Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55771 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\phi_1^2$ + $ M_4q_1\tilde{q}_2$ | 0.9282 | 1.1625 | 0.7984 | [X:[], M:[0.7319, 0.7478, 0.8682, 0.7319], q:[0.6474, 0.6206, 0.6261], qb:[0.6261, 0.6206, 0.5956], phi:[0.5659]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [0, 0, -4, -4, 0, 0], [2, 2, 2, 2, 2, 2], [-4, 0, 0, 0, -4, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_4$, $ M_2$, $ M_3$, $ q_2\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_3$, $ q_2q_3$, $ q_3\tilde{q}_2$, $ q_1q_3$, $ M_1^2$, $ M_4^2$, $ M_1M_4$, $ M_1M_2$, $ M_2M_4$, $ M_2^2$, $ M_3M_4$, $ M_1M_3$, $ M_2M_3$, $ M_3^2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_2q_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1q_3$, $ \phi_1q_1^2$, $ M_4\tilde{q}_2\tilde{q}_3$, $ M_4q_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_4q_3\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_4q_3\tilde{q}_2$, $ M_4q_2q_3$, $ M_1q_3\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_2q_1\tilde{q}_3$ | . | -10 | 2*t^2.2 + t^2.24 + t^2.6 + 2*t^3.65 + 2*t^3.67 + t^3.72 + t^3.73 + 4*t^3.74 + 2*t^3.82 + 3*t^4.39 + 2*t^4.44 + t^4.49 + 2*t^4.8 + t^4.85 + t^5.21 + t^5.27 + 2*t^5.35 + 2*t^5.36 + 3*t^5.42 + t^5.43 + 4*t^5.44 + 3*t^5.45 + 2*t^5.5 + 2*t^5.52 + t^5.58 + 3*t^5.84 + 4*t^5.86 + 2*t^5.89 + 6*t^5.94 + 2*t^5.97 - 10*t^6. - 4*t^6.08 - 2*t^6.09 - t^6.16 + 2*t^6.25 + 2*t^6.27 + 2*t^6.33 + 4*t^6.34 + 2*t^6.43 + 4*t^6.59 + 3*t^6.64 + 2*t^6.68 + t^6.73 + 3*t^7. + 2*t^7.04 + t^7.09 + 3*t^7.3 + 4*t^7.31 + 3*t^7.33 + 2*t^7.37 + 2*t^7.38 + 10*t^7.39 + 8*t^7.41 + 2*t^7.45 + 5*t^7.46 + 6*t^7.47 + 9*t^7.48 + 3*t^7.49 + t^7.51 + 3*t^7.54 + 2*t^7.55 + 10*t^7.56 + 2*t^7.59 + 4*t^7.62 + 6*t^7.63 + 3*t^7.64 + 6*t^7.65 + 3*t^7.66 + t^7.67 - 2*t^7.7 + 2*t^7.75 - 2*t^7.77 - 2*t^7.79 + t^7.81 + t^7.83 - t^7.85 + 4*t^8.04 + 6*t^8.06 + 3*t^8.09 - t^8.12 + 8*t^8.13 + 2*t^8.14 - 18*t^8.2 - t^8.21 + t^8.22 - 7*t^8.24 - 3*t^8.27 - t^8.28 - 4*t^8.29 - 4*t^8.32 - t^8.4 + t^8.43 + 3*t^8.45 + 4*t^8.47 + 2*t^8.5 + 6*t^8.54 + t^8.57 + t^8.58 - 10*t^8.6 - 2*t^8.68 - 2*t^8.69 - 2*t^8.7 - t^8.76 + 5*t^8.78 + 4*t^8.83 + 2*t^8.86 + 2*t^8.87 + 3*t^8.88 + 2*t^8.92 + 3*t^8.93 + 3*t^8.94 + 4*t^8.95 + t^8.97 + 4*t^8.99 - t^4.7/y - (2*t^6.89)/y - t^6.94/y + t^7.39/y + (2*t^7.44)/y + (2*t^7.8)/y + t^7.85/y + t^8.45/y + (2*t^8.5)/y + (4*t^8.84)/y + (4*t^8.86)/y + (2*t^8.89)/y + (2*t^8.91)/y + (4*t^8.92)/y + (8*t^8.94)/y + (2*t^8.97)/y + (4*t^8.98)/y - t^4.7*y - 2*t^6.89*y - t^6.94*y + t^7.39*y + 2*t^7.44*y + 2*t^7.8*y + t^7.85*y + t^8.45*y + 2*t^8.5*y + 4*t^8.84*y + 4*t^8.86*y + 2*t^8.89*y + 2*t^8.91*y + 4*t^8.92*y + 8*t^8.94*y + 2*t^8.97*y + 4*t^8.98*y | t^2.2/(g1^4*g2^4) + t^2.2/(g1^4*g5^4) + t^2.24/(g3^4*g4^4) + g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^2.6 + g2^4*g6^4*t^3.65 + g5^4*g6^4*t^3.65 + g3^4*g6^4*t^3.67 + g4^4*g6^4*t^3.67 + g2^4*g5^4*t^3.72 + g1^4*g6^4*t^3.73 + g2^4*g3^4*t^3.74 + g2^4*g4^4*t^3.74 + g3^4*g5^4*t^3.74 + g4^4*g5^4*t^3.74 + g1^4*g3^4*t^3.82 + g1^4*g4^4*t^3.82 + t^4.39/(g1^8*g2^8) + t^4.39/(g1^8*g5^8) + t^4.39/(g1^8*g2^4*g5^4) + t^4.44/(g1^4*g2^4*g3^4*g4^4) + t^4.44/(g1^4*g3^4*g4^4*g5^4) + t^4.49/(g3^8*g4^8) + (g2^2*g3^2*g4^2*g6^2*t^4.8)/(g1^2*g5^2) + (g3^2*g4^2*g5^2*g6^2*t^4.8)/(g1^2*g2^2) + (g1^2*g2^2*g5^2*g6^2*t^4.85)/(g3^2*g4^2) + g1^4*g2^4*g3^4*g4^4*g5^4*g6^4*t^5.21 + (g6^7*t^5.27)/(g1*g2*g3*g4*g5) + (g2^3*g6^3*t^5.35)/(g1*g3*g4*g5) + (g5^3*g6^3*t^5.35)/(g1*g2*g3*g4) + (g3^3*g6^3*t^5.36)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.36)/(g1*g2*g3*g5) + (g2^7*t^5.42)/(g1*g3*g4*g5*g6) + (g2^3*g5^3*t^5.42)/(g1*g3*g4*g6) + (g5^7*t^5.42)/(g1*g2*g3*g4*g6) + (g1^3*g6^3*t^5.43)/(g2*g3*g4*g5) + (g2^3*g3^3*t^5.44)/(g1*g4*g5*g6) + (g2^3*g4^3*t^5.44)/(g1*g3*g5*g6) + (g3^3*g5^3*t^5.44)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.44)/(g1*g2*g3*g6) + (g3^7*t^5.45)/(g1*g2*g4*g5*g6) + (g3^3*g4^3*t^5.45)/(g1*g2*g5*g6) + (g4^7*t^5.45)/(g1*g2*g3*g5*g6) + (g1^3*g2^3*t^5.5)/(g3*g4*g5*g6) + (g1^3*g5^3*t^5.5)/(g2*g3*g4*g6) + (g1^3*g3^3*t^5.52)/(g2*g4*g5*g6) + (g1^3*g4^3*t^5.52)/(g2*g3*g5*g6) + (g1^7*t^5.58)/(g2*g3*g4*g5*g6) + (g6^4*t^5.84)/g1^4 + (g2^4*g6^4*t^5.84)/(g1^4*g5^4) + (g5^4*g6^4*t^5.84)/(g1^4*g2^4) + (g3^4*g6^4*t^5.86)/(g1^4*g2^4) + (g4^4*g6^4*t^5.86)/(g1^4*g2^4) + (g3^4*g6^4*t^5.86)/(g1^4*g5^4) + (g4^4*g6^4*t^5.86)/(g1^4*g5^4) + (g2^4*g6^4*t^5.89)/(g3^4*g4^4) + (g5^4*g6^4*t^5.89)/(g3^4*g4^4) + (g3^4*t^5.94)/g1^4 + (g4^4*t^5.94)/g1^4 + (g2^4*g3^4*t^5.94)/(g1^4*g5^4) + (g2^4*g4^4*t^5.94)/(g1^4*g5^4) + (g3^4*g5^4*t^5.94)/(g1^4*g2^4) + (g4^4*g5^4*t^5.94)/(g1^4*g2^4) + (g2^4*g5^4*t^5.97)/(g3^4*g4^4) + (g1^4*g6^4*t^5.97)/(g3^4*g4^4) - 6*t^6. - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g3^4 - (g2^4*t^6.)/g5^4 - (g5^4*t^6.)/g2^4 - (g1^4*t^6.08)/g2^4 - (g1^4*t^6.08)/g5^4 - (g2^4*t^6.08)/g6^4 - (g5^4*t^6.08)/g6^4 - (g3^4*t^6.09)/g6^4 - (g4^4*t^6.09)/g6^4 - (g1^4*t^6.16)/g6^4 + g1^2*g2^6*g3^2*g4^2*g5^2*g6^6*t^6.25 + g1^2*g2^2*g3^2*g4^2*g5^6*g6^6*t^6.25 + g1^2*g2^2*g3^6*g4^2*g5^2*g6^6*t^6.27 + g1^2*g2^2*g3^2*g4^6*g5^2*g6^6*t^6.27 + g1^2*g2^6*g3^2*g4^2*g5^6*g6^2*t^6.33 + g1^6*g2^2*g3^2*g4^2*g5^2*g6^6*t^6.33 + g1^2*g2^6*g3^6*g4^2*g5^2*g6^2*t^6.34 + g1^2*g2^6*g3^2*g4^6*g5^2*g6^2*t^6.34 + g1^2*g2^2*g3^6*g4^2*g5^6*g6^2*t^6.34 + g1^2*g2^2*g3^2*g4^6*g5^6*g6^2*t^6.34 + g1^6*g2^2*g3^6*g4^2*g5^2*g6^2*t^6.43 + g1^6*g2^2*g3^2*g4^6*g5^2*g6^2*t^6.43 + t^6.59/(g1^12*g2^12) + t^6.59/(g1^12*g5^12) + t^6.59/(g1^12*g2^4*g5^8) + t^6.59/(g1^12*g2^8*g5^4) + t^6.64/(g1^8*g2^8*g3^4*g4^4) + t^6.64/(g1^8*g3^4*g4^4*g5^8) + t^6.64/(g1^8*g2^4*g3^4*g4^4*g5^4) + t^6.68/(g1^4*g2^4*g3^8*g4^8) + t^6.68/(g1^4*g3^8*g4^8*g5^4) + t^6.73/(g3^12*g4^12) + (g2^2*g3^2*g4^2*g6^2*t^7.)/(g1^6*g5^6) + (g3^2*g4^2*g6^2*t^7.)/(g1^6*g2^2*g5^2) + (g3^2*g4^2*g5^2*g6^2*t^7.)