Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47933 | SU3adj1nf2 | $M_1\phi_1q_1\tilde{q}_1$ + $ M_2\phi_1q_2\tilde{q}_1$ | 1.5159 | 1.7676 | 0.8576 | [X:[], M:[0.6732, 0.6732], q:[0.4941, 0.4941], qb:[0.4955, 0.4927], phi:[0.3373]] | [X:[], M:[[-5, 1, -5, 1], [1, -5, -5, 1]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$\phi_1^2$, $ M_2$, $ M_1$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_1$, $ \phi_1^3$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1^4$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_2q_1\tilde{q}_2$, $ M_1q_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_2q_1\tilde{q}_1$, $ M_1q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_1q_2\tilde{q}_1$, $ \phi_1^5$, $ M_2\phi_1^3$, $ M_1\phi_1^3$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1q_1^2q_2$, $ \phi_1q_1q_2^2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ q_1^2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_1^2\tilde{q}_1^2$, $ q_1q_2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_2\phi_1q_2\tilde{q}_2$, $ M_2\phi_1q_1\tilde{q}_2$, $ M_1\phi_1q_2\tilde{q}_2$ | $\phi_1^3q_1\tilde{q}_1$, $ \phi_1^3q_2\tilde{q}_1$, $ 2\phi_1^3q_1\tilde{q}_2$, $ 2\phi_1^3q_2\tilde{q}_2$ | 0 | 3*t^2.02 + 2*t^2.96 + 2*t^2.97 + t^3.04 + 2*t^3.97 + 5*t^4.04 + t^4.05 + 8*t^4.98 + 8*t^4.99 + 3*t^5.06 + t^5.45 + 3*t^5.46 + 3*t^5.92 + 4*t^5.93 + 3*t^5.94 + 3*t^5.99 - t^6.01 + 7*t^6.06 + 4*t^6.07 + 4*t^6.47 + 4*t^6.93 + 4*t^6.94 + 13*t^7. + 15*t^7.01 + 3*t^7.02 + 3*t^7.07 + 3*t^7.08 + 3*t^7.47 + 11*t^7.48 + 2*t^7.49 + 16*t^7.94 + 17*t^7.95 + 11*t^7.96 + 4*t^8.01 - 6*t^8.02 + 9*t^8.08 + 9*t^8.09 + 2*t^8.41 + 8*t^8.42 + 6*t^8.43 + 4*t^8.49 - 4*t^8.5 + 4*t^8.88 + 6*t^8.89 + 6*t^8.9 + 4*t^8.91 + 6*t^8.95 + 14*t^8.96 - 13*t^8.97 - 2*t^8.98 - t^4.01/y - t^5.02/y - (2*t^6.03)/y - t^6.04/y - (2*t^6.97)/y - (2*t^6.98)/y + t^7.04/y - (2*t^7.05)/y + (4*t^7.98)/y + (7*t^7.99)/y - (3*t^8.05)/y - t^8.06/y + t^8.92/y + (4*t^8.93)/y + t^8.94/y - t^4.01*y - t^5.02*y - 2*t^6.03*y - t^6.04*y - 2*t^6.97*y - 2*t^6.98*y + t^7.04*y - 2*t^7.05*y + 4*t^7.98*y + 7*t^7.99*y - 3*t^8.05*y - t^8.06*y + t^8.92*y + 4*t^8.93*y + t^8.94*y | t^2.02/(g1^2*g2^2*g3^2*g4^2) + (g1*g4*t^2.02)/(g2^5*g3^5) + (g2*g4*t^2.02)/(g1^5*g3^5) + g1^6*g4^6*t^2.96 + g2^6*g4^6*t^2.96 + g1^6*g3^6*t^2.97 + g2^6*g3^6*t^2.97 + t^3.04/(g1^3*g2^3*g3^3*g4^3) + (g1^5*g4^5*t^3.97)/(g2*g3) + (g2^5*g4^5*t^3.97)/(g1*g3) + t^4.04/(g1*g2^7*g3^7*g4) + t^4.04/(g1^7*g2*g3^7*g4) + (g1^2*g4^2*t^4.04)/(g2^10*g3^10) + (g4^2*t^4.04)/(g1^4*g2^4*g3^10) + (g2^2*g4^2*t^4.04)/(g1^10*g3^10) + t^4.05/(g1^4*g2^4*g3^4*g4^4) + (2*g1^4*g4^4*t^4.98)/(g2^2*g3^2) + (2*g2^4*g4^4*t^4.98)/(g1^2*g3^2) + (g1^7*g4^7*t^4.98)/(g2^5*g3^5) + (2*g1*g2*g4^7*t^4.98)/g3^5 + (g2^7*g4^7*t^4.98)/(g1^5*g3^5) + (2*g1^4*g3^4*t^4.99)/(g2^2*g4^2) + (2*g2^4*g3^4*t^4.99)/(g1^2*g4^2) + (g1^7*g3*g4*t^4.99)/g2^5 + 2*g1*g2*g3*g4*t^4.99 + (g2^7*g3*g4*t^4.99)/g1^5 + t^5.06/(g1^5*g2^5*g3^5*g4^5) + t^5.06/(g1^2*g2^8*g3^8*g4^2) + t^5.06/(g1^8*g2^2*g3^8*g4^2) + (g3^5*g4^11*t^5.45)/(g1*g2) + (g1^11*g2^5*t^5.46)/(g3*g4) + (g1^5*g2^11*t^5.46)/(g3*g4) + (g3^11*g4^5*t^5.46)/(g1*g2) + g1^12*g4^12*t^5.92 + g1^6*g2^6*g4^12*t^5.92 + g2^12*g4^12*t^5.92 + g1^12*g3^6*g4^6*t^5.93 + 2*g1^6*g2^6*g3^6*g4^6*t^5.93 + g2^12*g3^6*g4^6*t^5.93 + g1^12*g3^12*t^5.94 + g1^6*g2^6*g3^12*t^5.94 + g2^12*g3^12*t^5.94 + (g4^6*t^5.99)/g3^6 + (g1^6*g4^6*t^5.99)/(g2^6*g3^6) + (g2^6*g4^6*t^5.99)/(g1^6*g3^6) - 4*t^6. - (g1^6*t^6.)/g2^6 - (g2^6*t^6.)/g1^6 + (g1^3*g3^3*t^6.)/(g2^3*g4^3) + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (2*g1^3*g4^3*t^6.)/(g2^3*g3^3) + (2*g2^3*g4^3*t^6.)/(g1^3*g3^3) - (g3^6*t^6.01)/g4^6 + t^6.06/(g1^12*g3^12) + t^6.06/(g2^12*g3^12) + t^6.06/(g1^6*g2^6*g3^12) + (g1^3*g4^3*t^6.06)/(g2^15*g3^15) + (g4^3*t^6.06)/(g1^3*g2^9*g3^15) + (g4^3*t^6.06)/(g1^9*g2^3*g3^15) + (g2^3*g4^3*t^6.06)/(g1^15*g3^15) + (2*t^6.07)/(g1^6*g2^6*g3^6*g4^6) + t^6.07/(g1^3*g2^9*g3^9*g4^3) + t^6.07/(g1^9*g2^3*g3^9*g4^3) + (g1^10*g2^4*t^6.47)/(g3^2*g4^2) + (g1^4*g2^10*t^6.47)/(g3^2*g4^2) + (g3^10*g4^4*t^6.47)/(g1^2*g2^2) + (g3^4*g4^10*t^6.47)/(g1^2*g2^2) + (g1^11*g4^11*t^6.93)/(g2*g3) + (2*g1^5*g2^5*g4^11*t^6.93)/g3 + (g2^11*g4^11*t^6.93)/(g1*g3) + (g1^11*g3^5*g4^5*t^6.94)/g2 + 2*g1^5*g2^5*g3^5*g4^5*t^6.94 + (g2^11*g3^5*g4^5*t^6.94)/g1 + (2*g1^5*g4^5*t^7.)/(g2^7*g3^7) + (3*g4^5*t^7.)/(g1*g2*g3^7) + (2*g2^5*g4^5*t^7.)/(g1^7*g3^7) + (g1^8*g4^8*t^7.)/(g2^10*g3^10) + (2*g1^2*g4^8*t^7.)/(g2^4*g3^10) + (2*g2^2*g4^8*t^7.)/(g1^4*g3^10) + (g2^8*g4^8*t^7.)