Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47933 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ 1.5159 1.7676 0.8576 [M:[0.6732, 0.6732], q:[0.4941, 0.4941], qb:[0.4955, 0.4927], phi:[0.3373]] [M:[[-5, 1, -5, 1], [1, -5, -5, 1]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{5}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}$ -6 2*t^2.019 + t^2.024 + 2*t^2.96 + 2*t^2.969 + t^3.036 + 2*t^3.972 + 3*t^4.039 + 2*t^4.043 + t^4.047 + 4*t^4.98 + 4*t^4.984 + 4*t^4.988 + 4*t^4.992 + 2*t^5.055 + t^5.059 + t^5.454 + 2*t^5.458 + t^5.463 + 3*t^5.92 + 4*t^5.929 + 3*t^5.937 + 3*t^5.992 + 4*t^5.996 - 6*t^6. + 2*t^6.004 - t^6.008 + 4*t^6.058 + 3*t^6.063 + 2*t^6.067 + 2*t^6.071 + t^6.466 + 2*t^6.47 + t^6.475 + 4*t^6.932 + 4*t^6.941 + 6*t^6.999 + 7*t^7.003 + 12*t^7.008 + 3*t^7.012 + 4*t^7.016 - t^7.02 + 3*t^7.075 + 2*t^7.079 + t^7.083 + t^7.469 + 2*t^7.474 + 5*t^7.478 + 6*t^7.482 + t^7.486 + t^7.495 + 6*t^7.94 + 10*t^7.944 + 6*t^7.948 + 11*t^7.953 + 4*t^7.957 + 7*t^7.961 + 4*t^8.011 + 6*t^8.015 - 6*t^8.019 - 6*t^8.024 + 2*t^8.028 - 2*t^8.032 + 5*t^8.078 + 4*t^8.082 + 3*t^8.086 + 4*t^8.091 + 2*t^8.095 + 2*t^8.414 + 4*t^8.419 + 4*t^8.423 + 4*t^8.427 + 2*t^8.431 + 2*t^8.49 + 2*t^8.494 - 2*t^8.498 - 2*t^8.503 + 4*t^8.88 + 6*t^8.889 + 6*t^8.897 + 4*t^8.906 + 6*t^8.952 + 11*t^8.956 - 8*t^8.96 + 11*t^8.964 - 16*t^8.969 + 3*t^8.973 - 2*t^8.977 - t^4.012/y - t^5.024/y - (2*t^6.031)/y - t^6.036/y - (2*t^6.972)/y - (2*t^6.981)/y + t^7.039/y - (2*t^7.047)/y + (4*t^7.98)/y + (5*t^7.988)/y + (2*t^7.992)/y - (3*t^8.051)/y - t^8.059/y + t^8.92/y + (4*t^8.929)/y + t^8.937/y - t^4.012*y - t^5.024*y - 2*t^6.031*y - t^6.036*y - 2*t^6.972*y - 2*t^6.981*y + t^7.039*y - 2*t^7.047*y + 4*t^7.98*y + 5*t^7.988*y + 2*t^7.992*y - 3*t^8.051*y - t^8.059*y + t^8.92*y + 4*t^8.929*y + t^8.937*y (g1*g4*t^2.019)/(g2^5*g3^5) + (g2*g4*t^2.019)/(g1^5*g3^5) + t^2.024/(g1^2*g2^2*g3^2*g4^2) + g1^6*g4^6*t^2.96 + g2^6*g4^6*t^2.96 + g1^6*g3^6*t^2.969 + g2^6*g3^6*t^2.969 + t^3.036/(g1^3*g2^3*g3^3*g4^3) + (g1^5*g4^5*t^3.972)/(g2*g3) + (g2^5*g4^5*t^3.972)/(g1*g3) + (g1^2*g4^2*t^4.039)/(g2^10*g3^10) + (g4^2*t^4.039)/(g1^4*g2^4*g3^10) + (g2^2*g4^2*t^4.039)/(g1^10*g3^10) + t^4.043/(g1*g2^7*g3^7*g4) + t^4.043/(g1^7*g2*g3^7*g4) + t^4.047/(g1^4*g2^4*g3^4*g4^4) + (g1^7*g4^7*t^4.98)/(g2^5*g3^5) + (2*g1*g2*g4^7*t^4.98)/g3^5 + (g2^7*g4^7*t^4.98)/(g1^5*g3^5) + (2*g1^4*g4^4*t^4.984)/(g2^2*g3^2) + (2*g2^4*g4^4*t^4.984)/(g1^2*g3^2) + (g1^7*g3*g4*t^4.988)/g2^5 + 2*g1*g2*g3*g4*t^4.988 + (g2^7*g3*g4*t^4.988)/g1^5 + (2*g1^4*g3^4*t^4.992)/(g2^2*g4^2) + (2*g2^4*g3^4*t^4.992)/(g1^2*g4^2) + t^5.055/(g1^2*g2^8*g3^8*g4^2) + t^5.055/(g1^8*g2^2*g3^8*g4^2) + t^5.059/(g1^5*g2^5*g3^5*g4^5) + (g3^5*g4^11*t^5.454)/(g1*g2) + (g1^11*g2^5*t^5.458)/(g3*g4) + (g1^5*g2^11*t^5.458)/(g3*g4) + (g3^11*g4^5*t^5.463)/(g1*g2) + g1^12*g4^12*t^5.92 + g1^6*g2^6*g4^12*t^5.92 + g2^12*g4^12*t^5.92 + g1^12*g3^6*g4^6*t^5.929 + 2*g1^6*g2^6*g3^6*g4^6*t^5.929 + g2^12*g3^6*g4^6*t^5.929 + g1^12*g3^12*t^5.937 + g1^6*g2^6*g3^12*t^5.937 + g2^12*g3^12*t^5.937 + (g4^6*t^5.992)/g3^6 + (g1^6*g4^6*t^5.992)/(g2^6*g3^6) + (g2^6*g4^6*t^5.992)/(g1^6*g3^6) + (2*g1^3*g4^3*t^5.996)/(g2^3*g3^3) + (2*g2^3*g4^3*t^5.996)/(g1^3*g3^3) - 4*t^6. - (g1^6*t^6.)/g2^6 - (g2^6*t^6.)/g1^6 + (g1^3*g3^3*t^6.004)/(g2^3*g4^3) + (g2^3*g3^3*t^6.004)/(g1^3*g4^3) - (g3^6*t^6.008)/g4^6 + (g1^3*g4^3*t^6.058)/(g2^15*g3^15) + (g4^3*t^6.058)/(g1^3*g2^9*g3^15) + (g4^3*t^6.058)/(g1^9*g2^3*g3^15) + (g2^3*g4^3*t^6.058)/(g1^15*g3^15) + t^6.063/(g1^12*g3^12) + t^6.063/(g2^12*g3^12) + t^6.063/(g1^6*g2^6*g3^12) + t^6.067/(g1^3*g2^9*g3^9*g4^3) + t^6.067/(g1^9*g2^3*g3^9*g4^3) + (2*t^6.071)/(g1^6*g2^6*g3^6*g4^6) + (g3^4*g4^10*t^6.466)/(g1^2*g2^2) + (g1^10*g2^4*t^6.47)/(g3^2*g4^2) + (g1^4*g2^10*t^6.47)/(g3^2*g4^2) + (g3^10*g4^4*t^6.475)/(g1^2*g2^2) + (g1^11*g4^11*t^6.932)/(g2*g3) + (2*g1^5*g2^5*g4^11*t^6.932)/g3 + (g2^11*g4^11*t^6.932)/(g1*g3) + (g1^11*g3^5*g4^5*t^6.941)/g2 + 2*g1^5*g2^5*g3^5*g4^5*t^6.941 + (g2^11*g3^5*g4^5*t^6.941)/g1 + (g1^8*g4^8*t^6.999)/(g2^10*g3^10) + (2*g1^2*g4^8*t^6.999)/(g2^4*g3^10) + (2*g2^2*g4^8*t^6.999)/(g1^4*g3^10) + (g2^8*g4^8*t^6.999)/(g1^10*g3^10) + (2*g1^5*g4^5*t^7.003)/(g2^7*g3^7) + (3*g4^5*t^7.003)/(g1*g2*g3^7) + (2*g2^5*g4^5*t^7.003)/(g1^7*g3^7) + (g1^8*g4^2*t^7.008)/(g2^10*g3^4) + (5*g1^2*g4^2*t^7.008)/(g2^4*g3^4) + (5*g2^2*g4^2*t^7.008)/(g1^4*g3^4) + (g2^8*g4^2*t^7.008)/(g1^10*g3^4) + (g1^5*t^7.012)/(g2^7*g3*g4) + t^7.012/(g1*g2*g3