/(g1^6*g2^6) + (g2^2*g6^2*t^7.04)/(g1^2*g3^2*g4^2*g5^2) + (g5^2*g6^2*t^7.04)/(g1^2*g2^2*g3^2*g4^2) + (g1^2*g2^2*g5^2*g6^2*t^7.09)/(g3^6*g4^6) + g2^8*g6^8*t^7.3 + g2^4*g5^4*g6^8*t^7.3 + g5^8*g6^8*t^7.3 + g2^4*g3^4*g6^8*t^7.31 + g2^4*g4^4*g6^8*t^7.31 + g3^4*g5^4*g6^8*t^7.31 + g4^4*g5^4*g6^8*t^7.31 + g3^8*g6^8*t^7.33 + g3^4*g4^4*g6^8*t^7.33 + g4^8*g6^8*t^7.33 + g2^8*g5^4*g6^4*t^7.37 + g2^4*g5^8*g6^4*t^7.37 + g1^4*g2^4*g6^8*t^7.38 + g1^4*g5^4*g6^8*t^7.38 + g2^8*g3^4*g6^4*t^7.39 + g2^8*g4^4*g6^4*t^7.39 + 2*g2^4*g3^4*g5^4*g6^4*t^7.39 + 2*g2^4*g4^4*g5^4*g6^4*t^7.39 + g3^4*g5^8*g6^4*t^7.39 + g4^4*g5^8*g6^4*t^7.39 + g1^4*g3^4*g6^8*t^7.39 + g1^4*g4^4*g6^8*t^7.39 + g2^4*g3^8*g6^4*t^7.41 + 2*g2^4*g3^4*g4^4*g6^4*t^7.41 + g2^4*g4^8*g6^4*t^7.41 + g3^8*g5^4*g6^4*t^7.41 + 2*g3^4*g4^4*g5^4*g6^4*t^7.41 + g4^8*g5^4*g6^4*t^7.41 + g2^8*g5^8*t^7.45 + g1^4*g2^4*g5^4*g6^4*t^7.45 + g2^8*g3^4*g5^4*t^7.46 + g2^8*g4^4*g5^4*t^7.46 + g2^4*g3^4*g5^8*t^7.46 + g2^4*g4^4*g5^8*t^7.46 + g1^8*g6^8*t^7.46 + g1^4*g2^4*g3^4*g6^4*t^7.47 + g1^4*g2^4*g4^4*g6^4*t^7.47 + g1^4*g3^4*g5^4*g6^4*t^7.47 + g1^4*g4^4*g5^4*g6^4*t^7.47 + (g6^7*t^7.47)/(g1^5*g2*g3*g4*g5^5) + (g6^7*t^7.47)/(g1^5*g2^5*g3*g4*g5) + g2^8*g3^8*t^7.48 + g2^8*g3^4*g4^4*t^7.48 + g2^8*g4^8*t^7.48 + g2^4*g3^8*g5^4*t^7.48 + g2^4*g3^4*g4^4*g5^4*t^7.48 + g2^4*g4^8*g5^4*t^7.48 + g3^8*g5^8*t^7.48 + g3^4*g4^4*g5^8*t^7.48 + g4^8*g5^8*t^7.48 + g1^4*g3^8*g6^4*t^7.49 + g1^4*g3^4*g4^4*g6^4*t^7.49 + g1^4*g4^8*g6^4*t^7.49 + (g6^7*t^7.51)/(g1*g2*g3^5*g4^5*g5) + (g2^3*g6^3*t^7.54)/(g1^5*g3*g4*g5^5) + (g6^3*t^7.54)/(g1^5*g2*g3*g4*g5) + (g5^3*g6^3*t^7.54)/(g1^5*g2^5*g3*g4) + g1^8*g3^4*g6^4*t^7.55 + g1^8*g4^4*g6^4*t^7.55 + g1^4*g2^4*g3^8*t^7.56 + g1^4*g2^4*g3^4*g4^4*t^7.56 + g1^4*g2^4*g4^8*t^7.56 + g1^4*g3^8*g5^4*t^7.56 + g1^4*g3^4*g4^4*g5^4*t^7.56 + g1^4*g4^8*g5^4*t^7.56 + (g3^3*g6^3*t^7.56)/(g1^5*g2*g4*g5^5) + (g4^3*g6^3*t^7.56)/(g1^5*g2*g3*g5^5) + (g3^3*g6^3*t^7.56)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.56)/(g1^5*g2^5*g3*g5) + (g2^3*g6^3*t^7.59)/(g1*g3^5*g4^5*g5) + (g5^3*g6^3*t^7.59)/(g1*g2*g3^5*g4^5) + (g2^7*t^7.62)/(g1^5*g3*g4*g5^5*g6) + (g2^3*t^7.62)/(g1^5*g3*g4*g5*g6) + (g5^3*t^7.62)/(g1^5*g2*g3*g4*g6) + (g5^7*t^7.62)/(g1^5*g2^5*g3*g4*g6) + (g2^3*g3^3*t^7.63)/(g1^5*g4*g5^5*g6) + (g2^3*g4^3*t^7.63)/(g1^5*g3*g5^5*g6) + (g3^3*t^7.63)/(g1^5*g2*g4*g5*g6) + (g4^3*t^7.63)/(g1^5*g2*g3*g5*g6) + (g3^3*g5^3*t^7.63)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.63)/(g1^5*g2^5*g3*g6) + g1^8*g3^8*t^7.64 + g1^8*g3^4*g4^4*t^7.64 + g1^8*g4^8*t^7.64 + (g3^7*t^7.65)/(g1^5*g2*g4*g5^5*g6) + (g3^3*g4^3*t^7.65)/(g1^5*g2*g5^5*g6) + (g4^7*t^7.65)/(g1^5*g2*g3*g5^5*g6) + (g3^7*t^7.65)/(g1^5*g2^5*g4*g5*g6) + (g3^3*g4^3*t^7.65)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.65)/(g1^5*g2^5*g3*g5*g6) + (g2^7*t^7.66)/(g1*g3^5*g4^5*g5*g6) + (g2^3*g5^3*t^7.66)/(g1*g3^5*g4^5*g6) + (g5^7*t^7.66)/(g1*g2*g3^5*g4^5*g6) + (g1^3*g6^3*t^7.67)/(g2*g3^5*g4^5*g5) - (2*t^7.7)/(g1*g2*g3*g4*g5*g6) + (g1^3*g2^3*t^7.75)/(g3^5*g4^5*g5*g6) + (g1^3*g5^3*t^7.75)/(g2*g3^5*g4^5*g6) - (g2^3*t^7.77)/(g1*g3*g4*g5*g6^5) - (g5^3*t^7.77)/(g1*g2*g3*g4*g6^5) - (g3^3*t^7.79)/(g1*g2*g4*g5*g6^5) - (g4^3*t^7.79)/(g1*g2*g3*g5*g6^5) + g1^6*g2^6*g3^6*g4^6*g5^6*g6^6*t^7.81 + (g1^7*t^7.83)/(g2*g3^5*g4^5*g5*g6) - (g1^3*t^7.85)/(g2*g3*g4*g5*g6^5) + (g6^4*t^8.04)/(g1^8*g2^4) + (g2^4*g6^4*t^8.04)/(g1^8*g5^8) + (g6^4*t^8.04)/(g1^8*g5^4) + (g5^4*g6^4*t^8.04)/(g1^8*g2^8) + (g3^4*g6^4*t^8.06)/(g1^8*g2^8) + (g4^4*g6^4*t^8.06)/(g1^8*g2^8) + (g3^4*g6^4*t^8.06)/(g1^8*g5^8) + (g4^4*g6^4*t^8.06)/(g1^8*g5^8) + (g3^4*g6^4*t^8.06)/(g1^8*g2^4*g5^4) + (g4^4*g6^4*t^8.06)/(g1^8*g2^4*g5^4) + (g6^4*t^8.09)/(g1^4*g3^4*g4^4) + (g2^4*g6^4*t^8.09)/(g1^4*g3^4*g4^4*g5^4) + (g5^4*g6^4*t^8.09)/(g1^4*g2^4*g3^4*g4^4) - (g6^4*t^8.12)/(g1^4*g2^4*g5^4) + (g3^4*t^8.13)/(g1^8*g2^4) + (g4^4*t^8.13)/(g1^8*g2^4) + (g2^4*g3^4*t^8.13)/(g1^8*g5^8) + (g2^4*g4^4*t^8.13)/(g1^8*g5^8) + (g3^4*t^8.13)/(g1^8*g5^4) + (g4^4*t^8.13)/(g1^8*g5^4) + (g3^4*g5^4*t^8.13)/(g1^8*g2^8) + (g4^4*g5^4*t^8.13)/(g1^8*g2^8) + (g2^4*g6^4*t^8.14)/(g3^8*g4^8) + (g5^4*g6^4*t^8.14)/(g3^8*g4^8) - (6*t^8.2)/(g1^4*g2^4) - (g3^4*t^8.2)/(g1^4*g2^4*g4^4) - (g4^4*t^8.2)/(g1^4*g2^4*g3^4) - (g2^4*t^8.2)/(g1^4*g5^8) - (6*t^8.2)/(g1^4*g5^4) - (g3^4*t^8.2)/(g1^4*g4^4*g5^4) - (g4^4*t^8.2)/(g1^4*g3^4*g5^4) - (g5^4*t^8.2)/(g1^4*g2^8) - (g3^4*t^8.21)/(g1^4*g2^4