Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55753 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\phi_1^2$ + $ M_4\tilde{q}_2\tilde{q}_3$ | 0.9271 | 1.1576 | 0.8009 | [X:[], M:[0.7502, 0.7502, 0.8747, 0.7502], q:[0.6249, 0.6249, 0.6249], qb:[0.6249, 0.6249, 0.6249], phi:[0.5626]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [0, 0, -4, -4, 0, 0], [2, 2, 2, 2, 2, 2], [0, 0, 0, 0, -4, -4]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ M_4$, $ M_3$, $ q_1q_3$, $ q_1\tilde{q}_2$, $ q_3\tilde{q}_2$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ M_4^2$, $ M_1M_4$, $ M_2M_4$, $ M_3M_4$, $ M_2M_3$, $ M_1M_3$, $ M_3^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1q_3$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$ | $M_4q_1q_3$, $ M_4q_2q_3$, $ M_4q_1\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_2q_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_1q_3\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2q_1\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$ | 0 | 3*t^2.25 + t^2.62 + 12*t^3.75 + 6*t^4.5 + 3*t^4.87 + t^5.25 + 21*t^5.44 + 12*t^6.37 + 10*t^6.75 + 6*t^7.13 + 66*t^7.5 + 28*t^7.69 + t^7.87 - 15*t^8.25 - t^4.69/y - (3*t^6.94)/y + (3*t^7.5)/y + (3*t^7.87)/y + (3*t^8.44)/y - t^4.69*y - 3*t^6.94*y + 3*t^7.5*y + 3*t^7.87*y + 3*t^8.44*y | t^2.25/(g1^4*g2^4) + t^2.25/(g3^4*g4^4) + t^2.25/(g5^4*g6^4) + g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^2.62 + g1^4*g3^4*t^3.75 + g2^4*g3^4*t^3.75 + g1^4*g4^4*t^3.75 + g2^4*g4^4*t^3.75 + g1^4*g5^4*t^3.75 + g2^4*g5^4*t^3.75 + g3^4*g5^4*t^3.75 + g4^4*g5^4*t^3.75 + g1^4*g6^4*t^3.75 + g2^4*g6^4*t^3.75 + g3^4*g6^4*t^3.75 + g4^4*g6^4*t^3.75 + t^4.5/(g1^8*g2^8) + t^4.5/(g3^8*g4^8) + t^4.5/(g1^4*g2^4*g3^4*g4^4) + t^4.5/(g5^8*g6^8) + t^4.5/(g1^4*g2^4*g5^4*g6^4) + t^4.5/(g3^4*g4^4*g5^4*g6^4) + (g1^2*g2^2*g3^2*g4^2*t^4.87)/(g5^2*g6^2) + (g1^2*g2^2*g5^2*g6^2*t^4.87)/(g3^2*g4^2) + (g3^2*g4^2*g5^2*g6^2*t^4.87)/(g1^2*g2^2) + g1^4*g2^4*g3^4*g4^4*g5^4*g6^4*t^5.25 + (g1^7*t^5.44)/(g2*g3*g4*g5*g6) + (g1^3*g2^3*t^5.44)/(g3*g4*g5*g6) + (g2^7*t^5.44)/(g1*g3*g4*g5*g6) + (g1^3*g3^3*t^5.44)/(g2*g4*g5*g6) + (g2^3*g3^3*t^5.44)/(g1*g4*g5*g6) + (g3^7*t^5.44)/(g1*g2*g4*g5*g6) + (g1^3*g4^3*t^5.44)/(g2*g3*g5*g6) + (g2^3*g4^3*t^5.44)/(g1*g3*g5*g6) + (g3^3*g4^3*t^5.44)/(g1*g2*g5*g6) + (g4^7*t^5.44)/(g1*g2*g3*g5*g6) + (g1^3*g5^3*t^5.44)/(g2*g3*g4*g6) + (g2^3*g5^3*t^5.44)/(g1*g3*g4*g6) + (g3^3*g5^3*t^5.44)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.44)/(g1*g2*g3*g6) + (g5^7*t^5.44)/(g1*g2*g3*g4*g6) + (g1^3*g6^3*t^5.44)/(g2*g3*g4*g5) + (g2^3*g6^3*t^5.44)/(g1*g3*g4*g5) + (g3^3*g6^3*t^5.44)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.44)/(g1*g2*g3*g5) + (g5^3*g6^3*t^5.44)/(g1*g2*g3*g4) + (g6^7*t^5.44)/(g1*g2*g3*g4*g5) - 6*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g3^4 + (g3^4*g5^4*t^6.)/(g1^4*g2^4) + (g1^4*g5^4*t^6.)/(g3^4*g4^4) + (g2^4*g5^4*t^6.)/(g3^4*g4^4) + (g4^4*g5^4*t^6.)/(g1^4*g2^4) + (g1^4*g3^4*t^6.)/(g5^4*g6^4) + (g2^4*g3^4*t^6.)/(g5^4*g6^4) + (g1^4*g4^4*t^6.)/(g5^4*g6^4) + (g2^4*g4^4*t^6.)/(g5^4*g6^4) - (g5^4*t^6.)/g6^4 + (g3^4*g6^4*t^6.)/(g1^4*g2^4) + (g1^4*g6^4*t^6.)/(g3^4*g4^4) + (g2^4*g6^4*t^6.)/(g3^4*g4^4) + (g4^4*g6^4*t^6.)/(g1^4*g2^4) - (g6^4*t^6.)/g5^4 + g1^6*g2^2*g3^6*g4^2*g5^2*g6^2*t^6.37 + g1^2*g2^6*g3^6*g4^2*g5^2*g6^2*t^6.37 + g1^6*g2^2*g3^2*g4^6*g5^2*g6^2*t^6.37 + g1^2*g2^6*g3^2*g4^6*g5^2*g6^2*t^6.37 + g1^6*g2^2*g3^2*g4^2*g5^6*g6^2*t^6.37 + g1^2*g2^6*g3^2*g4^2*g5^6*g6^2*t^6.37 + g1^2*g2^2*g3^6*g4^2*g5^6*g6^2*t^6.37 + g1^2*g2^2*g3^2*g4^6*g5^6*g6^2*t^6.37 + g1^6*g2^2*g3^2*g4^2*g5^2*g6^6*t^6.37 + g1^2*g2^6*g3^2*g4^2*g5^2*g6^6*t^6.37 + g1^2*g2^2*g3^6*g4^2*g5^2*g6^6*t^6.37 + g1^2*g2^2*g3^2*g4^6*g5^2*g6^6*t^6.37 + t^6.75/(g1^12*g2^12) + t^6.75/(g3^12*g4^12) + t^6.75/(g1^4*g2^4*g3^8*g4^8) + t^6.75/(g1^8*g2^8*g3^4*g4^4) + t^6.75/(g5^12*g6^12) + t^6.75/(g1^4*g2^4*g5^8*g6^8) + t^6.75/(g3^4*g4^4*g5^8*g6^8) + t^6.75/(g1^8*g2^8*g5^4*g6^4) + t^6.75/(g3^8*g4^8*g5^4*g6^4) + t^6.75/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g1^2*g2^2*g3^2*g4^2*t^7.13)/(g5^6*g6^6) + (g1^2*g2^2*t^7.13)/(g3^2*g4^2*g5^2*g6^2) + (g3^2*g4^2*t^7.13)/(g1^2*g2^2*g5^2*g6^2) + (g1^2*g2^2*g5^2*g6^2*t^7.13)/(g3^6*g4^6) + (g5^2*g6^2*t^7.13)/(g1^2*g2^2*g3^2*g4^2) + (g3^2*g4^2*g5^2*g6^2*t^7.13)/(g1^6*g2^6) + g1^8*g3^8*t^7.5 + g1^4*g2^4*g3^8*t^7.5 + g2^8*g3^8*t^7.5 + g1^8*g3^4*g4^4*t^7.5 + 2*g1^4*g2^4*g3^4*g4^4*t^7.5 + g2^8*g3^4*g4^4*t^7.5 + g1^8*g4^8*t^7.5 + g1^4*g2^4*g4^8*t^7.5 + g2^8*g4^8*t^7.5 + g1^8*g3^4*g5^4*t^7.5 + g1^4*g2^4*g3^4*g5^4*t^7.5 + g2^8*g3^4*g5^4*t^7.5 + g1^4*g3^8*g5^4*t^7.5 + g2^4*g3^8*g5^4*t^7.5 + g1^8*g4^4*g5^4*t^7.5 + g1^4*g2^4*g4^4*g5^4*t^7.5 + g2^8*g4^4*g5^4*t^7.5 + g1^4*g3^4*g4^4*g5^4*t^7.5 + g2^4*g3^4*g4^4*g5^4*t^7.5 + g1^4*g4^8*g5^4*t^7.5 + g2^4*g4^8*g5^4*t^7.5 + g1^8*g5^8*t^7.5 + g1^4*g2^4*g5^8*t^7.5 + g2^8*g5^8*t^7.5 + g1^4*g3^4*g5^8*t^7.5 + g2^4*g3^4*g5^8*t^7.5 + g3^8*g5^8*t^7.5 + g1^4*g4^4*g5^8*t^7.5 + g2^4*g4^4*g5^8*t^7.5 + g3^4*g4^4*g5^8*t^7.5 + g4^8*g5^8*t^7.5 + g1^8*g3^4*g6^4*t^7.5 + g1^4*g2^4*g3^4*g6^4*t^7.5 + g2^8*g3^4*g6^4*t^7.5 + g1^4*g3^8*g6^4*t^7.5 + g2^4*g3^8*g6^4*t^7.5 + g1^8*g4^4*g6^4*t^7.5 + g1^4*g2^4*g4^4*g6^4*t^7.5 + g2^8*g4^4*g6^4*t^7.5 + g1^4*g3^4*g4^4*g6^4*t^7.5 + g2^4*g3^4*g4^4*g6^4*t^7.5 + g1^4*g4^8*g6^4*t^7.5 + g2^4*g4^8*g6^4*t^7.5 + g1^8*g5^4*g6^4*t^7.5 + 2*g1^4*g2^4*g5^4*g6^4*t^7.5 + g2^8*g5^4*g6^4*t^7.5 + g1^4*g3^4*g5^4*g6^4*t^7.5 + g2^4*g3^4*g5^4*g6^4*t^7.5 + g3^8*g5^4*g6^4*t^7.5 + g1^4*g4^4*g5^4*g6^4*t^7.5 + g2^4*g4^4*g5^4*g6^4*t^7.5 + 2*g3^4*g4^4*g5^4*g6^4*t^7.5 + g4^8*g5^4*g6^4*t^7.5 + g1^8*g6^8*t^7.5 + g1^4*g2^4*g6^8*t^7.5 + g2^8*g6^8*t^7.5 + g1^4*g3^4*g6^8*t^7.5 + g2^4*g3^4*g6^8*t^7.5 + g3^8*g6^8*t^7.5 + g1^4*g4^4*g6^8*t^7.5 + g2^4*g4^4*g6^8*t^7.5 + g3^4*g4^4*g6^8*t^7.5 + g4^8*g6^8*t^7.5 + (g1^7*t^7.69)/(g2*g3*g4*g5^5*g6^5) + (g1^3*g2^3*t^7.69)/(g3*g4*g5^5*g6^5) + (g2^7*t^7.69)/(g1*g3*g4*g5^5*g6^5) + (g1^3*g3^3*t^7.69)/(g2*g4*g5^5*g6^5) + (g2^3*g3^3*t^7.69)/(g1*g4*g5^5*g6^5) + (g3^7*t^7.69)/(g1*g2*g4*g5^5*g6^5) + (g1^3*g4^3*t^7.69)/(g2*g3*g5^5*g6^5) + (g2^3*g4^3*t^7.69)/(g1*g3*g5^5*g6^5) + (g3^3*g4^3*t^7.69)/(g1*g2*g5^5*g6^5) + (g4^7*t^7