Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58898 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ 1.5169 1.7693 0.8574 [X:[], M:[0.6965, 0.6765, 0.9821], q:[0.4811, 0.5011], qb:[0.4831, 0.4989], phi:[0.3393]] [X:[], M:[[-5, -5, 0], [1, -5, 1], [3, 3, 0]], q:[[6, 0, 0], [0, 0, -1]], qb:[[0, 6, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ ${}$ -3 t^2.03 + t^2.04 + t^2.09 + t^2.89 + t^2.94 + 2*t^2.95 + t^3. + t^3.96 + t^4.02 + t^4.06 + 2*t^4.07 + t^4.12 + t^4.13 + t^4.18 + t^4.92 + 2*t^4.93 + t^4.97 + 6*t^4.98 + 2*t^4.99 + 2*t^5.03 + 4*t^5.04 + t^5.09 + 2*t^5.41 + t^5.46 + t^5.47 + t^5.79 + t^5.83 + t^5.84 + t^5.85 + t^5.88 + 4*t^5.89 + t^5.9 + t^5.91 + t^5.95 + 2*t^5.99 - 3*t^6. + 2*t^6.05 - t^6.06 + 2*t^6.09 + t^6.1 + 2*t^6.11 + 2*t^6.15 + t^6.16 + 2*t^6.21 + t^6.27 + 2*t^6.43 + t^6.48 + t^6.49 + t^6.85 + 2*t^6.9 + 2*t^6.91 + t^6.95 + 6*t^6.96 + t^7. + 8*t^7.01 + 5*t^7.02 + 2*t^7.06 + 9*t^7.07 + t^7.08 + 2*t^7.12 + 4*t^7.13 + t^7.18 + t^7.38 + t^7.4 + 3*t^7.44 + t^7.45 + t^7.49 + 5*t^7.5 + t^7.54 + t^7.55 + 2*t^7.56 + t^7.81 + 2*t^7.82 + t^7.86 + 7*t^7.87 + 3*t^7.88 + t^7.91 + 9*t^7.92 + 11*t^7.93 + 2*t^7.94 + t^7.97 + 8*t^7.98 + 3*t^7.99 + 2*t^8.02 - 2*t^8.03 - 2*t^8.04 + t^8.08 - 3*t^8.09 - 2*t^8.1 + 2*t^8.12 + t^8.13 + 4*t^8.14 - t^8.15 + 2*t^8.18 + t^8.19 + 2*t^8.2 + 2*t^8.24 + t^8.25 + 3*t^8.3 + t^8.31 + 4*t^8.35 + 4*t^8.36 + t^8.37 + t^8.4 + 4*t^8.41 + t^8.42 + t^8.46 - t^8.47 + t^8.51 - t^8.53 + t^8.68 + 2*t^8.73 + t^8.74 + t^8.77 + t^8.78 + 4*t^8.79 + t^8.8 + t^8.82 + 3*t^8.83 + 3*t^8.84 + 3*t^8.85 + t^8.86 + t^8.88 - 2*t^8.89 + 4*t^8.93 - 2*t^8.94 - 6*t^8.95 + t^8.98 + 9*t^8.99 - t^4.02/y - t^5.04/y - (2*t^6.05)/y - t^6.11/y - t^6.91/y - (2*t^6.96)/y - t^6.97/y - t^7.02/y - t^7.07/y + t^7.12/y + t^7.92/y + t^7.93/y + t^7.97/y + (4*t^7.98)/y + t^7.99/y + (2*t^8.03)/y + (2*t^8.04)/y - (2*t^8.08)/y - (2*t^8.14)/y - t^8.2/y + t^8.83/y + t^8.84/y + t^8.85/y + (3*t^8.89)/y + t^8.9/y + t^8.95/y - (2*t^8.99)/y - t^4.02*y - t^5.04*y - 2*t^6.05*y - t^6.11*y - t^6.91*y - 2*t^6.96*y - t^6.97*y - t^7.02*y - t^7.07*y + t^7.12*y + t^7.92*y + t^7.93*y + t^7.97*y + 4*t^7.98*y + t^7.99*y + 2*t^8.03*y + 2*t^8.04*y - 2*t^8.08*y - 2*t^8.14*y - t^8.2*y + t^8.83*y + t^8.84*y + t^8.85*y + 3*t^8.89*y + t^8.9*y + t^8.95*y - 2*t^8.99*y (g1*g3*t^2.03)/g2^5 + t^2.04/(g1^2*g2^2) + t^2.09/(g1^5*g2^5) + g1^6*g2^6*t^2.89 + g1^6*g3*t^2.94 + g1^3*g2^3*t^2.95 + (g2^6*t^2.95)/g3 + t^3. + (g1^5*g3*t^3.96)/g2 + t^4.02/(g1*g2) + (g1^2*g3^2*t^4.06)/g2^10 + t^4.07/(g1^4*g2^4) + (g3*t^4.07)/(g1*g2^7) + (g3*t^4.12)/(g1^4*g2^10) + t^4.13/(g1^7*g2^7) + t^4.18/(g1^10*g2^10) + g1^7*g2*g3*t^4.92 + 2*g1^4*g2^4*t^4.93 + (g1^7*g3^2*t^4.97)/g2^5 + 3*g1*g2*t^4.98 + (3*g1^4*g3*t^4.98)/g2^2 + (2*g2^4*t^4.99)/(g1^2*g3) + (2*g1*g3*t^5.03)/g2^5 + (3*t^5.04)/(g1^2*g2^2) + (g2*t^5.04)/(g1^5*g3) + t^5.09/(g1^5*g2^5) + (g1^11*t^5.41)/(g2*g3) + (g2^11*g3*t^5.41)/g1 + (g2^5*g3^2*t^5.46)/g1 + (g1^5*t^5.47)/(g2*g3^2) + g1^12*g2^12*t^5.79 + g1^12*g2^6*g3*t^5.83 + g1^9*g2^9*t^5.84 + (g1^6*g2^12*t^5.85)/g3 + g1^12*g3^2*t^5.88 + 3*g1^6*g2^6*t^5.89 + g1^9*g2^3*g3*t^5.89 + (g1^3*g2^9*t^5.9)/g3 + (g2^12*t^5.91)/g3^2 + g1^3*g2^3*t^5.95 + (g1^3*g3*t^5.99)/g2^3 + (g1^6*g3^2*t^5.99)/g2^6 - 3*t^6. + t^6.05/(g1^3*g2^3) + (g3*t^6.05)/g2^6 - t^6.06/(g1^6*g3) + (g3^2*t^6.09)/g2^12 + (g1^3*g3^3*t^6.09)/g2^15 + (g3*t^6.1)/(g1^3*g2^9) + (2*t^6.11)/(g1^6*g2^6) + (g3*t^6.15)/(g1^6*g2^12) + (g3^2*t^6.15)/(g1^3*g2^15) + t^6.16/(g1^9*g2^9) + t^6.21/(g1^12*g2^12) + (g3*t^6.21)/(g1^9*g2^15) + t^6.27/(g1^15*g2^15) + (g1^10*t^6.43)/(g2^2*g3) + (g2^10*g3*t^6.43)/g1^2 + (g2^4*g3^2*t^6.48)/g1^2 + (g1^4*t^6.49)/(g2^2*g3^2) + g1^11*g2^5*g3*t^6.85 + g1^8*g2^2*g3*t^6.9 + (g1^11*g3^2*t^6.9)/g2 + 2*g1^5*g2^5*t^6.91 + (g1^8*g3^2*t^6.95)/g2^4 + 3*g1^2*g2^2*t^6.96 + (3*g1^5*g3*t^6.96)/g2 + (g1^8*g3^3*t^7.)/g2^10 + (5*g1^2*g3*t^7.01)/g2^4 + (3*g1^5*g3^2*t^7.01)/g2^7 + (3*t^7.02)/(g1*g2) + (2*g2^2*t^7.02)/(g1^4*g3) + (2*g1^2*g3^2*t^7.06)/g2^10 + (5*t^7.07)/(g1^4*g2^4) + (4*g3*t^7.07)/(g1*g2^7) + t^7.08/(g1^7*g2*g3) + (2*g3*t^7.12)/(g1^4*g2^10) + (3*t^7.13)/(g1^7*g2^7) + t^7.13/(g1^10*g2^4*g3) + t^7.18/(g1^10*g2^10) + (g1^15*t^7.38)/g2^3 + (g2^15*t^7.4)/g1^3 + (g1^12*t^7.44)/g2^6 + (2*g1^9*t^7.44)/(g2^3*g3) - (g1^6*t^7.45)/g3^2 + (2*g2^9*g3*t^7.45)/g1^3 + g3^3*t^7.49 + (2*g1^3*t^7.5)/(g2^3*g3^2) + (g1^6*t^7.5)/(g2^6*g3) + (2*g2^3*g3^2*t^7.5)/g1^3 + (g3^3*t^7.54)/(g1^3*g2^3) + (g3^2*t^7.55)/g1^6 + t^7.56/(g1^3*g2^3*g3^3) + t^7.56/(g2^6*g3^2) + g1^13*g2^7*g3*t^7.81 + 2*g1^10*g2^10*t^7.82 + g1^13*g2*g3^2*t^7.86 + 3*g1^7*g2^7*t^7.87 + 4*g1^10*g2^4*g3*t^7.87 + (3*g1^4*g2^10*t^7.88)/g3 + (g1^13*g3^3*t^7.91)/g2^5 + 5*g1^7*g2*g3*t^7.92 + (4*g1^10*g3^2*t^7.92)/g2^2 + 8*g1^4*g2^4*t^7.93 + (3*g1*g2^7*t^7.93)/g3 + (2*g2^10*t^7.94)/(g1^2*g3^2) + (g1^7*g3^2*t^7.97)/g2^5 + 4*g1*g2*t^7.98 + (4*g1^4*g3*t^7.98)/g2^2 + (g2^7*t^7.99)/(g1^5*g3^2) + (2*g2^4*t^7.99)/(g1^2*g3) + (g1^4*g3^2*t^8.02)/g2^8 + (g1^7*g3^3*t^8.02)/g2^11 - (2*g1*g3*t^8.03)/g2^5 - (2*t^8.04)/(g1^2*g2^2) + (g1*g3^2*t^8.08)/g2^11 - (3*t^8.09)/(g1^5*g2^5) - (2*t^8.1)/(g1^8*g2^2*g3) + (g1*g3^3*t^8.12)/g2^17 + (g1^4*g3^4*t^8.12)/g2^20 + (g3^2*t^8.13)/(g1^2*g2^14) + (2*t^8.14)/(g1^8*g2^8) + (2*g3*t^8.14)/(g1^5*g2^11) - t^8.15/(g1^11*g2^5*g3) + (g3^2*t^8.18)/(g1^5*g2^17) + (g3^3*t^8.18)/(g1^2*g2^20) + (g3*t^8.19)/(g1^8*g2^14) + (2*t^8.2)/(g1^11*g2^11) + (g3*t^8.24)/(g1^11*g2^17) + (g3^2*t^8.24)/(g1^8*g2^20) + t^8.25/(g1^14*g2^14) + t^8.3/(g1^17*g2^17) + (g1^17*g2^5*t^8.3)/g3 + (g3*t^8.3)/(g1^14*g2^20) + g1^5*g2^17*g3*t^8.31 + (g1^17*t^8.35)/g2 + (g1^14*g2^2*t^8.35)/g3 + 2*g1^5*g2^11*g3^2*t^8.35 + t^8.36/(g1^20*g2^20) + (2*g1^11*g2^5*t^8.36)/g3^2 + g1^2*g2^14*g3*t^8.36 + (g2^17*t^8.37)/g1 + g1^5*g2^5*g3^3*t^8.4 + (g1^8*g2^2*t^8.41)/g3^2 + (g1^11*t^8.41)/(g2*g3) + (g2^11*g3*t^8.41)/g1 + g1^2*g2^8*g3^2*t^8.41 + (g1^5*g2^5*t^8.42)/g3^3 + (g1^8*t^8.46)/(g2^4*g3) - (g2^11*t^8.47)/g1^7 - (g1^5*t^8.47)/(g2*g3^2) + (g2^8*g3*t^8.47)/g1^4 + (g2^2*g3^2*t^8.51)/g1^4 + (g1^2*t^8.52)/(g2^4*g3^2) - (g2^5*g3*t^8.52)/g1^7 - t^8.53/(g1*g2*g3^3) + g1^18*g2^18*t^8.68 + g1^15*g2^15*t^8.73 + g1^18*g2^12*g3*t^8.73 + (g1^12*g2^18*t^8.74)/g3 + g1^18*g2^6*g3^2*t^8.77 + g1^15*g2^9*g3*t^8.78 + 3*g1^12*g2^12*t^8.79 + (g1^9*g2^15*t^8.79)/g3 + (g1^6*g2^18*t^8.8)/g3^2 + g1^18*g3^3*t^8.82 + 2*g1^12*g2^6*g3*t^8.83 + g1^15*g2^3*g3^2*t^8.83 + 3*g1^9*g2^9*t^8.84 + (g1^3*g2^15*t^8.85)/g3^2 + (2*g1^6*g2^12*t^8.85)/g3 + (g2^18*t^8.86)/g3^3 + g1^12*g3^2*t^8.88 - 4*g1^6*g2^6*t^8.89 + 2*g1^9*g2^3*g3*t^8.89 + (3*g1^9*g3^2*t^8.93)/g2^3 + (g1^12*g3^3*t^8.93)/g2^6 - 2*g1^6*g3*t^8.94 - (6*g2^6*t^8.95)/g3 + (g1^9*g3^3*t^8.98)/g2^9 + (6*g1^3*g3*t^8.99)/g2^3 + (3*g1^6*g3^2*t^8.99)/g2^6 - t^4.02/(g1*g2*y) - t^5.04/(g1^2*g2^2*y) - t^6.05/(g1^3*g2^3*y) - (g3*t^6.05)/(g2^6*y) - t^6.11/(g1^6*g2^6*y) - (g1^5*g2^5*t^6.91)/y - (g1^2*g2^2*t^6.96)/y - (g1^5*g3*t^6.96)/(g2*y) - (g2^5*t^6.97)/(g1*g3*y) - t^7.02/(g1*g2*y) - t^7.07/(g1^4*g2^4*y) + (g3*t^7.12)/(g1^4*g2^10*y) + (g1^7*g2*g3*t^7.92)/y + (g1^4*g2^4*t^7.93)/y + (g1^7*g3^2*t^7.97)/(g2^5*y) + (3*g1*g2*t^7.98)/y + (g1^4*g3*t^7.98)/(g2^2*y) + (g2^4*t^7.99)/(g1^2*g3*y) + (2*g1*g3*t^8.03)/(g2^5*y) + t^8.04/(g1^2*g2^2*y) + (g2*t^8.04)/(g1^5*g3*y) - (g3*t^8.08)/(g1^2*g2^8*y) - (g1*g3^2*t^8.08)/(g2^11*y) - t^8.14/(g1^8*g2^8*y) - (g3*t^8.14)/(g1^5*g2^11*y) - t^8.2/(g1^11*g2^11*y) + (g1^12*g2^6*g3*t^8.83)/y + (g1^9*g2^9*t^8.84)/y + (g1^6*g2^12*t^8.85)/(g3*y) + (2*g1^6*g2^6*t^8.89)/y + (g1^9*g2^3*g3*t^8.89)/y + (g1^3*g2^9*t^8.9)/(g3*y) + (g2^6*t^8.95)/(g3*y) - (2*g1^3*g3*t^8.99)/(g2^3*y) - (t^4.02*y)/(g1*g2) - (t^5.04*y)/(g1^2*g2^2) - (t^6.05*y)/(g1^3*g2^3) - (g3*t^6.05*y)/g2^6 - (t^6.11*y)/(g1^6*g2^6) - g1^5*g2^5*t^6.91*y - g1^2*g2^2*t^6.96*y - (g1^5*g3*t^6.96*y)/g2 - (g2^5*t^6.97*y)/(g1*g3) - (t^7.02*y)/(g1*g2) - (t^7.07*y)/(g1^4*g2^4) + (g3*t^7.12*y)/(g1^4*g2^10) + g1^7*g2*g3*t^7.92*y + g1^4*g2^4*t^7.93*y + (g1^7*g3^2*t^7.97*y)/g2^5 + 3*g1*g2*t^7.98*y + (g1^4*g3*t^7.98*y)/g2^2 + (g2^4*t^7.99*y)/(g1^2*g3) + (2*g1*g3*t^8.03*y)/g2^5 + (t^8.04*y)/(g1^2*g2^2) + (g2*t^8.04*y)/(g1^5*g3) - (g3*t^8.08*y)/(g1^2*g2^8) - (g1*g3^2*t^8.08*y)/g2^11 - (t^8.14*y)/(g1^8*g2^8) - (g3*t^8.14*y)/(g1^5*g2^11) - (t^8.2*y)/(g1^11*g2^11) + g1^12*g2^6*g3*t^8.83*y + g1^9*g2^9*t^8.84*y + (g1^6*g2^12*t^8.85*y)/g3 + 2*g1^6*g2^6*t^8.89*y + g1^9*g2^3*g3*t^8.89*y + (g1^3*g2^9*t^8.9*y)/g3 + (g2^6*t^8.95*y)/g3 - (2*g1^3*g3*t^8.99*y)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57637 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ 1.5181 1.7752 0.8552 [X:[], M:[0.6861, 0.6861, 0.9648], q:[0.4824, 0.4824], qb:[0.4865, 0.4784], phi:[0.3451]] 2*t^2.06 + t^2.07 + 2*t^2.88 + t^2.89 + 2*t^2.91 + 2*t^3.92 + 3*t^4.12 + 2*t^4.13 + t^4.14 + 4*t^4.94 + 6*t^4.95 + 5*t^4.96 + 4*t^4.98 + t^5.36 + 2*t^5.38 + t^5.39 + 3*t^5.76 + 2*t^5.78 + 5*t^5.79 + 2*t^5.8 + 3*t^5.81 + 3*t^5.98 + 2*t^5.99 - 6*t^6. - t^4.04/y - t^5.07/y - t^4.04*y - t^5.07*y detail