Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55721 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\phi_1^2$ + $ \phi_1q_1q_3$ 0.8951 1.118 0.8007 [X:[], M:[0.7024, 0.7024, 0.8655], q:[0.7164, 0.5812, 0.7164], qb:[0.5812, 0.5679, 0.5679], phi:[0.5672]] [X:[], M:[[-4, 1, -1, -1, -1], [0, -1, -3, 0, 0], [2, 0, 2, 2, 2]], q:[[1, -1, 1, 1, 1], [3, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[-1, 0, -1, -1, -1]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ M_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_2q_3$, $ q_1\tilde{q}_1$, $ M_2^2$, $ M_1^2$, $ M_1M_2$, $ q_1q_3$, $ M_1M_3$, $ M_2M_3$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_3^2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ \phi_1q_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ \phi_1q_3\tilde{q}_1$, $ M_1q_3\tilde{q}_2$, $ M_2q_1\tilde{q}_2$ $\phi_1q_1^2$, $ \phi_1q_3^2$, $ M_3\tilde{q}_2\tilde{q}_3$ -4 2*t^2.11 + t^2.6 + t^3.41 + 4*t^3.45 + t^3.49 + 4*t^3.85 + 2*t^3.89 + 3*t^4.21 + t^4.3 + 2*t^4.7 + 3*t^5.11 + 4*t^5.15 + 4*t^5.19 + 2*t^5.51 + 8*t^5.55 + 2*t^5.59 + 4*t^5.96 - 4*t^6. + t^6.08 + 4*t^6.32 - 2*t^6.41 + 2*t^6.49 + 3*t^6.81 + t^6.82 + 4*t^6.86 + 11*t^6.89 + 4*t^6.93 + t^6.97 + 6*t^7.22 + 8*t^7.26 + 18*t^7.3 + 8*t^7.34 + 2*t^7.38 + 3*t^7.62 + 8*t^7.66 - 5*t^7.7 + 10*t^7.71 - 4*t^7.74 + 8*t^7.75 + 4*t^7.79 + 4*t^8.07 - 10*t^8.11 + 5*t^8.43 - 2*t^8.51 + 3*t^8.52 - 4*t^8.55 + 16*t^8.56 + 3*t^8.59 + 9*t^8.6 + 12*t^8.64 + 4*t^8.68 + 6*t^8.92 + 16*t^8.96 - t^4.7/y - (2*t^6.81)/y + t^7.21/y + (2*t^7.7)/y + (2*t^8.51)/y + (8*t^8.55)/y + (4*t^8.59)/y - (3*t^8.92)/y + (8*t^8.96)/y - t^4.7*y - 2*t^6.81*y + t^7.21*y + 2*t^7.7*y + 2*t^8.51*y + 8*t^8.55*y + 4*t^8.59*y - 3*t^8.92*y + 8*t^8.96*y t^2.11/(g2*g3^3) + (g2*t^2.11)/(g1^4*g3*g4*g5) + g1^2*g3^2*g4^2*g5^2*t^2.6 + g4^3*g5^3*t^3.41 + g1^3*g4^3*t^3.45 + g3^3*g4^3*t^3.45 + g1^3*g5^3*t^3.45 + g3^3*g5^3*t^3.45 + g1^3*g3^3*t^3.49 + g2*g4^3*t^3.85 + (g1*g3*g4^4*g5*t^3.85)/g2 + g2*g5^3*t^3.85 + (g1*g3*g4*g5^4*t^3.85)/g2 + g1^3*g2*t^3.89 + (g1*g3^4*g4*g5*t^3.89)/g2 + t^4.21/(g2^2*g3^6) + (g2^2*t^4.21)/(g1^8*g3^2*g4^2*g5^2) + t^4.21/(g1^4*g3^4*g4*g5) + g1*g3*g4*g5*t^4.3 + (g2*g3*g4*g5*t^4.7)/g1^2 + (g1^2*g4^2*g5^2*t^4.7)/(g2*g3) + (g4^5*t^5.11)/(g1*g3*g5) + (g4^2*g5^2*t^5.11)/(g1*g3) + (g5^5*t^5.11)/(g1*g3*g4) + (g1^2*g4^2*t^5.15)/(g3*g5) + (g3^2*g4^2*t^5.15)/(g1*g5) + (g1^2*g5^2*t^5.15)/(g3*g4) + (g3^2*g5^2*t^5.15)/(g1*g4) + (g1^5*t^5.19)/(g3*g4*g5) + (g1^2*g3^2*t^5.19)/(g4*g5) + (g3^5*t^5.19)/(g1*g4*g5) + g1^4*g3^4*g4^4*g5^4*t^5.19 + (g2*g4^2*g5^2*t^5.51)/(g1^4*g3) + (g4^3*g5^3*t^5.51)/(g2*g3^3) + (g4^3*t^5.55)/g2 + (g1^3*g4^3*t^5.55)/(g2*g3^3) + (g2*g4^2*t^5.55)/(g1*g3*g5) + (g2*g3^2*g4^2*t^5.55)/(g1^4*g5) + (g2*g5^2*t^5.55)/(g1*g3*g4) + (g2*g3^2*g5^2*t^5.55)/(g1^4*g4) + (g5^3*t^5.55)/g2 + (g1^3*g5^3*t^5.55)/(g2*g3^3) + (g1^3*t^5.59)/g2 + (g2*g3^2*t^5.59)/(g1*g4*g5) + (g2^2*g4^2*t^5.96)/(g1^4*g3*g5) + (g1*g4^4*g5*t^5.96)/(g2^2*g3^2) + (g2^2*g5^2*t^5.96)/(g1^4*g3*g4) + (g1*g4*g5^4*t^5.96)/(g2^2*g3^2) - 5*t^6. - (g4^3*t^6.)/g5^3 + (g2^2*t^6.)/(g1*g3*g4*g5) + (g1*g3*g4*g5*t^6.)/g2^2 - (g5^3*t^6.)/g4^3 + g1^2*g3^2*g4^5*g5^5*t^6. - (g1^3*t^6.04)/g4^3 - (g3^3*t^6.04)/g4^3 - (g1^3*t^6.04)/g5^3 - (g3^3*t^6.04)/g5^3 + g1^5*g3^2*g4^5*g5^2*t^6.04 + g1^2*g3^5*g4^5*g5^2*t^6.04 + g1^5*g3^2*g4^2*g5^5*t^6.04 + g1^2*g3^5*g4^2*g5^5*t^6.04 + g1^5*g3^5*g4^2*g5^2*t^6.08 + t^6.32/(g2^3*g3^9) + (g2^3*t^6.32)/(g1^12*g3^3*g4^3*g5^3) + (g2*t^6.32)/(g1^8*g3^5*g4^2*g5^2) + t^6.32/(g1^4*g2*g3^7*g4*g5) - (g2*t^6.41)/g3^3 - (g3*g4*g5*t^6.41)/(g1^2*g2) - (g2*t^6.45)/g4^3 - (g2*t^6.45)/g5^3 - (g1*g3*g4*t^6.45)/(g2*g5^2) - (g1*g3*g5*t^6.45)/(g2*g4^2) + g1^2*g2*g3^2*g4^5*g5^2*t^6.45 + (g1^3*g3^3*g4^6*g5^3*t^6.45)/g2 + g1^2*g2*g3^2*g4^2*g5^5*t^6.45 + (g1^3*g3^3*g4^3*g5^6*t^6.45)/g2 + g1^5*g2*g3^2*g4^2*g5^2*t^6.49 + (g1^3*g3^6*g4^3*g5^3*t^6.49)/g2 + (g2^2*t^6.81)/g1^6 + (g4*g5*t^6.81)/(g1^2*g3^2) + (g1^2*g4^2*g5^2*t^6.81)/(g2^2*g3^4) + g4^6*g5^6*t^6.82 + g1^3*g4^6*g5^3*t^6.86 + g3^3*g4^6*g5^3*t^6.86 + g1^3*g4^3*g5^6*t^6.86 + g3^3*g4^3*g5^6*t^6.86 + g1^6*g4^6*t^6.89 + g1^3*g3^3*g4^6*t^6.89 + g3^6*g4^6*t^6.89 + g1^6*g4^3*g5^3*t^6.89 + 3*g1^3*g3^3*g4^3*g5^3*t^6.89 + g3^6*g4^3*g5^3*t^6.89 + g1^6*g5^6*t^6.89 + g1^3*g3^3*g5^6*t^6.89 + g3^6*g5^6*t^6.89 + g1^6*g3^3*g4^3*t^6.93 + g1^3*g3^6*g4^3*t^6.93 + g1^6*g3^3*g5^3*t^6.93 + g1^3*g3^6*g5^3*t^6.93 + g1^6*g3^6*t^6.97 + (g2*g4^4*t^7.22)/(g1^5*g3^2*g5^2) + (g4^5*t^7.22)/(g1*g2*g3^4*g5) + (g2*g4*g5*t^7.22)/(g1^5*g3^2) + (g4^2*g5^2*t^7.22)/(g1*g2*g3^4) + (g2*g5^4*t^7.22)/(g1^5*g3^2*g4^2) + (g5^5*t^7.22)/(g1*g2*g3^4*g4) + (g2*g3*g4*t^7.26)/(g1^5*g5^2) + (g1^2*g4^2*t^7.26)/(g2*g3^4*g5) + (g2*g3*g5*t^7.26)/(g1^5*g4^2) + (g1^2*g5^2*t^7.26)/(g2*g3^4*g4) + g2*g4^6*g5^3*t^7.26 + (g1*g3*g4^7*g5^4*t^7.26)/g2 + g2*g4^3*g5^6*t^7.26 + (g1*g3*g4^4*g5^7*t^7.26)/g2 + g1^3*g2*g4^6*t^7.3 + g2*g3^3*g4^6*t^7.3 + (g2*g3^4*t^7.3)/(g1^5*g4^2*g5^2) + (g1^5*t^7.3)/(g2*g3^4*g4*g5) + (g1^4*g3*g4^7*g5*t^7.3)/g2 + (g1*g3^4*g4^7*g5*t^7.3)/g2 + 2*g1^3*g2*g4^3*g5^3*t^7.3 + 2*g2*g3^3*g4^3*g5^3*t^7.3 + (2*g1^4*g3*g4^4*g5^4*t^7.3)/g2 + (2*g1*g3^4*g4^4*g5^4*t^7.3)/g2 + g1^3*g2*g5^6*t^7.3 + g2*g3^3*g5^6*t^7.3 + (g1^4*g3*g4*g5^7*t^7.3)/g2 + (g1*g3^4*g4*g5^7*t^7.3)/g2 + g1^6*g2*g4^3*t^7.34 + g1^3*g2*g3^3*g4^3*t^7.34 + (g1^4*g3^4*g4^4*g5*t^7.34)/g2 + (g1*g3^7*g4^4*g5*t^7.34)/g2 + g1^6*g2*g5^3*t^7.34 + g1^3*g2*g3^3*g5^3*t^7.34 + (g1^4*g3^4*g4*g5^4*t^7.34)/g2 + (g1*g3^7*g4*g5^4*t^7.34)/g2 + g1^6*g2*g3^3*t^7.38 + (g1^4*g3^7*g4*g5*t^7.38)/g2 + (g2^2*g4*g5*t^7.62)/(g1^8*g3^2) + (g4^2*g5^2*t^7.62)/(g1^4*g3^4) + (g4^3*g5^3*t^7.62)/(g2^2*g3^6) + (g1^3*g4^3*t^7.66)/(g2^2*g3^6) + (g4^3*t^7.66)/(g2^2*g3^3) + (g2^2*g4*t^7.66)/(g1^5*g3^2*g5^2) + (g2^2*g3*g4*t^7.66)/(g1^8*g5^2) + (g2^2*g5*t^7.66)/(g1^5*g3^2*g4^2) + (g2^2*g3*g5*t^7.66)/(g1^8*g4^2) + (g1^3*g5^3*t^7.66)/(g2^2*g3^6) + (g5^3*t^7.66)/(g2^2*g3^3) + (g1^3*t^7.7)/(g2^2*g3^3) - (g4^2*t^7.7)/(g1*g3*g5^4) + (g2^2*g3*t^7.7)/(g1^5*g4^2*g5^2) - (g1^2*t^7.7)/(g3^4*g4*g5) - (3*t^7.7)/(g1*g3*g4*g5) - (g3^2*t^7.7)/(g1^4*g4*g5) - (g5^2*t^7.7)/(g1*g3*g4^4) + g2^2*g4^6*t^7.71 + g1*g3*g4^7*g5*t^7.71 + (g1^2*g3^2*g4^8*g5^2*t^7.71)/g2^2 + g2^2*g4^3*g5^3*t^7.71 + 2*g1*g3*g4^4*g5^4*t^7.71 + (g1^2*g3^2*g4^5*g5^5*t^7.71)/g2^2 + g2^2*g5^6*t^7.71 + g1*g3*g4*g5^7*t^7.71 + (g1^2*g3^2*g4^2*g5^8*t^7.71)/g2^2 - (g1^2*t^7.74)/(g3*g4*g5^4) - (g3^2*t^7.74)/(g1*g4*g5^4) - (g1^2*t^7.74)/(g3*g4^4*g5) - (g3^2*t^7.74)/(g1*g4^4*g5) + g1^3*g2^2*g4^3*t^7.75 + g1^4*g3*g4^4*g5*t^7.75 + g1*g3^4*g4^4*g5*t^7.75 + (g1^2*g3^5*g4^5*g5^2*t^7.75)/g2^2 + g1^3*g2^2*g5^3*t^7.75 + g1^4*g3*g4*g5^4*t^7.75 + g1*g3^4*g4*g5^4*t^7.75 + (g1^2*g3^5*g4^2*g5^5*t^7.75)/g2^2 + g1^6*g2^2*t^7.79 + g1^4*g3^4*g4*g5*t^7.79 + (g1^2*g3^8*g4^2*g5^2*t^7.79)/g2^2 + g1^6*g3^6*g4^6*g5^6*t^7.79 + (g2^3*g4*t^8.07)/(g1^8*g3^2*g5^2) + (g2^3*g5*t^8.07)/(g1^8*g3^2*g4^2) + (g1*g4^4*g5*t^8.07)/(g2^3*g3^5) + (g1*g4*g5^4*t^8.07)/(g2^3*g3^5) - (5*t^8.11)/(g2*g3^3) - (g2*g4^2*t^8.11)/(g1^4*g3*g5^4) - (g4^3*t^8.11)/(g2*g3^3*g5^3) + (g2^3*t^8.11)/(g1^5*g3^2*g4^2*g5^2) - (5*g2*t^8.11)/(g1^4*g3*g4*g5) + (g1*g4*g5*t^8.11)/(g2^3*g3^2) - (g2*g5^2*t^8.11)/(g1^4*g3*g4^4) - (g5^3*t^8.11)/(g2*g3^3*g4^3) + (g2*g3*g4^4*g5^4*t^8.11)/g1^2 + (g1^2*g4^5*g5^5*t^8.11)/(g2*g3) - t^8.15/(g2*g4^3) - (g1^3*t^8.15)/(g2*g3^3*g4^3) - (g2*t^8.15)/(g1*g3*g4*g5^4) - (g2*g3^2*t^8.15)/(g1^4*g4*g5^4) - t^8.15/(g2*g5^3) - (g1^3*t^8.15)/(g2*g3^3*g5^3) - (g2*t^8.15)/(g1*g3*g4^4*g5) - (g2*g3^2*t^8.15)/(g1^4*g4^4*g5) + g1*g2*g3*g4^4*g5*t^8.15 + (g2*g3^4*g4^4*g5*t^8.15)/g1^2 + (g1^5*g4^5*g5^2*t^8.15)/(g2*g3) + (g1^2*g3^2*g4^5*g5^2*t^8.15)/g2 + g1*g2*g3*g4*g5^4*t^8.15 + (g2*g3^4*g4*g5^4*t^8.15)/g1^2 + (g1^5*g4^2*g5^5*t^8.15)/(g2*g3) + (g1^2*g3^2*g4^2*g5^5*t^8.15)/g2 + t^8.43/(g2^4*g3^12) + (g2^4*t^8.43)/(g1^16*g3^4*g4^4*g5^4) + (g2^2*t^8.43)/(g1^12*g3^6*g4^3*g5^3) + t^8.43/(g1^8*g3^8*g4^2*g5^2) + t^8.43/(g1^4*g2^2*g3^10*g4*g5) - (g2^2*t^8.51)/(g1^4*g3^4*g4*g5) - (g4*g5*t^8.51)/(g1^2*g2^2*g3^2) + (g4^8*g5^2*t^8.52)/(g1*g3) + (g4^5*g5^5*t^8.52)/(g1*g3) + (g4^2*g5^8*t^8.52)/(g1*g3) - (g2^2*t^8.55)/(g1^4*g3*g4*g5^4) - (g1*g4*t^8.55)/(g2^2*g3^2*g5^2) - (g2^2*t^8.55)/(g1^4*g3*g4^4*g5) - (g1*g5*t^8.55)/(g2^2*g3^2*g4^2) + (g1^2*g4^8*t^8.56)/(g3*g5) + (g3^2*g4^8*t^8.56)/(g1*g5) + (g2^2*g3*g4^4*g5*t^8.56)/g1^2 + (2*g1^2*g4^5*g5^2*t^8.56)/g3 + (2*g3^2*g4^5*g5^2*t^8.56)/g1 + (g1^3*g4^6*g5^3*t^8.56)/g2^2 + (g2^2*g3*g4*g5^4*t^8.56)/g1^2 + (2*g1^2*g4^2*g5^5*t^8.56)/g3 + (2*g3^2*g4^2*g5^5*t^8.56)/g1 + (g1^3*g4^3*g5^6*t^8.56)/g2^2 + (g1^2*g5^8*t^8.56)/(g3*g4) + (g3^2*g5^8*t^8.56)/(g1*g4) + t^8.59/g4^6 + t^8.59/g5^6 + t^8.59/(g4^3*g5^3) + (g1^5*g4^5*t^8.6)/(g3*g5) + (g1^2*g3^2*g4^5*t^8.6)/g5 + (g3^5*g4^5*t^8.6)/(g1*g5) + (2*g1^5*g4^2*g5^2*t^8.6)/g3 - 2*g1^2*g3^2*g4^2*g5^2*t^8.6 + (2*g3^5*g4^2*g5^2*t^8.6)/g1 + (g1^5*g5^5*t^8.6)/(g3*g4) + (g1^2*g3^2*g5^5*t^8.6)/g4 + (g3^5*g5^5*t^8.6)/(g1*g4) + g1^4*g3^4*g4^7*g5^7*t^8.6 + (g1^8*g4^2*t^8.64)/(g3*g5) + (g1^5*g3^2*g4^2*t^8.64)/g5 + (g1^2*g3^5*g4^2*t^8.64)/g5 + (g3^8*g4^2*t^8.64)/(g1*g5) + (g1^8*g5^2*t^8.64)/(g3*g4) + (g1^5*g3^2*g5^2*t^8.64)/g4 + (g1^2*g3^5*g5^2*t^8.64)/g4 + (g3^8*g5^2*t^8.64)/(g1*g4) + g1^7*g3^4*g4^7*g5^4*t^8.64 + g1^4*g3^7*g4^7*g5^4*t^8.64 + g1^7*g3^4*g4^4*g5^7*t^8.64 + g1^4*g3^7*g4^4*g5^7*t^8.64 + (g1^8*g3^2*t^8.68)/(g4*g5) + (g1^5*g3^5*t^8.68)/(g4*g5) + (g1^2*g3^8*t^8.68)/(g4*g5) + g1^7*g3^7*g4^4*g5^4*t^8.68 + (g2*t^8.92)/(g1^6*g3^3) + (g2^3*t^8.92)/(g1^10*g3*g4*g5) + (g4*g5*t^8.92)/(g1^2*g2*g3^5) + (g1^2*g4^2*g5^2*t^8.92)/(g2^3*g3^7) + (g2*g4^5*g5^5*t^8.92)/(g1^4*g3) + (g4^6*g5^6*t^8.92)/(g2*g3^3) + (g4^9*t^8.96)/g2 + (g2*g4^8*t^8.96)/(g1*g3*g5) + (2*g2*g4^5*g5^2*t^8.96)/(g1*g3) + (g2*g3^2*g4^5*g5^2*t^8.96)/g1^4 + (2*g4^6*g5^3*t^8.96)/g2 + (g1^3*g4^6*g5^3*t^8.96)/(g2*g3^3) + (2*g2*g4^2*g5^5*t^8.96)/(g1*g3) + (g2*g3^2*g4^2*g5^5*t^8.96)/g1^4 + (2*g4^3*g5^6*t^8.96)/g2 + (g1^3*g4^3*g5^6*t^8.96)/(g2*g3^3) + (g2*g5^8*t^8.96)/(g1*g3*g4) + (g5^9*t^8.96)/g2 - t^4.7/(g1*g3*g4*g5*y) - (g2*t^6.81)/(g1^5*g3^2*g4^2*g5^2*y) - t^6.81/(g1*g2*g3^4*g4*g5*y) + t^7.21/(g1^4*g3^4*g4*g5*y) + (g2*g3*g4*g5*t^7.7)/(g1^2*y) + (g1^2*g4^2*g5^2*t^7.7)/(g2*g3*y) + (g2*g4^2*g5^2*t^8.51)/(g1^4*g3*y) + (g4^3*g5^3*t^8.51)/(g2*g3^3*y) + (g4^3*t^8.55)/(g2*y) + (g1^3*g4^3*t^8.55)/(g2*g3^3*y) + (g2*g4^2*t^8.55)/(g1*g3*g5*y) + (g2*g3^2*g4^2*t^8.55)/(g1^4*g5*y) + (g2*g5^2*t^8.55)/(g1*g3*g4*y) + (g2*g3^2*g5^2*t^8.55)/(g1^4*g4*y) + (g5^3*t^8.55)/(g2*y) + (g1^3*g5^3*t^8.55)/(g2*g3^3*y) + (2*g1^3*t^8.59)/(g2*y) + (2*g2*g3^2*t^8.59)/(g1*g4*g5*y) - (g2^2*t^8.92)/(g1^9*g3^3*g4^3*g5^3*y) - t^8.92/(g1^5*g3^5*g4^2*g5^2*y) - t^8.92/(g1*g2^2*g3^7*g4*g5*y) + (g4^3*t^8.96)/(g1^3*y) + (g4^3*t^8.96)/(g3^3*y) + (g2^2*g4^2*t^8.96)/(g1^4*g3*g5*y) + (g1*g4^4*g5*t^8.96)/(g2^2*g3^2*y) + (g2^2*g5^2*t^8.96)/(g1^4*g3*g4*y) + (g5^3*t^8.96)/(g1^3*y) + (g5^3*t^8.96)/(g3^3*y) + (g1*g4*g5^4*t^8.96)/(g2^2*g3^2*y) - (t^4.7*y)/(g1*g3*g4*g5) - (g2*t^6.81*y)/(g1^5*g3^2*g4^2*g5^2) - (t^6.81*y)/(g1*g2*g3^4*g4*g5) + (t^7.21*y)/(g1^4*g3^4*g4*g5) + (g2*g3*g4*g5*t^7.7*y)/g1^2 + (g1^2*g4^2*g5^2*t^7.7*y)/(g2*g3) + (g2*g4^2*g5^2*t^8.51*y)/(g1^4*g3) + (g4^3*g5^3*t^8.51*y)/(g2*g3^3) + (g4^3*t^8.55*y)/g2 + (g1^3*g4^3*t^8.55*y)/(g2*g3^3) + (g2*g4^2*t^8.55*y)/(g1*g3*g5) + (g2*g3^2*g4^2*t^8.55*y)/(g1^4*g5) + (g2*g5^2*t^8.55*y)/(g1*g3*g4) + (g2*g3^2*g5^2*t^8.55*y)/(g1^4*g4) + (g5^3*t^8.55*y)/g2 + (g1^3*g5^3*t^8.55*y)/(g2*g3^3) + (2*g1^3*t^8.59*y)/g2 + (2*g2*g3^2*t^8.59*y)/(g1*g4*g5) - (g2^2*t^8.92*y)/(g1^9*g3^3*g4^3*g5^3) - (t^8.92*y)/(g1^5*g3^5*g4^2*g5^2) - (t^8.92*y)/(g1*g2^2*g3^7*g4*g5) + (g4^3*t^8.96*y)/g1^3 + (g4^3*t^8.96*y)/g3^3 + (g2^2*g4^2*t^8.96*y)/(g1^4*g3*g5) + (g1*g4^4*g5*t^8.96*y)/(g2^2*g3^2) + (g2^2*g5^2*t^8.96*y)/(g1^4*g3*g4) + (g5^3*t^8.96*y)/g1^3 + (g5^3*t^8.96*y)/g3^3 + (g1*g4*g5^4*t^8.96*y)/(g2^2*g3^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55684 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\phi_1^2$ 0.9091 1.129 0.8052 [X:[], M:[0.7433, 0.7433, 0.8559], q:[0.6284, 0.6284, 0.6284], qb:[0.6284, 0.5991, 0.5991], phi:[0.5721]] 2*t^2.23 + t^2.57 + t^3.59 + 8*t^3.68 + 4*t^3.77 + 3*t^4.46 + 2*t^4.8 + t^5.14 + 3*t^5.31 + 8*t^5.4 + 10*t^5.49 + 2*t^5.82 + 8*t^5.91 - 12*t^6. - t^4.72/y - t^4.72*y detail