*g5^4) - (g4^4*t^8.21)/(g1^4*g2^4*g5^4) + (g2^4*g5^4*t^8.21)/(g3^8*g4^8) + (g1^4*g6^4*t^8.22)/(g3^8*g4^8) - (5*t^8.24)/(g3^4*g4^4) - (g2^4*t^8.24)/(g3^4*g4^4*g5^4) - (g5^4*t^8.24)/(g2^4*g3^4*g4^4) - t^8.27/(g1^4*g6^4) - (g2^4*t^8.27)/(g1^4*g5^4*g6^4) - (g5^4*t^8.27)/(g1^4*g2^4*g6^4) - t^8.28/(g2^4*g5^4) - (g3^4*t^8.29)/(g1^4*g2^4*g6^4) - (g4^4*t^8.29)/(g1^4*g2^4*g6^4) - (g3^4*t^8.29)/(g1^4*g5^4*g6^4) - (g4^4*t^8.29)/(g1^4*g5^4*g6^4) - (g1^4*t^8.32)/(g2^4*g3^4*g4^4) - (g1^4*t^8.32)/(g3^4*g4^4*g5^4) - (g2^4*t^8.32)/(g3^4*g4^4*g6^4) - (g5^4*t^8.32)/(g3^4*g4^4*g6^4) - (g1^4*t^8.4)/(g3^4*g4^4*g6^4) + t^8.43/g6^8 + (g2^6*g3^2*g4^2*g6^6*t^8.45)/(g1^2*g5^2) + (g2^2*g3^2*g4^2*g5^2*g6^6*t^8.45)/g1^2 + (g3^2*g4^2*g5^6*g6^6*t^8.45)/(g1^2*g2^2) + (g2^2*g3^6*g4^2*g6^6*t^8.47)/(g1^2*g5^2) + (g2^2*g3^2*g4^6*g6^6*t^8.47)/(g1^2*g5^2) + (g3^6*g4^2*g5^2*g6^6*t^8.47)/(g1^2*g2^2) + (g3^2*g4^6*g5^2*g6^6*t^8.47)/(g1^2*g2^2) + (g1^2*g2^6*g5^2*g6^6*t^8.5)/(g3^2*g4^2) + (g1^2*g2^2*g5^6*g6^6*t^8.5)/(g3^2*g4^2) + (g2^6*g3^6*g4^2*g6^2*t^8.54)/(g1^2*g5^2) + (g2^6*g3^2*g4^6*g6^2*t^8.54)/(g1^2*g5^2) + (g2^2*g3^6*g4^2*g5^2*g6^2*t^8.54)/g1^2 + (g2^2*g3^2*g4^6*g5^2*g6^2*t^8.54)/g1^2 + (g3^6*g4^2*g5^6*g6^2*t^8.54)/(g1^2*g2^2) + (g3^2*g4^6*g5^6*g6^2*t^8.54)/(g1^2*g2^2) + (g1^2*g2^6*g5^6*g6^2*t^8.57)/(g3^2*g4^2) + (g1^6*g2^2*g5^2*g6^6*t^8.58)/(g3^2*g4^2) - (g1^2*g2^6*g3^2*g4^2*g6^2*t^8.6)/g5^2 - (g1^2*g2^2*g3^6*g5^2*g6^2*t^8.6)/g4^2 - 6*g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^8.6 - (g1^2*g2^2*g4^6*g5^2*g6^2*t^8.6)/g3^2 - (g1^2*g3^2*g4^2*g5^6*g6^2*t^8.6)/g2^2 - (g1^2*g2^6*g3^2*g4^2*g5^2*t^8.68)/g6^2 - (g1^2*g2^2*g3^2*g4^2*g5^6*t^8.68)/g6^2 - (g1^6*g2^2*g3^2*g4^2*g6^2*t^8.69)/g5^2 - (g1^6*g3^2*g4^2*g5^2*g6^2*t^8.69)/g2^2 - (g1^2*g2^2*g3^6*g4^2*g5^2*t^8.7)/g6^2 - (g1^2*g2^2*g3^2*g4^6*g5^2*t^8.7)/g6^2 - (g1^6*g2^2*g3^2*g4^2*g5^2*t^8.76)/g6^2 + t^8.78/(g1^16*g2^16) + t^8.78/(g1^16*g5^16) + t^8.78/(g1^16*g2^4*g5^12) + t^8.78/(g1^16*g2^8*g5^8) + t^8.78/(g1^16*g2^12*g5^4) + t^8.83/(g1^12*g2^12*g3^4*g4^4) + t^8.83/(g1^12*g3^4*g4^4*g5^12) + t^8.83/(g1^12*g2^4*g3^4*g4^4*g5^8) + t^8.83/(g1^12*g2^8*g3^4*g4^4*g5^4) + g1^4*g2^8*g3^4*g4^4*g5^4*g6^8*t^8.86 + g1^4*g2^4*g3^4*g4^4*g5^8*g6^8*t^8.86 + g1^4*g2^4*g3^8*g4^4*g5^4*g6^8*t^8.87 + g1^4*g2^4*g3^4*g4^8*g5^4*g6^8*t^8.87 + t^8.88/(g1^8*g2^8*g3^8*g4^8) + t^8.88/(g1^8*g3^8*g4^8*g5^8) + t^8.88/(g1^8*g2^4*g3^8*g4^8*g5^4) + (g2^3*g6^11*t^8.92)/(g1*g3*g4*g5) + (g5^3*g6^11*t^8.92)/(g1*g2*g3*g4) + t^8.93/(g1^4*g2^4*g3^12*g4^12) + t^8.93/(g1^4*g3^12*g4^12*g5^4) + g1^4*g2^8*g3^4*g4^4*g5^8*g6^4*t^8.93 + g1^8*g2^4*g3^4*g4^4*g5^4*g6^8*t^8.94 + (g3^3*g6^11*t^8.94)/(g1*g2*g4*g5) + (g4^3*g6^11*t^8.94)/(g1*g2*g3*g5) + g1^4*g2^8*g3^8*g4^4*g5^4*g6^4*t^8.95 + g1^4*g2^8*g3^4*g4^8*g5^4*g6^4*t^8.95 + g1^4*g2^4*g3^8*g4^4*g5^8*g6^4*t^8.95 + g1^4*g2^4*g3^4*g4^8*g5^8*g6^4*t^8.95 + t^8.97/(g3^16*g4^16) + (g2^7*g6^7*t^8.99)/(g1*g3*g4*g5) + (2*g2^3*g5^3*g6^7*t^8.99)/(g1*g3*g4) + (g5^7*g6^7*t^8.99)/(g1*g2*g3*g4) - t^4.7/(g1*g2*g3*g4*g5*g6*y) - t^6.89/(g1^5*g2*g3*g4*g5^5*g6*y) - t^6.89/(g1^5*g2^5*g3*g4*g5*g6*y) - t^6.94/(g1*g2*g3^5*g4^5*g5*g6*y) + t^7.39/(g1^8*g2^4*g5^4*y) + t^7.44/(g1^4*g2^4*g3^4*g4^4*y) + t^7.44/(g1^4*g3^4*g4^4*g5^4*y) + (g2^2*g3^2*g4^2*g6^2*t^7.8)/(g1^2*g5^2*y) + (g3^2*g4^2*g5^2*g6^2*t^7.8)/(g1^2*g2^2*y) + (g1^2*g2^2*g5^2*g6^2*t^7.85)/(g3^2*g4^2*y) + (g3^3*g4^3*t^8.45)/(g1*g2*g5*g6*y) + (g1^3*g2^3*t^8.5)/(g3*g4*g5*g6*y) + (g1^3*g5^3*t^8.5)/(g2*g3*g4*g6*y) + (2*g6^4*t^8.84)/(g1^4*y) + (g2^4*g6^4*t^8.84)/(g1^4*g5^4*y) + (g5^4*g6^4*t^8.84)/(g1^4*g2^4*y) + (g3^4*g6^4*t^8.86)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.86)/(g1^4*g2^4*y) + (g3^4*g6^4*t^8.86)/(g1^4*g5^4*y) + (g4^4*g6^4*t^8.86)/(g1^4*g5^4*y) + (g2^4*g6^4*t^8.89)/(g3^4*g4^4*y) + (g5^4*g6^4*t^8.89)/(g3^4*g4^4*y) + (g6^4*t^8.91)/(g3^4*y) + (g6^4*t^8.91)/(g4^4*y) + (g2^4*t^8.92)/(g1^4*y) + (g5^4*t^8.92)/(g1^4*y) + (g6^4*t^8.92)/(g2^4*y) + (g6^4*t^8.92)/(g5^4*y) + (2*g3^4*t^8.94)/(g1^4*y) + (2*g4^4*t^8.94)/(g1^4*y) + (g2^4*g3^4*t^8.94)/(g1^4*g5^4*y) + (g2^4*g4^4*t^8.94)/(g1^4*g5^4*y) + (g3^4*g5^4*t^8.94)