g3^7) + (2*g1^2*g4^8*t^7.01)/(g2^4*g3^10) + (2*g1^8*g3^2*t^7.02)/(g2^10*g4^4) + (4*g1^5*t^7.02)/(g2^7*g3*g4) + (7*g1^2*g4^2*t^7.02)/(g2^4*g3^4) + (4*g4^5*t^7.02)/(g1*g2*g3^7) + (2*g2^2*g4^8*t^7.02)/(g1^4*g3^10) + (g1^8*g3^8*t^7.03)/(g2^10*g4^10) + (3*g1^5*g3^5*t^7.03)/(g2^7*g4^7) + (6*g1^2*g3^2*t^7.03)/(g2^4*g4^4) + (5*t^7.03)/(g1*g2*g3*g4) + (6*g2^2*g4^2*t^7.03)/(g1^4*g3^4) + (3*g2^5*g4^5*t^7.03)/(g1^7*g3^7) + (g2^8*g4^8*t^7.03)/(g1^10*g3^10) + (g1^2*g3^8*t^7.04)/(g2^4*g4^10) + (g3^5*t^7.04)/(g1*g2*g4^7) + (3*g2^2*g3^2*t^7.04)/(g1^4*g4^4) + (g2^5*t^7.04)/(g1^7*g3*g4) + (g2^8*g4^2*t^7.04)/(g1^10*g3^4) + (g1^12*t^7.43)/g3^6 + (g1^15*t^7.43)/(g2^3*g3^3*g4^3) + (g4^12*t^7.43)/g2^6 + (g4^15*t^7.43)/(g1^3*g2^3*g3^3) + (g1^6*g2^6*t^7.44)/g3^6 + (g1^12*t^7.44)/g4^6 + (2*g1^9*g2^3*t^7.44)/(g3^3*g4^3) + (g3^6*g4^6*t^7.44)/g2^6 + (2*g3^3*g4^9*t^7.44)/(g1^3*g2^3) + (g4^12*t^7.44)/g1^6 + (g2^12*t^7.46)/g3^6 + (g3^12*t^7.46)/g2^6 + (2*g1^3*g2^9*t^7.46)/(g3^3*g4^3) + (2*g3^9*g4^3*t^7.46)/(g1^3*g2^3) + (g2^15*t^7.47)/(g1^3*g3^3*g4^3) + (g3^15*t^7.47)/(g1^3*g2^3*g4^3) + (g1^13*g4^13*t^7.83)/(g2^5*g3^5) + (2*g1^13*g3*g4^7*t^7.85)/g2^5 + (4*g1^10*g4^10*t^7.85)/(g2^2*g3^2) + (2*g1^7*g2*g4^13*t^7.85)/g3^5 + (2*g1^13*g3^7*g4*t^7.86)/g2^5 + (5*g1^10*g3^4*g4^4*t^7.86)/g2^2 + 6*g1^7*g2*g3*g4^7*t^7.86 + (5*g1^4*g2^4*g4^10*t^7.86)/g3^2 + (2*g1*g2^7*g4^13*t^7.86)/g3^5 + (g1^13*g3^13*t^7.87)/(g2^5*g4^5) + (3*g1^10*g3^10*t^7.87)/(g2^2*g4^2) + 6*g1^7*g2*g3^7*g4*t^7.87 + 9*g1^4*g2^4*g3^4*g4^4*t^7.87 + 6*g1*g2^7*g3*g4^7*t^7.87 + (3*g2^10*g4^10*t^7.87)/(g1^2*g3^2) + (g2^13*g4^13*t^7.87)/(g1^5*g3^5) + (g1^7*g2*g3^13*t^7.88)/g4^5 + (4*g1^4*g2^4*g3^10*t^7.88)/g4^2 + 4*g1*g2^7*g3^7*g4*t^7.88 + (4*g2^10*g3^4*g4^4*t^7.88)/g1^2 + (g2^13*g3*g4^7*t^7.88)/g1^5 + (g1*g2^7*g3^13*t^7.89)/g4^5 + (2*g2^10*g3^10*t^7.89)/(g1^2*g4^2) + (g2^13*g3^7*g4*t^7.89)/g1^5 + (g1^7*g4^7*t^8.03)/(g2^11*g3^11) + (g1^4*g4^4*t^8.04)/(g2^8*g3^8) - (g1^4*t^8.05)/(g2^8*g3^2*g4^2) - (4*g1*g4*t^8.05)/(g2^5*g3^5) - (g4^4*t^8.05)/(g1^2*g2^2*g3^8) - (5*g1*g3*t^8.07)/(g2^5*g4^5) - (6*t^8.07)/(g1^2*g2^2*g3^2*g4^2) - (5*g2*g4*t^8.07)/(g1^5*g3^5) - (g1*g3^7*t^8.08)/(g2^5*g4^11) - (2*g3^4*t^8.08)/(g1^2*g2^2*g4^8) - (2*g2*g3*t^8.08)/(g1^5*g4^5) - (2*g2^4*t^8.08)/(g1^8*g3^2*g4^2) - (g2^7*g4*t^8.08)/(g1^11*g3^5) + (g1^4*g4^4*t^8.22)/(g2^20*g3^20) + (g1^4*t^8.23)/(g2^20*g3^14*g4^2) + (g1*g4*t^8.23)/(g2^17*g3^17) + (g4^4*t^8.23)/(g1^2*g2^14*g3^20) + (g1^4*t^8.24)/(g2^20*g3^8*g4^8) + (g1*t^8.24)/(g2^17*g3^11*g4^5) + (2*t^8.24)/(g1^2*g2^14*g3^14*g4^2) + (g4*t^8.24)/(g1^5*g2^11*g3^17) + (g4^4*t^8.24)/(g1^8*g2^8*g3^20) + (g1^4*t^8.25)/(g2^20*g3^2*g4^14) + (g1*t^8.25)/(g2^17*g3^5*g4^11) + (2*t^8.25)/(g1^2*g2^14*g3^8*g4^8) + (2*t^8.25)/(g1^5*g2^11*g3^11*g4^5) + (2*t^8.25)/(g1^8*g2^8*g3^14*g4^2) + (g4*t^8.25)/(g1^11*g2^5*g3^17) + (g4^4*t^8.25)/(g1^14*g2^2*g3^20) + (g1^4*g3^4*t^8.26)/(g2^20*g4^20) + (g1*g3*t^8.26)/(g2^17*g4^17) + (2*t^8.26)/(g1^2*g2^14*g3^2*g4^14) + (2*t^8.26)/(g1^5*g2^11*g3^5*g4^11) + (3*t^8.26)/(g1^8*g2^8*g3^8*g4^8) + (2*t^8.26)/(g1^11*g2^5*g3^11*g4^5) + (2*t^8.26)/(g1^14*g2^2*g3^14*g4^2) + (g2*g4*t^8.26)/(g1^17*g3^17) + (g2^4*g4^4*t^8.26)/(g1^20*g3^20) + (g1^17*g2^5*g4^5*t^8.27)/g3 + (g1^5*g3^5*g4^17*t^8.27)/g2 + (g1^17*g2^5*g3^5*t^8.28)/g4 + g1^14*g2^8*g3^2*g4^2*t^8.28 + (2*g1^11*g2^11*g4^5*t^8.28)/g3 + (2*g1^5*g3^11*g4^11*t^8.28)/g2 + g1^2*g2^2*g3^8*g4^14*t^8.28 + (g2^5*g3^5*g4^17*t^8.28)/g1 + (2*g1^11*g2^11*g3^5*t^8.29)/g4 + g1^8*g2^14*g3^2*g4^2*t^8.29 + (g1^5*g2^17*g4^5*t^8.29)/g3 + (g1^5*g3^17*g4^5*t^8.29)/g2 + g1^2*g2^2*g3^14*g4^8*t^8.29 + (2*g2^5*g3^11*g4^11*t^8.29)/g1 + (g1^5*g2^17*g3^5*t^8.3)/g4 + (g2^5*g3^17*g4^5*t^8.3)/g1 + (g1^8*g2^2*t^8.48)/(g3^4*g4^4) + (g3^2*g4^8*t^8.48)/(g1^4*g2^4) - (g1^5*g2^5*t^8.49)/(g3*g4^7) + (g1^2*g2^8*t^8.49)/(g3^4*g4^4) + (g3^8*g4^2*t^8.49)/(g1^4*g2^4) - (g3^5*g4^5*t^8.49)/(g1^7*g2) - (g2^11*t^8.5)/(g1*g3*g4^7) - (g3^11*t^8.5)/(g1^7*g2*g4) + g1^18*g4^18*t^8.67 + g1^18*g3^6*g4^12*t^8.68 + g1^15*g2^3*g3^3*g4^15*t^8.68 + g1^12*g2^6*g4^18*t^8.68 + g1^18*g3^12*g4^6*t^8.69 + g1^15*g2^3*g3^9*g4^9*t^8.69 + 3*g1^12*g2^6*g3^6*g4^12*t^8.69 + g1^9*g2^9*g3^3*g4^15*t^8.69 + g1^6*g2^12*g4^18*t^8.69 + g1^18*g3^18*t^8.7 + g1^15*g2^3*g3^15*g4^3*t^8.7 + 3*g1^12*g2^6*g3^12*g4^6*t^8.7 + 3*g1^9*g2^9*g3^9*g4^9*t^8.7 + 3*g1^6*g2^12*g3^6*g4^12*t^8.7 + g1^3*g2^15*g3^3*g4^15*t^8.7 + g2^18*g4^18*t^8.7 + g1^12*g2^6*g3^18*t^8.72 + g1^9*g2^9*g3^15*g4^3*t^8.72 + 3*g1^6*g2^12*g3^12*g4^6*t^8.72 + g1^3*g2^15*g3^9*g4^9*t^8.72 + g2^18*g3^6*g4^12*t^8.72 + g1^6*g2^12*g3^18*t^8.73 + g1^3*g2^15*g3^15*g4^3*t^8.73 + g2^18*g3^12*g4^6*t^8.73 + g2^18*g3^18*t^8.74 + (g1^12*g4^12*t^8.87)/(g2^6*g3^6) + (g1^12*g4^6*t^8.88)/g2^6 + (3*g1^9*g4^9*t^8.88)/(g2^3*g3^3) + (g1^6*g4^12*t^8.88)/g3^6 + (2*g1^9*g3^3*g4^3*t^8.89)/g2^3 - 3*g1^6*g4^6*t^8.89 + (2*g1^3*g2^3*g4^9*t^8.89)/g3^3 - 6*g1^6*g3^6*t^8.9 - 3*g1^3*g2^3*g3^3*g4^3*t^8.9 - 6*g2^6*g4^6*t^8.9 - 7*g2^6*g3^6*t^8.91 - (g1^6*g3^12*t^8.91)/g4^6 - (g1^3*g2^3*g3^9*t^8.91)/g4^3 - (g2^9*g3^3*g4^3*t^8.91)/g1^3 - (g2^12*g4^6*t^8.91)/g1^6 - (g2^12*g3^6*t^8.92)/g1^6 - (g2^6*g3^12*t^8.92)/g4^6 - t^4.03/(g1*g2*g3*g4*y) - t^5.07/(g1^2*g2^2*g3^2*g4^2*y) - t^6.09/(g2^6*g3^6*y) - t^6.1/(g1^6*g3^6*y) - t^6.1/(g2^6*g4^6*y) - t^6.1/(g1^3*g2^3*g3^3*g4^3*y) - (g1^5*g4^5*t^6.92)/(g2*g3*y) - (g1^5*g3^5*t^6.93)/(g2*g4*y) - (g1^2*g2^2*g3^2*g4^2*t^6.93)/y - (g2^5*g4^5*t^6.93)/(g1*g3*y) - (g2^5*g3^5*t^6.95)/(g1*g4*y) + (g1^2*t^7.12)/(g2^10*g3^4*g4^4*y) + (g4^2*t^7.12)/(g1^4*g2^4*g3^10*y) + (g1^7*g4^7*t^7.94)/(g2^5*g3^5*y) + (2*g1^7*g3*g4*t^7.96)/(g2^5*y) + (g1^4*g4^4*t^7.96)/(g2^2*g3^2*y) + (2*g1*g2*g4^7*t^7.96)/(g3^5*y) + (g1^7*g3^7*t^7.97)/(g2^5*g4^5*y) + (2*g1^4*g3^4*t^7.97)/(g2^2*g4^2*y) + (4*g1*g2*g3*g4*t^7.97)/y + (2*g2^4*g4^4*t^7.97)/(g1^2*g3^2*y) + (g2^7*g4^7*t^7.97)/(g1^5*g3^5*y) + (g1*g2*g3^7*t^7.98)/(g4^5*y) + (g2^4*g3^4*t^7.98)/(g1^2*g4^2*y) + (g2^7*g3*g4*t^7.98)/(g1^5*y) - (g1*g4*t^8.14)/(g2^11*g3^11*y) - (g1*t^8.15)/(g2^11*g3^5*g4^5*y) - t^8.15/(g1^2*g2^8*g3^8*g4^2*y) - (g4*t^8.15)/(g1^5*g2^5*g3^11*y) - (g1*g3*t^8.16)/(g2^11*g4^11*y) - t^8.16/(g1^2*g2^8*g3^2*g4^8*y) - (2*t^8.16)/(g1^5*g2^5*g3^5*g4^5*y) - t^8.16/(g1^8*g2^2*g3^8*g4^2*y) - (g2*g4*t^8.16)/(g1^11*g3^11*y) + (g1^12*g3^6*g4^6*t^8.79)/y + (g1^9*g2^3*g3^3*g4^9*t^8.79)/y + (g1^6*g2^6*g4^12*t^8.79)/y + (g1^9*g2^3*g3^9*g4^3*t^8.8)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.8)/y + (g1^3*g2^9*g3^3*g4^9*t^8.8)/y + (g1^6*g2^6*g3^12*t^8.81)/y + (g1^3*g2^9*g3^9*g4^3*t^8.81)/y + (g2^12*g3^6*g4^6*t^8.81)/y - (g1^6*t^8.99)/(g2^6*y) - (2*g1^3*g4^3*t^8.99)/(g2^3*g3^3*y) - (g4^6*t^8.99)/(g3^6*y) - (t^4.03*y)/(g1*g2*g3*g4) - (t^5.07*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.09*y)/(g2^6*g3^6) - (t^6.1*y)/(g1^6*g3^6) - (t^6.1*y)/(g2^6*g4^6) - (t^6.1*y)/(g1^3*g2^3*g3^3*g4^3) - (g1^5*g4^5*t^6.92*y)/(g2*g3) - (g1^5*g3^5*t^6.93*y)/(g2*g4) - g1^2*g2^2*g3^2*g4^2*t^6.93*y - (g2^5*g4^5*t^6.93*y)/(g1*g3) - (g2^5*g3^5*t^6.95*y)/(g1*g4) + (g1^2*t^7.12*y)/(g2^10*g3^4*g4^4) + (g4^2*t^7.12*y)/(g1^4*g2^4*g3^10) + (g1^7*g4^7*t^7.94*y)/(g2^5*g3^5) + (2*g1^7*g3*g4*t^7.96*y)/g2^5 + (g1^4*g4^4*t^7.96*y)/(g2^2*g3^2) + (2*g1*g2*g4^7*t^7.96*y)/g3^5 + (g1^7*g3^7*t^7.97*y)/(g2^5*g4^5) + (2*g1^4*g3^4*t^7.97*y)/(g2^2*g4^2) + 4*g1*g2*g3*g4*t^7.97*y + (2*g2^4*g4^4*t^7.97*y)/(g1^2*g3^2) + (g2^7*g4^7*t^7.97*y)/(g1^5*g3^5) + (g1*g2*g3^7*t^7.98*y)/g4^5 + (g2^4*g3^4*t^7.98*y)/(g1^2*g4^2) + (g2^7*g3*g4*t^7.98*y)/g1^5 - (g1*g4*t^8.14*y)/(g2^11*g3^11) - (g1*t^8.15*y)/(g2^11*g3^5*g4^5) - (t^8.15*y)/(g1^2*g2^8*g3^8*g4^2) - (g4*t^8.15*y)/(g1^5*g2^5*g3^11) - (g1*g3*t^8.16*y)/(g2^11*g4^11) - (t^8.16*y)/(g1^2*g2^8*g3^2*g4^8) - (2*t^8.16*y)/(g1^5*g2^5*g3^5*g4^5) - (t^8.16*y)/(g1^8*g2^2*g3^8*g4^2) - (g2*g4*t^8.16*y)/(g1^11*g3^11) + g1^12*g3^6*g4^6*t^8.79*y + g1^9*g2^3*g3^3*g4^9*t^8.79*y + g1^6*g2^6*g4^12*t^8.79*y + g1^9*g2^3*g3^9*g4^3*t^8.8*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.8*y + g1^3*g2^9*g3^3*g4^9*t^8.8*y + g1^6*g2^6*g3^12*t^8.81*y + g1^3*g2^9*g3^9*g4^3*t^8.81*y + g2^12*g3^6*g4^6*t^8.81*y - (g1^6*t^8.99*y)/g2^6 - (2*g1^3*g4^3*t^8.99*y)/(g2^3*g3^3) - (g4^6*t^8.99*y)/g3^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57637 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ 1.5181 1.7752 0.8552 [X:[], M:[0.6861, 0.6861, 0.9648], q:[0.4824, 0.4824], qb:[0.4865, 0.4784], phi:[0.3451]] 2*t^2.06 + t^2.07 + 2*t^2.88 + t^2.89 + 2*t^2.91 + 2*t^3.92 + 3*t^4.12 + 2*t^4.13 + t^4.14 + 4*t^4.94 + 6*t^4.95 + 5*t^4.96 + 4*t^4.98 + t^5.36 + 2*t^5.38 + t^5.39 + 3*t^5.76 + 2*t^5.78 + 5*t^5.79 + 2*t^5.8 + 3*t^5.81 + 3*t^5.98 + 2*t^5.99 - 6*t^6. - t^4.04/y - t^5.07/y - t^4.04*y - t^5.07*y detail