/(g1^10*g3^10) + (g1^5*t^7.01)/(g2^7*g3*g4) + t^7.01/(g1*g2*g3*g4) + (g2^5*t^7.01)/(g1^7*g3*g4) + (g1^8*g4^2*t^7.01)/(g2^10*g3^4) + (5*g1^2*g4^2*t^7.01)/(g2^4*g3^4) + (5*g2^2*g4^2*t^7.01)/(g1^4*g3^4) + (g2^8*g4^2*t^7.01)/(g1^10*g3^4) - (g3^5*t^7.02)/(g1*g2*g4^7) + (2*g1^2*g3^2*t^7.02)/(g2^4*g4^4) + (2*g2^2*g3^2*t^7.02)/(g1^4*g4^4) + t^7.07/(g1*g2^13*g3^13*g4) + t^7.07/(g1^7*g2^7*g3^13*g4) + t^7.07/(g1^13*g2*g3^13*g4) + t^7.08/(g1^7*g2^7*g3^7*g4^7) + t^7.08/(g1^4*g2^10*g3^10*g4^4) + t^7.08/(g1^10*g2^4*g3^10*g4^4) + (g4^12*t^7.47)/g1^6 + (g4^12*t^7.47)/g2^6 + (g4^15*t^7.47)/(g1^3*g2^3*g3^3) + (g1^12*t^7.48)/g3^6 + (g1^6*g2^6*t^7.48)/g3^6 + (g2^12*t^7.48)/g3^6 + (g1^15*t^7.48)/(g2^3*g3^3*g4^3) + (2*g1^9*g2^3*t^7.48)/(g3^3*g4^3) + (2*g1^3*g2^9*t^7.48)/(g3^3*g4^3) + (g2^15*t^7.48)/(g1^3*g3^3*g4^3) + (2*g3^3*g4^9*t^7.48)/(g1^3*g2^3) - (g1^6*g2^6*t^7.49)/g4^6 + (g3^15*t^7.49)/(g1^3*g2^3*g4^3) + (2*g3^9*g4^3*t^7.49)/(g1^3*g2^3) + (3*g1^10*g4^10*t^7.94)/(g2^2*g3^2) + (4*g1^4*g2^4*g4^10*t^7.94)/g3^2 + (3*g2^10*g4^10*t^7.94)/(g1^2*g3^2) + (g1^13*g4^13*t^7.94)/(g2^5*g3^5) + (2*g1^7*g2*g4^13*t^7.94)/g3^5 + (2*g1*g2^7*g4^13*t^7.94)/g3^5 + (g2^13*g4^13*t^7.94)/(g1^5*g3^5) + (3*g1^10*g3^4*g4^4*t^7.95)/g2^2 + 5*g1^4*g2^4*g3^4*g4^4*t^7.95 + (3*g2^10*g3^4*g4^4*t^7.95)/g1^2 + (g1^13*g3*g4^7*t^7.95)/g2^5 + 2*g1^7*g2*g3*g4^7*t^7.95 + 2*g1*g2^7*g3*g4^7*t^7.95 + (g2^13*g3*g4^7*t^7.95)/g1^5 + (2*g1^10*g3^10*t^7.96)/(g2^2*g4^2) + (3*g1^4*g2^4*g3^10*t^7.96)/g4^2 + (2*g2^10*g3^10*t^7.96)/(g1^2*g4^2) + (g1^13*g3^7*g4*t^7.96)/g2^5 + g1^7*g2*g3^7*g4*t^7.96 + g1*g2^7*g3^7*g4*t^7.96 + (g2^13*g3^7*g4*t^7.96)/g1^5 + (g1^7*g4^7*t^8.01)/(g2^11*g3^11) + (g1*g4^7*t^8.01)/(g2^5*g3^11) + (g2*g4^7*t^8.01)/(g1^5*g3^11) + (g2^7*g4^7*t^8.01)/(g1^11*g3^11) - (g1^4*t^8.02)/(g2^8*g3^2*g4^2) - (4*t^8.02)/(g1^2*g2^2*g3^2*g4^2) - (g2^4*t^8.02)/(g1^8*g3^2*g4^2) - (g1^7*g4*t^8.02)/(g2^11*g3^5) - (2*g1*g4*t^8.02)/(g2^5*g3^5) - (2*g2*g4*t^8.02)/(g1^5*g3^5) - (g2^7*g4*t^8.02)/(g1^11*g3^5) + (2*g1^4*g4^4*t^8.02)/(g2^8*g3^8) + (2*g4^4*t^8.02)/(g1^2*g2^2*g3^8) + (2*g2^4*g4^4*t^8.02)/(g1^8*g3^8) - (2*g3^4*t^8.03)/(g1^2*g2^2*g4^8) + (g1*g3*t^8.03)/(g2^5*g4^5) + (g2*g3*t^8.03)/(g1^5*g4^5) + (g1*g4*t^8.08)/(g2^17*g3^17) + (g4*t^8.08)/(g1^5*g2