Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55728 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\phi_1^2$ + $ M_2q_1\tilde{q}_2$ | 0.9089 | 1.1282 | 0.8057 | [X:[], M:[0.7377, 0.7556, 0.8569], q:[0.6362, 0.6261, 0.6222], qb:[0.6222, 0.6082, 0.5988], phi:[0.5715]] | [X:[], M:[[-4, -2, -2, 1, 0], [0, -2, -2, 0, 0], [2, 2, 2, 0, 2]], q:[[0, 2, 2, -1, 0], [4, 0, 0, 0, 0], [0, 2, 0, 0, 0]], qb:[[0, 0, 2, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 4]], phi:[[-1, -1, -1, 0, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ M_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_3$, $ q_1\tilde{q}_2$, $ q_2q_3$, $ q_1q_3$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ M_1M_3$, $ M_2M_3$, $ M_3^2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2q_3$, $ \phi_1q_2^2$, $ \phi_1q_1q_3$, $ \phi_1q_1q_2$, $ \phi_1q_1^2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_3$ | . | -7 | t^2.21 + t^2.27 + t^2.57 + t^3.62 + 2*t^3.66 + t^3.67 + 2*t^3.69 + t^3.7 + t^3.71 + t^3.73 + 2*t^3.74 + 2*t^3.78 + t^4.43 + t^4.48 + t^4.53 + t^4.78 + t^4.84 + t^5.14 + t^5.31 + t^5.34 + t^5.36 + 2*t^5.38 + t^5.39 + 2*t^5.41 + 2*t^5.42 + 4*t^5.45 + 2*t^5.46 + t^5.47 + 2*t^5.49 + t^5.5 + t^5.53 + t^5.83 + 2*t^5.88 + t^5.89 + 2*t^5.9 + t^5.94 - 7*t^6. - 2*t^6.03 - 2*t^6.04 - t^6.05 - 2*t^6.07 - 2*t^6.08 - t^6.11 + t^6.19 + 2*t^6.23 + t^6.25 + 2*t^6.26 + t^6.27 + t^6.28 + t^6.3 + 2*t^6.32 + 2*t^6.35 + t^6.64 + t^6.69 + t^6.75 + t^6.8 + t^7. + t^7.05 + t^7.1 + t^7.24 + 2*t^7.28 + t^7.3 + 2*t^7.31 + t^7.32 + 4*t^7.33 + 2*t^7.34 + 6*t^7.35 + 6*t^7.37 + 5*t^7.38 + 2*t^7.39 + 4*t^7.4 + 7*t^7.41 + 4*t^7.42 + 8*t^7.44 + 4*t^7.45 + 4*t^7.47 + 4*t^7.48 + 3*t^7.49 + 2*t^7.51 + 4*t^7.52 + 4*t^7.55 + t^7.57 + t^7.58 + 2*t^7.59 + t^7.6 + 2*t^7.62 + t^7.63 + 4*t^7.66 + t^7.68 - t^7.71 - 2*t^7.76 - 2*t^7.78 - t^7.8 - t^7.83 + t^8.05 + 2*t^8.09 + t^8.1 + 2*t^8.12 + t^8.15 - t^8.18 - 6*t^8.21 - t^8.24 - 2*t^8.26 - 4*t^8.27 - 2*t^8.28 - t^8.29 - t^8.3 - t^8.32 - t^8.35 + t^8.4 + t^8.41 + 2*t^8.45 + t^8.46 + 2*t^8.48 + t^8.51 - 7*t^8.57 - 2*t^8.6 - 2*t^8.61 - t^8.62 - 2*t^8.64 - 2*t^8.65 - t^8.68 + t^8.76 + 2*t^8.8 + t^8.82 + 2*t^8.83 + t^8.84 + 2*t^8.85 + t^8.87 + 2*t^8.89 + t^8.91 + 2*t^8.92 + t^8.93 + 2*t^8.96 + 2*t^8.97 + t^8.98 + t^8.99 - t^4.71/y - t^6.93/y - t^6.98/y + t^7.48/y + t^7.78/y + t^7.84/y + t^8.45/y + t^8.5/y + t^8.83/y + (2*t^8.88)/y + (2*t^8.89)/y + (2*t^8.9)/y + (2*t^8.92)/y + (2*t^8.93)/y + t^8.94/y + t^8.95/y + (4*t^8.96)/y + (2*t^8.97)/y + (2*t^8.99)/y - t^4.71*y - t^6.93*y - t^6.98*y + t^7.48*y + t^7.78*y + t^7.84*y + t^8.45*y + t^8.5*y + t^8.83*y + 2*t^8.88*y + 2*t^8.89*y + 2*t^8.9*y + 2*t^8.92*y + 2*t^8.93*y + t^8.94*y + t^8.95*y + 4*t^8.96*y + 2*t^8.97*y + 2*t^8.99*y | (g4*t^2.21)/(g1^4*g2^2*g3^2) + t^2.27/(g2^2*g3^2) + g1^2*g2^2*g3^2*g5^2*t^2.57 + g4*g5^4*t^3.62 + g2^2*g5^4*t^3.66 + g3^2*g5^4*t^3.66 + g1^4*g5^4*t^3.67 + g2^2*g4*t^3.69 + g3^2*g4*t^3.69 + g1^4*g4*t^3.7 + (g2^2*g3^2*g5^4*t^3.71)/g4 + g2^2*g3^2*t^3.73 + g1^4*g2^2*t^3.74 + g1^4*g3^2*t^3.74 + (g2^4*g3^2*t^3.78)/g4 + (g2^2*g3^4*t^3.78)/g4 + (g4^2*t^4.43)/(g1^8*g2^4*g3^4) + (g4*t^4.48)/(g1^4*g2^4*g3^4) + t^4.53/(g2^4*g3^4) + (g4*g5^2*t^4.78)/g1^2 + g1^2*g5^2*t^4.84 + g1^4*g2^4*g3^4*g5^4*t^5.14 + (g5^7*t^5.31)/(g1*g2*g3) + (g4*g5^3*t^5.34)/(g1*g2*g3) + (g4^2*t^5.36)/(g1*g2*g3*g5) + (g2*g5^3*t^5.38)/(g1*g3) + (g3*g5^3*t^5.38)/(g1*g2) + (g1^3*g5^3*t^5.39)/(g2*g3) + (g2*g4*t^5.41)/(g1*g3*g5) + (g3*g4*t^5.41)/(g1*g2*g5) + (g1^3*g4*t^5.42)/(g2*g3*g5) + (g2*g3*g5^3*t^5.42)/(g1*g4) + (g2^3*t^5.45)/(g1*g3*g5) + (2*g2*g3*t^5.45)/(g1*g5) + (g3^3*t^5.45)/(g1*g2*g5) + (g1^3*g2*t^5.46)/(g3*g5) + (g1^3*g3*t^5.46)/(g2*g5) + (g1^7*t^5.47)/(g2*g3*g5) + (g2^3*g3*t^5.49)/(g1*g4*g5) + (g2*g3^3*t^5.49)/(g1*g4*g5) + (g1^3*g2*g3*t^5.5)/(g4*g5) + (g2^3*g3^3*t^5.53)/(g1*g4^2*g5) + (g4^2*g5^4*t^5.83)/(g1^4*g2^2*g3^2) + (g4*g5^4*t^5.88)/(g1^4*g2^2) + (g4*g5^4*t^5.88)/(g1^4*g3^2) + (g4*g5^4*t^5.89)/(g2^2*g3^2) + (g4^2*t^5.9)/(g1^4*g2^2) + (g4^2*t^5.9)/(g1^4*g3^2) + (g1^4*g5^4*t^5.94)/(g2^2*g3^2) - 