*g4) + (g2^5*t^7.012)/(g1^7*g3*g4) + (2*g1^2*g3^2*t^7.016)/(g2^4*g4^4) + (2*g2^2*g3^2*t^7.016)/(g1^4*g4^4) - (g3^5*t^7.02)/(g1*g2*g4^7) + t^7.075/(g1*g2^13*g3^13*g4) + t^7.075/(g1^7*g2^7*g3^13*g4) + t^7.075/(g1^13*g2*g3^13*g4) + t^7.079/(g1^4*g2^10*g3^10*g4^4) + t^7.079/(g1^10*g2^4*g3^10*g4^4) + t^7.083/(g1^7*g2^7*g3^7*g4^7) + (g4^15*t^7.469)/(g1^3*g2^3*g3^3) + (g4^12*t^7.474)/g1^6 + (g4^12*t^7.474)/g2^6 + (g1^12*t^7.478)/g3^6 + (g1^6*g2^6*t^7.478)/g3^6 + (g2^12*t^7.478)/g3^6 + (2*g3^3*g4^9*t^7.478)/(g1^3*g2^3) + (g1^15*t^7.482)/(g2^3*g3^3*g4^3) + (2*g1^9*g2^3*t^7.482)/(g3^3*g4^3) + (2*g1^3*g2^9*t^7.482)/(g3^3*g4^3) + (g2^15*t^7.482)/(g1^3*g3^3*g4^3) - (g1^6*g2^6*t^7.486)/g4^6 + (2*g3^9*g4^3*t^7.486)/(g1^3*g2^3) + (g3^15*t^7.495)/(g1^3*g2^3*g4^3) + (g1^13*g4^13*t^7.94)/(g2^5*g3^5) + (2*g1^7*g2*g4^13*t^7.94)/g3^5 + (2*g1*g2^7*g4^13*t^7.94)/g3^5 + (g2^13*g4^13*t^7.94)/(g1^5*g3^5) + (3*g1^10*g4^10*t^7.944)/(g2^2*g3^2) + (4*g1^4*g2^4*g4^10*t^7.944)/g3^2 + (3*g2^10*g4^10*t^7.944)/(g1^2*g3^2) + (g1^13*g3*g4^7*t^7.948)/g2^5 + 2*g1^7*g2*g3*g4^7*t^7.948 + 2*g1*g2^7*g3*g4^7*t^7.948 + (g2^13*g3*g4^7*t^7.948)/g1^5 + (3*g1^10*g3^4*g4^4*t^7.953)/g2^2 + 5*g1^4*g2^4*g3^4*g4^4*t^7.953 + (3*g2^10*g3^4*g4^4*t^7.953)/g1^2 + (g1^13*g3^7*g4*t^7.957)/g2^5 + g1^7*g2*g3^7*g4*t^7.957 + g1*g2^7*g3^7*g4*t^7.957 + (g2^13*g3^7*g4*t^7.957)/g1^5 + (2*g1^10*g3^10*t^7.961)/(g2^2*g4^2) + (3*g1^4*g2^4*g3^10*t^7.961)/g4^2 + (2*g2^10*g3^10*t^7.961)/(g1^2*g4^2) + (g1^7*g4^7*t^8.011)/(g2^11*g3^11) + (g1*g4^7*t^8.011)/(g2^5*g3^11) + (g2*g4^7*t^8.011)/(g1^5*g3^11) + (g2^7*g4^7*t^8.011)/(g1^11*g3^11) + (2*g1^4*g4^4*t^8.015)/(g2^8*g3^8) + (2*g4^4*t^8.015)/(g1^2*g2^2*g3^8) + (2*g2^4*g4^4*t^8.015)/(g1^8*g3^8) - (g1^7*g4*t^8.019)/(g2^11*g3^5) - (2*g1*g4*t^8.019)/(g2^5*g3^5) - (2*g2*g4*t^8.019)/(g1^5*g3^5) - (g2^7*g4*t^8.019)/(g1^11*g3^5) - (g1^4*t^8.024)/(g2^8*g3^2*g4^2) - (4*t^8.024)/(g1^2*g2^2*g3^2*g4^2) - (g2^4*t^8.024)/(g1^8*g3^2*g4^2) + (g1*g3*t^8.028)/(g2^5*g4^5) + (g2*g3*t^8.028)/(g1^5*g4^5) - (2*g3^4*t^8.032)/(g1^2*g2^2*g4^8) + (g1^4*g4^4*t^8.078)/(g2^20*g3^20) + (g4^4*t^8.078)/(g1^2*g2^14*g3^20) + (g4^4*t^8.078)/(g1^8*g2^8*g3^20) + (g4^4*t^8.078)/(g1^14*g2^2*g3^20) + (g2^4*g4^4*t^8.078)/(g1^20*g3^20) + (g1*g4*t^8.082)/(g2^17*g3^17) + (g4*t^8.082)/(g1^5*g2^11*g3^17) + (g4*t^8.082)/(g1^11*g2^5*g3^17) + (g2*g4*t^8.082)/(g1^17*g3^17) + t^8.086/(g1^2*g2^14*g3^14*g4^2) + t^8.086/(g1^8*g2^8*g3^14*g4^2) + t^8.086/(g1^14*g2^2*g3^14*g4^2) + (2*t^8.091)/(g1^5*g2^11*g3^11*g4^5) + (2*t^8.091)/(g1^11*g2^5*g3^11*g4^5) + (2*t^8.095)/(g1^8*g2^8*g3^8*g4^8) + (g1^5*g3^5*g4^17*t^8.414)/g2 + (g2^5*g3^5*g4^17*t^8.414)/g1 + (g1^17*g2^5*g4^5*t^8.419)/g3 + (2*g1^11*g2^11*g4^5*t^8.419)/g3 + (g1^5*g2^17*g4^5*t^8.419)/g3 + (2*g1^5*g3^11*g4^11*t^8.423)/g2 + (2*g2^5*g3^11*g4^11*t^8.423)/g1 + (g1^17*g2^5*g3^5*t^8.427)/g4 + (2*g1^11*g2^11*g3^5*t^8.427)/g4 + (g1^5*g2^17*g3^5*t^8.427)/g4 + (g1^5*g3^17*g4^5*t^8.431)/g2 + (g2^5*g3^17*g4^5*t^8.431)/g1 + (2*g3^2*g4^8*t^8.49)/(g1^4*g2^4) + (2*g1^8*g2^2*t^8.494)/(g3^4*g4^4) + (2*g1^2*g2^8*t^8.494)/(g3^4*g4^4) - (g3^5*g4^5*t^8.494)/(g1*g2^7) - (g3^5*g4^5*t^8.494)/(g1^7*g2) - (g1^11*t^8.498)/(g2*g3*g4^7) - (2*g1^5*g2^5*t^8.498)/(g3*g4^7) - (g2^11*t^8.498)/(g1*g3*g4^7) + (2*g3^8*g4^2*t^8.498)/(g1^4*g2^4) - (g3^11*t^8.503)/(g1*g2^7*g4) - (g3^11*t^8.503)/(g1^7*g2*g4) + g1^18*g4^18*t^8.88 + g1^12*g2^6*g4^18*t^8.88 + g1^6*g2^12*g4^18*t^8.88 + g2^18*g4^18*t^8.88 + g1^18*g3^6*g4^12*t^8.889 + 2*g1^12*g2^6*g3^6*g4^12*t^8.889 + 2*g1^6*g2^12*g3^6*g4^12*t^8.889 + g2^18*g3^6*g4^12*t^8.889 + g1^18*g3^12*g4^6*t^8.897 + 2*g1^12*g2^6*g3^12*g4^6*t^8.897 + 2*g1^6*g2^12*g3^12*g4^6*t^8.897 + g2^18*g3^12*g4^6*t^8.897 + g1^18*g3^18*t^8.906 + g1^12*g2^6*g3^18*t^8.906 + g1^6*g2^12*g3^18*t^8.906 + g2^18*g3^18*t^8.906 + (2*g1^6*g4^12*t^8.952)/g3^6 + (g1^12*g4^12*t^8.952)/(g2^6*g3^6) + (2*g2^6*g4^12*t^8.952)/g3^6 + (g2^12*g4^12*t^8.952)/(g1^6*g3^6) + (3*g1^9*g4^9*t^8.956)/(g2^3*g3^3) + (5*g1^3*g2^3*g4^9*t^8.956)/g3^3 + (3*g2^9*g4^9*t^8.956)/(g1^3*g3^3) - 4*g1^6*g4^6*t^8.96 - 4*g2^6*g4^6*t^8.96 + (3*g1^9*g3^3*g4^3*t^8.964)/g2^3 + 5*g1^3*g2^3*g3^3*g4^3*t^8.964 + (3*g2^9*g3^3*g4^3*t^8.964)/g1^3 - 7*g1^6*g3^6*t^8.969 - (g1^12*g3^6*t^8.969)/g2^6 - 7*g2^6*g3^6*t^8.969 - (g2^12*g3^6*t^8.969)/g1^6 + (g1^9*g3^9*t^8.973)/(g2^3*g4^3) + (g1^3*g2^3*g3^9*t^8.973)/g4^3 + (g2^9*g3^9*t^8.973)/(g1^3*g4^3) - (g1^6*g3^12*t^8.977)/g4^6 - (g2^6*g3^12*t^8.977)/g4^6 - t^4.012/(g1*g2*g3*g4*y) - t^5.024/(g1^2*g2^2*g3^2*g4^2*y) - t^6.031/(g1^6*g3^6*y) - t^6.031/(g2^6*g3^6*y) - t^6.036/(g1^3*g2^3*g3^3*g4^3*y) - (g1^5*g4^5*t^6.972)/(g2*g3*y) - (g2^5*g4^5*t^6.972)/(g1*g3*y) - (g1^5*g3^5*t^6.981)/(g2*g4*y) - (g2^5*g3^5*t^6.981)/(g1*g4*y) + (g4^2*t^7.039)/(g1^4*g2^4*g3^10*y) - (2*t^7.047)/(g1^4*g2^4*g3^4*g4^4*y) + (g1^7*g4^7*t^7.98)/(g2^5*g3^5*y) + (2*g1*g2*g4^7*t^7.98)/(g3^5*y) + (g2^7*g4^7*t^7.98)/(g1^5*g3^5*y) + (g1^7*g3*g4*t^7.988)/(g2^5*y) + (3*g1*g2*g3*g4*t^7.988)/y + (g2^7*g3*g4*t^7.988)/(g1^5*y) + (g1^4*g3^4*t^7.992)/(g2^2*g4^2*y) + (g2^4*g3^4*t^7.992)/(g1^2*g4^2*y) - (g1*g4*t^8.051)/(g2^11*g3^11*y) - (g4*t^8.051)/(g1^5*g2^5*g3^11*y) - (g2*g4*t^8.051)/(g1^11*g3^11*y) - t^8.059/(g1^5*g2^5*g3^5*g4^5*y) + (g1^6*g2^6*g4^12*t^8.92)/y + (g1^12*g3^6*g4^6*t^8.929)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.929)/y + (g2^12*g3^6*g4^6*t^8.929)/y + (g1^6*g2^6*g3^12*t^8.937)/y - (t^4.012*y)/(g1*g2*g3*g4) - (t^5.024*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.031*y)/(g1^6*g3^6) - (t^6.031*y)/(g2^6*g3^6) - (t^6.036*y)/(g1^3*g2^3*g3^3*g4^3) - (g1^5*g4^5*t^6.972*y)/(g2*g3) - (g2^5*g4^5*t^6.972*y)/(g1*g3) - (g1^5*g3^5*t^6.981*y)/(g2*g4) - (g2^5*g3^5*t^6.981*y)/(g1*g4) + (g4^2*t^7.039*y)/(g1^4*g2^4*g3^10) - (2*t^7.047*y)/(g1^4*g2^4*g3^4*g4^4) + (g1^7*g4^7*t^7.98*y)/(g2^5*g3^5) + (2*g1*g2*g4^7*t^7.98*y)/g3^5 + (g2^7*g4^7*t^7.98*y)/(g1^5*g3^5) + (g1^7*g3*g4*t^7.988*y)/g2^5 + 3*g1*g2*g3*g4*t^7.988*y + (g2^7*g3*g4*t^7.988*y)/g1^5 + (g1^4*g3^4*t^7.992*y)/(g2^2*g4^2) + (g2^4*g3^4*t^7.992*y)/(g1^2*g4^2) - (g1*g4*t^8.051*y)/(g2^11*g3^11) - (g4*t^8.051*y)/(g1^5*g2^5*g3^11) - (g2*g4*t^8.051*y)/(g1^11*g3^11) - (t^8.059*y)/(g1^5*g2^5*g3^5*g4^5) + g1^6*g2^6*g4^12*t^8.92*y + g1^12*g3^6*g4^6*t^8.929*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.929*y + g2^12*g3^6*g4^6*t^8.929*y + g1^6*g2^6*g3^12*t^8.937*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57639 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ 1.2512 1.4516 0.8619 [X:[1.4008, 1.4008], M:[1.0, 1.0], q:[0.3824, 0.3824], qb:[0.2168, 0.6134], phi:[0.4008]] t^2.41 + 2*t^2.99 + 2*t^3. + t^3.61 + 2*t^4.19 + 4*t^4.2 + t^4.34 + 2*t^4.64 + 4*t^5.39 + 2*t^5.41 + t^5.53 + t^5.55 + t^5.56 + 2*t^5.85 + 3*t^5.97 + 4*t^5.99 - 3*t^6. - t^4.2/y - t^5.41/y - t^4.2*y - t^5.41*y detail