^11*g3^17) + (g4*t^8.08)/(g1^11*g2^5*g3^17) + (g2*g4*t^8.08)/(g1^17*g3^17) + (g1^4*g4^4*t^8.08)/(g2^20*g3^20) + (g4^4*t^8.08)/(g1^2*g2^14*g3^20) + (g4^4*t^8.08)/(g1^8*g2^8*g3^20) + (g4^4*t^8.08)/(g1^14*g2^2*g3^20) + (g2^4*g4^4*t^8.08)/(g1^20*g3^20) + (2*t^8.09)/(g1^8*g2^8*g3^8*g4^8) + (2*t^8.09)/(g1^5*g2^11*g3^11*g4^5) + (2*t^8.09)/(g1^11*g2^5*g3^11*g4^5) + t^8.09/(g1^2*g2^14*g3^14*g4^2) + t^8.09/(g1^8*g2^8*g3^14*g4^2) + t^8.09/(g1^14*g2^2*g3^14*g4^2) + (g1^5*g3^5*g4^17*t^8.41)/g2 + (g2^5*g3^5*g4^17*t^8.41)/g1 + (g1^17*g2^5*g4^5*t^8.42)/g3 + (2*g1^11*g2^11*g4^5*t^8.42)/g3 + (g1^5*g2^17*g4^5*t^8.42)/g3 + (2*g1^5*g3^11*g4^11*t^8.42)/g2 + (2*g2^5*g3^11*g4^11*t^8.42)/g1 + (g1^17*g2^5*g3^5*t^8.43)/g4 + (2*g1^11*g2^11*g3^5*t^8.43)/g4 + (g1^5*g2^17*g3^5*t^8.43)/g4 + (g1^5*g3^17*g4^5*t^8.43)/g2 + (g2^5*g3^17*g4^5*t^8.43)/g1 + (2*g1^8*g2^2*t^8.49)/(g3^4*g4^4) + (2*g1^2*g2^8*t^8.49)/(g3^4*g4^4) - (g3^5*g4^5*t^8.49)/(g1*g2^7) - (g3^5*g4^5*t^8.49)/(g1^7*g2) + (2*g3^2*g4^8*t^8.49)/(g1^4*g2^4) - (g1^11*t^8.5)/(g2*g3*g4^7) - (2*g1^5*g2^5*t^8.5)/(g3*g4^7) - (g2^11*t^8.5)/(g1*g3*g4^7) - (g3^11*t^8.5)/(g1*g2^7*g4) - (g3^11*t^8.5)/(g1^7*g2*g4) + (2*g3^8*g4^2*t^8.5)/(g1^4*g2^4) + g1^18*g4^18*t^8.88 + g1^12*g2^6*g4^18*t^8.88 + g1^6*g2^12*g4^18*t^8.88 + g2^18*g4^18*t^8.88 + g1^18*g3^6*g4^12*t^8.89 + 2*g1^12*g2^6*g3^6*g4^12*t^8.89 + 2*g1^6*g2^12*g3^6*g4^12*t^8.89 + g2^18*g3^6*g4^12*t^8.89 + g1^18*g3^12*g4^6*t^8.9 + 2*g1^12*g2^6*g3^12*g4^6*t^8.9 + 2*g1^6*g2^12*g3^12*g4^6*t^8.9 + g2^18*g3^12*g4^6*t^8.9 + g1^18*g3^18*t^8.91 + g1^12*g2^6*g3^18*t^8.91 + g1^6*g2^12*g3^18*t^8.91 + g2^18*g3^18*t^8.91 + (2*g1^6*g4^12*t^8.95)/g3^6 + (g1^12*g4^12*t^8.95)/(g2^6*g3^6) + (2*g2^6*g4^12*t^8.95)/g3^6 + (g2^12*g4^12*t^8.95)/(g1^6*g3^6) + (3*g1^9*g3^3*g4^3*t^8.96)/g2^3 + 5*g1^3*g2^3*g3^3*g4^3*t^8.96 + (3*g2^9*g3^3*g4^3*t^8.96)/g1^3 - 4*g1^6*g4^6*t^8.96 - 4*g2^6*g4^6*t^8.96 + (3*g1^9*g4^9*t^8.96)/(g2^3*g3^3) + (5*g1^3*g2^3*g4^9*t^8.96)/g3^3 + (3*g2^9*g4^9*t^8.96)/(g1^3*g3^3) - 7*g1^6*g3^6*t^8.97 - (g1^12*g3^6*t^8.97)/g2^6 - 7*g2^6*g3^6*t^8.97 - (g2^12*g3^6*t^8.97)/g1^6 + (g1^9*g3^9*t^8.97)/(g2^3*g4^3) + (g1^3*g2^3*g3^9*t^8.97)/g4^3 + (g2^9*g3^9*t^8.97)/(g1^3*g4^3) - (g1^6*g3^12*t^8.98)/g4^6 - (g2^6*g3^12*t^8.98)/g4^6 - t^4.01/(g1*g2*g3*g4*y) - t^5.02/(g1^2*g2^2*g3^2*g4^2*y) - t^6.03/(g1^6*g3^6*y) - t^6.03/(g2^6*g3^6*y) - t^6.04/(g1^3*g2^3*g3^3*g4^3*y) - (g1^5*g4^5*t^6.97)/(g2*g3*y) - (g2^5*g4^5*t^6.97)/(g1*g3*y) - (g1^5*g3^5*t^6.98)/(g2*g4*y) - (g2^5*g3^5*t^6.98)/(g1*g4*y) + (g4^2*t^7.04)/(g1^4*g2^4*g3^10*y) - (2*t^7.05)/(g1^4*g2^4*g3^4*g4^4*y) + (g1^7*g4^7*t^7.98)/(g2^5*g3^5*y) + (2*g1*g2*g4^7*t^7.98)/(g3^5*y) + (g2^7*g4^7*t^7.98)/(g1^5*g3^5*y) + (g1^4*g3^4*t^7.99)/(g2^2*g4^2*y) + (g2^4*g3^4*t^7.99)/(g1^2*g4^2*y) + (g1^7*g3*g4*t^7.99)/(g2^5*y) + (3*g1*g2*g3*g4*t^7.99)/y + (g2^7*g3*g4*t^7.99)/(g1^5*y) - (g1*g4*t^8.05)/(g2^11*g3^11*y) - (g4*t^8.05)/(g1^5*g2^5*g3^11*y) - (g2*g4*t^8.05)/(g1^11*g3^11*y) - t^8.06/(g1^5*g2^5*g3^5*g4^5*y) + (g1^6*g2^6*g4^12*t^8.92)/y + (g1^12*g3^6*g4^6*t^8.93)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.93)/y + (g2^12*g3^6*g4^6*t^8.93)/y + (g1^6*g2^6*g3^12*t^8.94)/y - (t^4.01*y)/(g1*g2*g3*g4) - (t^5.02*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.03*y)/(g1^6*g3^6) - (t^6.03*y)/(g2^6*g3^6) - (t^6.04*y)/(g1^3*g2^3*g3^3*g4^3) - (g1^5*g4^5*t^6.97*y)/(g2*g3) - (g2^5*g4^5*t^6.97*y)/(g1*g3) - (g1^5*g3^5*t^6.98*y)/(g2*g4) - (g2^5*g3^5*t^6.98*y)/(g1*g4) + (g4^2*t^7.04*y)/(g1^4*g2^4*g3^10) - (2*t^7.05*y)/(g1^4*g2^4*g3^4*g4^4) + (g1^7*g4^7*t^7.98*y)/(g2^5*g3^5) + (2*g1*g2*g4^7*t^7.98*y)/g3^5 + (g2^7*g4^7*t^7.98*y)/(g1^5*g3^5) + (g1^4*g3^4*t^7.99*y)/(g2^2*g4^2) + (g2^4*g3^4*t^7.99*y)/(g1^2*g4^2) + (g1^7*g3*g4*t^7.99*y)/g2^5 + 3*g1*g2*g3*g4*t^7.99*y + (g2^7*g3*g4*t^7.99*y)/g1^5 - (g1*g4*t^8.05*y)/(g2^11*g3^11) - (g4*t^8.05*y)/(g1^5*g2^5*g3^11) - (g2*g4*t^8.05*y)/(g1^11*g3^11) - (t^8.06*y)/(g1^5*g2^5*g3^5*g4^5) + g1^6*g2^6*g4^12*t^8.92*y + g1^12*g3^6*g4^6*t^8.93*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.93*y + g2^12*g3^6*g4^6*t^8.93*y + g1^6*g2^6*g3^12*t^8.94*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47874 | SU3adj1nf2 | $M_1\phi_1q_1\tilde{q}_1$ | 1.4951 | 1.7264 | 0.866 | [X:[], M:[0.6735], q:[0.4945, 0.493], qb:[0.4945, 0.493], phi:[0.3375]] | t^2.02 + t^2.03 + 3*t^2.96 + t^2.97 + t^3.04 + 3*t^3.97 + t^4.04 + 2*t^4.05 + 5*t^4.98 + 7*t^4.99 + 2*t^5.06 + 2*t^5.45 + 2*t^5.46 + 7*t^5.92 + 3*t^5.93 + t^5.99 + t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y | detail |