5*t^6. - (g2^2*t^6.)/g3^2 - (g3^2*t^6.)/g2^2 - (g2^2*g3^2*t^6.03)/(g1^4*g4) - (g4*t^6.03)/g5^4 - (g2^2*t^6.04)/g4 - (g3^2*t^6.04)/g4 - (g1^4*t^6.05)/g4 - (g2^2*t^6.07)/g5^4 - (g3^2*t^6.07)/g5^4 - (g2^2*g3^2*t^6.08)/g4^2 - (g1^4*t^6.08)/g5^4 - (g2^2*g3^2*t^6.11)/(g4*g5^4) + g1^2*g2^2*g3^2*g4*g5^6*t^6.19 + g1^2*g2^4*g3^2*g5^6*t^6.23 + g1^2*g2^2*g3^4*g5^6*t^6.23 + g1^6*g2^2*g3^2*g5^6*t^6.25 + g1^2*g2^4*g3^2*g4*g5^2*t^6.26 + g1^2*g2^2*g3^4*g4*g5^2*t^6.26 + g1^6*g2^2*g3^2*g4*g5^2*t^6.27 + (g1^2*g2^4*g3^4*g5^6*t^6.28)/g4 + g1^2*g2^4*g3^4*g5^2*t^6.3 + g1^6*g2^4*g3^2*g5^2*t^6.32 + g1^6*g2^2*g3^4*g5^2*t^6.32 + (g1^2*g2^6*g3^4*g5^2*t^6.35)/g4 + (g1^2*g2^4*g3^6*g5^2*t^6.35)/g4 + (g4^3*t^6.64)/(g1^12*g2^6*g3^6) + (g4^2*t^6.69)/(g1^8*g2^6*g3^6) + (g4*t^6.75)/(g1^4*g2^6*g3^6) + t^6.8/(g2^6*g3^6) + (g4^2*g5^2*t^7.)/(g1^6*g2^2*g3^2) + (g4*g5^2*t^7.05)/(g1^2*g2^2*g3^2) + (g1^2*g5^2*t^7.1)/(g2^2*g3^2) + g4^2*g5^8*t^7.24 + g2^2*g4*g5^8*t^7.28 + g3^2*g4*g5^8*t^7.28 + g1^4*g4*g5^8*t^7.3 + g2^2*g4^2*g5^4*t^7.31 + g3^2*g4^2*g5^4*t^7.31 + g1^4*g4^2*g5^4*t^7.32 + g2^4*g5^8*t^7.33 + 2*g2^2*g3^2*g5^8*t^7.33 + g3^4*g5^8*t^7.33 + g1^4*g2^2*g5^8*t^7.34 + g1^4*g3^2*g5^8*t^7.34 + g2^4*g4*g5^4*t^7.35 + 3*g2^2*g3^2*g4*g5^4*t^7.35 + g3^4*g4*g5^4*t^7.35 + g1^8*g5^8*t^7.35 + 2*g1^4*g2^2*g4*g5^4*t^7.37 + 2*g1^4*g3^2*g4*g5^4*t^7.37 + (g2^4*g3^2*g5^8*t^7.37)/g4 + (g2^2*g3^4*g5^8*t^7.37)/g4 + g2^4*g4^2*t^7.38 + g2^2*g3^2*g4^2*t^7.38 + g3^4*g4^2*t^7.38 + g1^8*g4*g5^4*t^7.38 + (g1^4*g2^2*g3^2*g5^8*t^7.38)/g4 + g1^4*g2^2*g4^2*t^7.39 + g1^4*g3^2*g4^2*t^7.39 + 2*g2^4*g3^2*g5^4*t^7.4 + 2*g2^2*g3^4*g5^4*t^7.4 + g1^8*g4^2*t^7.41 + g1^4*g2^4*g5^4*t^7.41 + 3*g1^4*g2^2*g3^2*g5^4*t^7.41 + g1^4*g3^4*g5^4*t^7.41 + (g2^4*g3^4*g5^8*t^7.41)/g4^2 + g2^4*g3^2*g4*t^7.42 + g2^2*g3^4*g4*t^7.42 + g1^8*g2^2*g5^4*t^7.42 + g1^8*g3^2*g5^4*t^7.42 + g1^4*g2^4*g4*t^7.44 + 2*g1^4*g2^2*g3^2*g4*t^7.44 + g1^4*g3^4*g4*t^7.44 + (g2^6*g3^2*g5^4*t^7.44)/g4 + (2*g2^4*g3^4*g5^4*t^7.44)/g4 + (g2^2*g3^6*g5^4*t^7.44)/g4 + g1^8*g2^2*g4*t^7.45 + g1^8*g3^2*g4*t^7.45 + (g1^4*g2^4*g3^2*g5^4*t^7.45)/g4 + (g1^4*g2^2*g3^4*g5^4*t^7.45)/g4 + g2^6*g3^2*t^7.47 + 2*g2^4*g3^4*t^7.47 + g2^2*g3^6*t^7.47 + g1^4*g2^4*g3^2*t^7.48 + g1^4*g2^2*g3^4*t^7.48 + (g2^6*g3^4*g5^4*t^7.48)/g4^2 + (g2^4*g3^6*g5^4*t^7.48)/g4^2 + g1^8*g2^4*t^7.49 + g1^8*g2^2*g3^2*t^7.49 + g1^8*g3^4*t^7.49 + (g2^6*g3^4*t^7.51)/g4 + (g2^4*g3^6*t^7.51)/g4 + (g1^4*g2^6*g3^2*t^7.52)/g4 + (g1^4*g2^4*g3^4*t^7.52)/g4 + (g1^4*g2^2*g3^6*t^7.52)/g4 + (g4*g5^7*t^7.52)/(g1^5*g2^3*g3^3) + (g2^8*g3^4*t^7.55)/g4^2 + (g2^6*g3^6*t^7.55)/g4^2 + (g2^4*g3^8*t^7.55)/g4^2 + (g4^2*g5^3*t^7.55)/(g1^5*g2^3*g3^3) + (g5^7*t^7.57)/(g1*g2^3*g3^3) + (g4^3*t^7.58)/(g1^5*g2^3*g3^3*g5) + (g4*g5^3*t^7.59)/(g1^5*g2*g3^3) + (g4*g5^3*t^7.59)/(g1^5*g2^3*g3) + (g4*g5^3*t^7.6)/(g1*g2^3*g3^3) + (g4^2*t^7.62)/(g1^5*g2*g3^3*g5) + (g4^2*t^7.62)/(g1^5*g2^3*g3*g5) + (g4^2*t^7.63)/(g1*g2^3*g3^3*g5) + (g2*g4*t^7.66)/(g1^5*g3^3*g5) + (g4*t^7.66)/(g1^5*g2*g3*g5) + (g3*g4*t^7.66)/(g1^5*g2^3*g5) + (g1^3*g5^3*t^7.66)/(g2^3*g3^3) + (g1^3*g4*t^7.68)/(g2^3*g3^3*g5) - (2*t^7.71)/(g1*g2*g3*g5) + g1^6*g2^6*g3^6*g5^6*t^7.71 - (g4*t^7.74)/(g1*g2*g3*g5^5) + (g1^7*t^7.74)/(g2^3*g3^3*g5) - (g2*t^7.76)/(g1*g3*g4*g5) - (g3*t^7.76)/(g1*g2*g4*g5) - (g2*t^7.78)/(g1*g3*g5^5) - (g3*t^7.78)/(g1*g2*g5^5) - (g1^3*t^7.8)/(g2*g3*g5^5) - (g2*g3*t^7.83)/(g1*g4*g5^5) + (g4^3*g5^4*t^8.05)/(g1^8*g2^4*g3^4) + (g4^2*g5^4*t^8.09)/(g1^8*g2^2*g3^4) + (g4^2*g5^4*t^8.09)/(g1^8*g2^4*g3^2) + (g4^2*g5^4*t^8.1)/(g1^4*g2^4*g3^4) + (g4^3*t^8.12)/(g1^8*g2^2*g3^4) + (g4^3*t^8.12)/(g1^8*g2^4*g3^2) + (g4*g5^4*t^8.15)/(g2^4*g3^4) - (g5^4*t^8.18)/(g1^4*g2^2*g3^2) - (g4*t^8.21)/(g1^4*g2^4) - (g4*t^8.21)/(g1^4*g3^4) - (5*g4*t^8.21)/(g1^4*g2^2*g3^2) + (g1^4*g5^4*t^8.21)/(g2^4*g3^4) - (g4^2*t^8.24)/(g1^4*g2^2*g3^2*g5^4) - t^8.26/(g1^4*g2^2) - t^8.26/(g1^4*g3^2) - (4*t^8.27)/(g2^2*g3^2) - (g4*t^8.28)/(g1^4*g2^2*g5^4) - (g4*t^8.28)/(g1^4*g3^2*g5^4) - (g4*t^8.29)/(g2^2*g3^2*g5^4) - t^8.3/(g1^4*g4) - (g1^4*t^8.32)/(g2^2*g3^2*g4) - (g1^4*t^8.35)/(g2^2*g3^2*g5^4) + (g4^2*g5^6*t^8.4)/g1^2 + t^8.41/g5^8 + (g2^2*g4*g5^6*t^8.45)/g1^2 + (g3^2*g4*g5^6*t^8.45)/g1^2 + g1^2*g4*g5^6*t^8.46 + (g2^2*g4^2*g5^2*t^8.48)/g1^2 + (g3^2*g4^2*g5^2*t^8.48)/g1^2 + g1^6*g5^6*t^8.51 - g1^2*g2^4*g5^2*t^8.57 - 5*g1^2*g2^2*g3^2*g5^2*t^8.57 - g1^2*g3^4*g5^2*t^8.57 - (g1^2*g2^2*g3^2*g4*t^8.6)/g5^2 - (g2^4*g3^4*g5^2*t^8.6)/(g1^2*g4) - (g1^2*g2^4*g3^2*g5^2*t^8.61)/g4 - (g1^2*g2^2*g3^4*g5^2*t^8.61)/g4 - (g1^6*g2^2*g3^2*g5^2*t^8.62)/g4 - (g1^2*g2^4*g3^2*t^8.64)/g5^2 - (g1^2*g2^2*g3^4*t^8.64)/g5^2 - (g1^6*g2^2*g3^2*t^8.65)/g5^2 - (g1^2*g2^4*g3^4*g5^2*t^8.65)/g4^2 - (g1^2*g2^4*g3^4*t^8.68)/(g4*g5^2) + g1^4*g2^4*g3^4*g4*g5^8*t^8.76 + g1^4*g2^6*g3^4*g5^8*t^8.8 + g1^4*g2^4*g3^6*g5^8*t^8.8 + g1^8*g2^4*g3^4*g5^8*t^8.82 + g1^4*g2^6*g3^4*g4*g5^4*t^8.83 + g1^4*g2^4*g3^6*g4*g5^4*t^8.83 + g1^8*g2^4*g3^4*g4*g5^4*t^8.84 + (g4^4*t^8.85)/(g1^16*g2^8*g3^8) + (g1^4*g2^6*g3^6*g5^8*t^8.85)/g4 + g1^4*g2^6*g3^6*g5^4*t^8.87 + g1^8*g2^6*g3^4*g5^4*t^8.89 + g1^8*g2^4*g3^6*g5^4*t^8.89 + (g4^3*t^8.91)/(g1^12*g2^8*g3^8) + (g1^4*g2^8*g3^6*g5^4*t^8.92)/g4 + (g1^4*g2^6*g3^8*g5^4*t^8.92)/g4 + (g4*g5^11*t^8.93)/(g1*g2*g3) + (g4^2*t^8.96)/(g1^8*g2^8*g3^8) + (g4^2*g5^7*t^8.96)/(g1*g2*g3) + (g2*g5^11*t^8.97)/(g1*g3) + (g3*g5^11*t^8.97)/(g1*g2) + (g1^3*g5^11*t^8.98)/(g2*g3) + (g4^3*g5^3*t^8.99)/(g1*g2*g3) - t^4.71/(g1*g2*g3*g5*y) - (g4*t^6.93)/(g1^5*g2^3*g3^3*g5*y) - t^6.98/(g1*g2^3*g3^3*g5*y) + (g4*t^7.48)/(g1^4*g2^4*g3^4*y) + (g4*g5^2*t^7.78)/(g1^2*y) + (g1^2*g5^2*t^7.84)/y + (g2*g3*t^8.45)/(g1*g5*y) + (g1^3*g2*g3*t^8.5)/(g4*g5*y) + (g4^2*g5^4*t^8.83)/(g1^4*g2^2*g3^2*y) + (g4*g5^4*t^8.88)/(g1^4*g2^2*y) + (g4*g5^4*t^8.88)/(g1^4*g3^2*y) + (2*g4*g5^4*t^8.89)/(g2^2*g3^2*y) + (g4^2*t^8.9)/(g1^4*g2^2*y) + (g4^2*t^8.9)/(g1^4*g3^2*y) + (g4^2*t^8.92)/(g2^2*g3^2*y) + (g5^4*t^8.92)/(g1^4*y) + (g5^4*t^8.93)/(g2^2*y) + (g5^4*t^8.93)/(g3^2*y) + (g1^4*g5^4*t^8.94)/(g2^2*g3^2*y) + (g4*t^8.95)/(g1^4*y) + (2*g4*t^8.96)/(g2^2*y) + (2*g4*t^8.96)/(g3^2*y) + (g1^4*g4*t^8.97)/(g2^2*g3^2*y) + (g5^4*t^8.97)/(g4*y) + (g2^2*t^8.99)/(g1^4*y) + (g3^2*t^8.99)/(g1^4*y) - (t^4.71*y)/(g1*g2*g3*g5) - (g4*t^6.93*y)/(g1^5*g2^3*g3^3*g5) - (t^6.98*y)/(g1*g2^3*g3^3*g5) + (g4*t^7.48*y)/(g1^4*g2^4*g3^4) + (g4*g5^2*t^7.78*y)/g1^2 + g1^2*g5^2*t^7.84*y + (g2*g3*t^8.45*y)/(g1*g5) + (g1^3*g2*g3*t^8.5*y)/(g4*g5) + (g4^2*g5^4*t^8.83*y)/(g1^4*g2^2*g3^2) + (g4*g5^4*t^8.88*y)/(g1^4*g2^2) + (g4*g5^4*t^8.88*y)/(g1^4*g3^2) + (2*g4*g5^4*t^8.89*y)/(g2^2*g3^2) + (g4^2*t^8.9*y)/(g1^4*g2^2) + (g4^2*t^8.9*y)/(g1^4*g3^2) + (g4^2*t^8.92*y)/(g2^2*g3^2) + (g5^4*t^8.92*y)/g1^4 + (g5^4*t^8.93*y)/g2^2 + (g5^4*t^8.93*y)/g3^2 + (g1^4*g5^4*t^8.94*y)/(g2^2*g3^2) + (g4*t^8.95*y)/g1^4 + (2*g4*t^8.96*y)/g2^2 + (2*g4*t^8.96*y)/g3^2 + (g1^4*g4*t^8.97*y)/(g2^2*g3^2) + (g5^4*t^8.97*y)/g4 + (g2^2*t^8.99*y)/g1^4 + (g3^2*t^8.99*y)/g1^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55684 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\phi_1^2$ | 0.9091 | 1.129 | 0.8052 | [X:[], M:[0.7433, 0.7433, 0.8559], q:[0.6284, 0.6284, 0.6284], qb:[0.6284, 0.5991, 0.5991], phi:[0.5721]] | 2*t^2.23 + t^2.57 + t^3.59 + 8*t^3.68 + 4*t^3.77 + 3*t^4.46 + 2*t^4.8 + t^5.14 + 3*t^5.31 + 8*t^5.4 + 10*t^5.49 + 2*t^5.82 + 8*t^5.91 - 12*t^6. - t^4.72/y - t^4.72*y | detail |