57634 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ 1.5159 1.7675 0.8577 [X:[], M:[0.6731, 0.6745], q:[0.4948, 0.4934], qb:[0.4948, 0.4934], phi:[0.3372]] 3*t^2.02 + 3*t^2.96 + t^2.97 + t^3.04 + t^3.97 + t^3.98 + 3*t^4.04 + 3*t^4.05 + 6*t^4.98 + 10*t^4.99 + t^5.05 + 2*t^5.06 + 4*t^5.46 + t^5.92 + 8*t^5.93 + t^5.94 + t^5.99 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail
57638 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ 1.5367 1.8086 0.8497 [X:[], M:[0.6727, 0.674, 0.674], q:[0.4951, 0.4938], qb:[0.4951, 0.4938], phi:[0.337]] 4*t^2.02 + t^2.96 + 3*t^2.97 + t^3.03 + t^3.97 + 10*t^4.04 + 7*t^4.98 + 13*t^4.99 + t^5.05 + 3*t^5.06 + 4*t^5.46 + 7*t^5.93 + 3*t^5.94 + t^5.99 - t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail
57637 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ 1.5181 1.7752 0.8552 [X:[], M:[0.6861, 0.6861, 0.9648], q:[0.4824, 0.4824], qb:[0.4865, 0.4784], phi:[0.3451]] 2*t^2.06 + t^2.07 + 2*t^2.88 + t^2.89 + 2*t^2.91 + 2*t^3.92 + 3*t^4.12 + 2*t^4.13 + t^4.14 + 4*t^4.94 + 6*t^4.95 + 5*t^4.96 + 4*t^4.98 + t^5.36 + 2*t^5.38 + t^5.39 + 3*t^5.76 + 2*t^5.78 + 5*t^5.79 + 2*t^5.8 + 3*t^5.81 + 3*t^5.98 + 2*t^5.99 - 6*t^6. - t^4.04/y - t^5.07/y - t^4.04*y - t^5.07*y detail
57647 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ 1.5157 1.7657 0.8584 [X:[], M:[0.6733, 0.6733], q:[0.498, 0.498], qb:[0.494, 0.502], phi:[0.3347]] t^2.01 + 2*t^2.02 + 2*t^2.98 + 2*t^3. + t^3.01 + 2*t^4. + t^4.02 + 2*t^4.03 + 3*t^4.04 + 4*t^4.98 + 4*t^5. + 4*t^5.01 + 5*t^5.02 + 2*t^5.03 + t^5.47 + 2*t^5.49 + t^5.5 + 3*t^5.95 + 3*t^5.98 + 2*t^5.99 - 3*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47874 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ 1.4951 1.7264 0.866 [M:[0.6735], q:[0.4945, 0.493], qb:[0.4945, 0.493], phi:[0.3375]] t^2.021 + t^2.025 + t^2.958 + 2*t^2.962 + t^2.967 + t^3.038 + t^3.971 + 2*t^3.975 + t^4.041 + t^4.046 + t^4.05 + t^4.979 + 4*t^4.983 + 5*t^4.987 + 2*t^4.992 + t^5.058 + t^5.063 + 2*t^5.454 + 2*t^5.458 + t^5.916 + 2*t^5.92 + 4*t^5.925 + 2*t^5.929 + t^5.934 + t^5.991 + 2*t^5.996 - t^4.013/y - t^5.025/y - t^4.013*y - t^5.025*y detail