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.94)/(g1^4*g2^4*y) + (g2^4*g5^4*t^8.97)/(g3^4*g4^4*y) + (g1^4*g6^4*t^8.97)/(g3^4*g4^4*y) + (g2^4*t^8.98)/(g3^4*y) + (g2^4*t^8.98)/(g4^4*y) + (g5^4*t^8.98)/(g3^4*y) + (g5^4*t^8.98)/(g4^4*y) - (t^4.7*y)/(g1*g2*g3*g4*g5*g6) - (t^6.89*y)/(g1^5*g2*g3*g4*g5^5*g6) - (t^6.89*y)/(g1^5*g2^5*g3*g4*g5*g6) - (t^6.94*y)/(g1*g2*g3^5*g4^5*g5*g6) + (t^7.39*y)/(g1^8*g2^4*g5^4) + (t^7.44*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.44*y)/(g1^4*g3^4*g4^4*g5^4) + (g2^2*g3^2*g4^2*g6^2*t^7.8*y)/(g1^2*g5^2) + (g3^2*g4^2*g5^2*g6^2*t^7.8*y)/(g1^2*g2^2) + (g1^2*g2^2*g5^2*g6^2*t^7.85*y)/(g3^2*g4^2) + (g3^3*g4^3*t^8.45*y)/(g1*g2*g5*g6) + (g1^3*g2^3*t^8.5*y)/(g3*g4*g5*g6) + (g1^3*g5^3*t^8.5*y)/(g2*g3*g4*g6) + (2*g6^4*t^8.84*y)/g1^4 + (g2^4*g6^4*t^8.84*y)/(g1^4*g5^4) + (g5^4*g6^4*t^8.84*y)/(g1^4*g2^4) + (g3^4*g6^4*t^8.86*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.86*y)/(g1^4*g2^4) + (g3^4*g6^4*t^8.86*y)/(g1^4*g5^4) + (g4^4*g6^4*t^8.86*y)/(g1^4*g5^4) + (g2^4*g6^4*t^8.89*y)/(g3^4*g4^4) + (g5^4*g6^4*t^8.89*y)/(g3^4*g4^4) + (g6^4*t^8.91*y)/g3^4 + (g6^4*t^8.91*y)/g4^4 + (g2^4*t^8.92*y)/g1^4 + (g5^4*t^8.92*y)/g1^4 + (g6^4*t^8.92*y)/g2^4 + (g6^4*t^8.92*y)/g5^4 + (2*g3^4*t^8.94*y)/g1^4 + (2*g4^4*t^8.94*y)/g1^4 + (g2^4*g3^4*t^8.94*y)/(g1^4*g5^4) + (g2^4*g4^4*t^8.94*y)/(g1^4*g5^4) + (g3^4*g5^4*t^8.94*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.94*y)/(g1^4*g2^4) + (g2^4*g5^4*t^8.97*y)/(g3^4*g4^4) + (g1^4*g6^4*t^8.97*y)/(g3^4*g4^4) + (g2^4*t^8.98*y)/g3^4 + (g2^4*t^8.98*y)/g4^4 + (g5^4*t^8.98*y)/g3^4 + (g5^4*t^8.98*y)/g4^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55684 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\phi_1^2$ | 0.9091 | 1.129 | 0.8052 | [X:[], M:[0.7433, 0.7433, 0.8559], q:[0.6284, 0.6284, 0.6284], qb:[0.6284, 0.5991, 0.5991], phi:[0.5721]] | 2*t^2.23 + t^2.57 + t^3.59 + 8*t^3.68 + 4*t^3.77 + 3*t^4.46 + 2*t^4.8 + t^5.14 + 3*t^5.31 + 8*t^5.4 + 10*t^5.49 + 2*t^5.82 + 8*t^5.91 - 12*t^6. - t^4.72/y - t^4.72*y | detail |