.69)/(g1*g2*g3*g5^5*g6^5) + (g1^7*t^7.69)/(g2*g3^5*g4^5*g5*g6) + (g1^3*g2^3*t^7.69)/(g3^5*g4^5*g5*g6) + (g2^7*t^7.69)/(g1*g3^5*g4^5*g5*g6) - (2*t^7.69)/(g1*g2*g3*g4*g5*g6) + (g3^7*t^7.69)/(g1^5*g2^5*g4*g5*g6) + (g3^3*g4^3*t^7.69)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.69)/(g1^5*g2^5*g3*g5*g6) + (g1^3*g5^3*t^7.69)/(g2*g3^5*g4^5*g6) + (g2^3*g5^3*t^7.69)/(g1*g3^5*g4^5*g6) + (g3^3*g5^3*t^7.69)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.69)/(g1^5*g2^5*g3*g6) + (g5^7*t^7.69)/(g1*g2*g3^5*g4^5*g6) + (g5^7*t^7.69)/(g1^5*g2^5*g3*g4*g6) + (g1^3*g6^3*t^7.69)/(g2*g3^5*g4^5*g5) + (g2^3*g6^3*t^7.69)/(g1*g3^5*g4^5*g5) + (g3^3*g6^3*t^7.69)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.69)/(g1^5*g2^5*g3*g5) + (g5^3*g6^3*t^7.69)/(g1*g2*g3^5*g4^5) + (g5^3*g6^3*t^7.69)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.69)/(g1*g2*g3^5*g4^5*g5) + (g6^7*t^7.69)/(g1^5*g2^5*g3*g4*g5) + g1^6*g2^6*g3^6*g4^6*g5^6*g6^6*t^7.87 - (5*t^8.25)/(g1^4*g2^4) - (5*t^8.25)/(g3^4*g4^4) - (g1^4*t^8.25)/(g2^4*g3^4*g4^4) - (g2^4*t^8.25)/(g1^4*g3^4*g4^4) - (g3^4*t^8.25)/(g1^4*g2^4*g4^4) - (g4^4*t^8.25)/(g1^4*g2^4*g3^4) + (g3^4*g5^4*t^8.25)/(g1^8*g2^8) + (g1^4*g5^4*t^8.25)/(g3^8*g4^8) + (g2^4*g5^4*t^8.25)/(g3^8*g4^8) + (g4^4*g5^4*t^8.25)/(g1^8*g2^8) + (g1^4*g3^4*t^8.25)/(g5^8*g6^8) + (g2^4*g3^4*t^8.25)/(g5^8*g6^8) + (g1^4*g4^4*t^8.25)/(g5^8*g6^8) + (g2^4*g4^4*t^8.25)/(g5^8*g6^8) - (5*t^8.25)/(g5^4*g6^4) - (g1^4*t^8.25)/(g2^4*g5^4*g6^4) - (g2^4*t^8.25)/(g1^4*g5^4*g6^4) - (g3^4*t^8.25)/(g4^4*g5^4*g6^4) - (g4^4*t^8.25)/(g3^4*g5^4*g6^4) - (g5^4*t^8.25)/(g1^4*g2^4*g6^4) - (g5^4*t^8.25)/(g3^4*g4^4*g6^4) + (g3^4*g6^4*t^8.25)/(g1^8*g2^8) + (g1^4*g6^4*t^8.25)/(g3^8*g4^8) + (g2^4*g6^4*t^8.25)/(g3^8*g4^8) + (g4^4*g6^4*t^8.25)/(g1^8*g2^8) - (g6^4*t^8.25)/(g1^4*g2^4*g5^4) - (g6^4*t^8.25)/(g3^4*g4^4*g5^4) + (g1^6*g2^2*g3^6*g4^2*t^8.62)/(g5^2*g6^2) + (g1^2*g2^6*g3^6*g4^2*t^8.62)/(g5^2*g6^2) + (g1^6*g2^2*g3^2*g4^6*t^8.62)/(g5^2*g6^2) + (g1^2*g2^6*g3^2*g4^6*t^8.62)/(g5^2*g6^2) - (g1^2*g2^2*g3^2*g4^2*g5^6*t^8.62)/g6^2 - (g1^2*g2^2*g3^6*g5^2*g6^2*t^8.62)/g4^2 - (g1^6*g3^2*g4^2*g5^2*g6^2*t^8.62)/g2^2 - 6*g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^8.62 - (g2^6*g3^2*g4^2*g5^2*g6^2*t^8.62)/g1^2 - (g1^2*g2^2*g4^6*g5^2*g6^2*t^8.62)/g3^2 + (g1^6*g2^2*g5^6*g6^2*t^8.62)/(g3^2*g4^2) + (g1^2*g2^6*g5^6*g6^2*t^8.62)/(g3^2*g4^2) + (g3^6*g4^2*g5^6*g6^2*t^8.62)/(g1^2*g2^2) + (g3^2*g4^6*g5^6*g6^2*t^8.62)/(g1^2*g2^2) - (g1^2*g2^2*g3^2*g4^2*g6^6*t^8.62)/g5^2 + (g1^6*g2^2*g5^2*g6^6*t^8.62)/(g3^2*g4^2) + (g1^2*g2^6*g5^2*g6^6*t^8.62)/(g3^2*g4^2) + (g3^6*g4^2*g5^2*g6^6*t^8.62)/(g1^2*g2^2) + (g3^2*g4^6*g5^2*g6^6*t^8.62)/(g1^2*g2^2) - t^4.69/(g1*g2*g3*g4*g5*g6*y) - t^6.94/(g1*g2*g3*g4*g5^5*g6^5*y) - t^6.94/(g1*g2*g3^5*g4^5*g5*g6*y) - t^6.94/(g1^5*g2^5*g3*g4*g5*g6*y) + t^7.5/(g1^4*g2^4*g3^4*g4^4*y) + t^7.5/(g1^4*g2^4*g5^4*g6^4*y) + t^7.5/(g3^4*g4^4*g5^4*g6^4*y) + (g1^2*g2^2*g3^2*g4^2*t^7.87)/(g5^2*g6^2*y) + (g1^2*g2^2*g5^2*g6^2*t^7.87)/(g3^2*g4^2*y) + (g3^2*g4^2*g5^2*g6^2*t^7.87)/(g1^2*g2^2*y) + (g1^3*g2^3*t^8.44)/(g3*g4*g5*g6*y) + (g3^3*g4^3*t^8.44)/(g1*g2*g5*g6*y) + (g5^3*g6^3*t^8.44)/(g1*g2*g3*g4*y) - (t^4.69*y)/(g1*g2*g3*g4*g5*g6) - (t^6.94*y)/(g1*g2*g3*g4*g5^5*g6^5) - (t^6.94*y)/(g1*g2*g3^5*g4^5*g5*g6) - (t^6.94*y)/(g1^5*g2^5*g3*g4*g5*g6) + (t^7.5*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.5*y)/(g1^4*g2^4*g5^4*g6^4) + (t^7.5*y)/(g3^4*g4^4*g5^4*g6^4) + (g1^2*g2^2*g3^2*g4^2*t^7.87*y)/(g5^2*g6^2) + (g1^2*g2^2*g5^2*g6^2*t^7.87*y)/(g3^2*g4^2) + (g3^2*g4^2*g5^2*g6^2*t^7.87*y)/(g1^2*g2^2) + (g1^3*g2^3*t^8.44*y)/(g3*g4*g5*g6) + (g3^3*g4^3*t^8.44*y)/(g1*g2*g5*g6) + (g5^3*g6^3*t^8.44*y)/(g1*g2*g3*g4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55684 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\phi_1^2$ | 0.9091 | 1.129 | 0.8052 | [X:[], M:[0.7433, 0.7433, 0.8559], q:[0.6284, 0.6284, 0.6284], qb:[0.6284, 0.5991, 0.5991], phi:[0.5721]] | 2*t^2.23 + t^2.57 + t^3.59 + 8*t^3.68 + 4*t^3.77 + 3*t^4.46 + 2*t^4.8 + t^5.14 + 3*t^5.31 + 8*t^5.4 + 10*t^5.49 + 2*t^5.82 + 8*t^5.91 - 12*t^6. - t^4.72/y - t^4.72*y | detail |