Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55672 SU2adj1nf3 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3q_1q_3$ 0.91 1.1333 0.803 [X:[], M:[0.7265, 0.8501, 0.7265], q:[0.6492, 0.6242, 0.6242], qb:[0.6008, 0.6008, 0.6008], phi:[0.575]] [X:[], M:[[-4, -4, 0, 0, 0, 0], [2, 2, 2, 2, 2, 2], [-4, 0, -4, 0, 0, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] 6
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_3$, $ M_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ q_2q_3$, $ q_1\tilde{q}_1$, $ M_1^2$, $ M_3^2$, $ M_1M_3$, $ M_2M_3$, $ M_1M_2$, $ M_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1q_1q_3$, $ \phi_1q_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_3q_3\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_1q_3\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_1q_3\tilde{q}_2$ . -14 2*t^2.18 + t^2.55 + 3*t^3.6 + 6*t^3.68 + 4*t^3.75 + 3*t^4.36 + 2*t^4.73 + t^5.1 + 6*t^5.33 + 6*t^5.4 + 3*t^5.47 + 3*t^5.48 + 2*t^5.55 + t^5.62 + 6*t^5.78 + 9*t^5.85 - 14*t^6. - 8*t^6.07 - 3*t^6.15 + 3*t^6.16 + 6*t^6.23 + 4*t^6.3 + 4*t^6.54 + 3*t^6.91 + 6*t^7.21 + 18*t^7.28 + 21*t^7.35 + 8*t^7.36 + 6*t^7.42 + 12*t^7.43 + t^7.49 + 6*t^7.5 + 12*t^7.51 + 9*t^7.58 + 5*t^7.65 - 9*t^7.72 - 6*t^7.8 - 3*t^7.87 + 9*t^7.96 + 12*t^8.03 - 3*t^8.11 - 26*t^8.18 - 10*t^8.25 + 6*t^8.33 + 15*t^8.4 - 14*t^8.55 - 6*t^8.62 - 2*t^8.63 - 3*t^8.7 + 3*t^8.71 + 5*t^8.72 + 6*t^8.78 + 4*t^8.85 + 15*t^8.93 - t^4.72/y - (2*t^6.9)/y + t^7.36/y + (2*t^7.73)/y + (2*t^8.55)/y + (6*t^8.78)/y + (12*t^8.85)/y + (8*t^8.93)/y - t^4.72*y - 2*t^6.9*y + t^7.36*y + 2*t^7.73*y + 2*t^8.55*y + 6*t^8.78*y + 12*t^8.85*y + 8*t^8.93*y t^2.18/(g1^4*g2^4) + t^2.18/(g1^4*g3^4) + g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^2.55 + g4^4*g5^4*t^3.6 + g4^4*g6^4*t^3.6 + g5^4*g6^4*t^3.6 + g2^4*g4^4*t^3.68 + g3^4*g4^4*t^3.68 + g2^4*g5^4*t^3.68 + g3^4*g5^4*t^3.68 + g2^4*g6^4*t^3.68 + g3^4*g6^4*t^3.68 + g2^4*g3^4*t^3.75 + g1^4*g4^4*t^3.75 + g1^4*g5^4*t^3.75 + g1^4*g6^4*t^3.75 + t^4.36/(g1^8*g2^8) + t^4.36/(g1^8*g3^8) + t^4.36/(g1^8*g2^4*g3^4) + (g2^2*g4^2*g5^2*g6^2*t^4.73)/(g1^2*g3^2) + (g3^2*g4^2*g5^2*g6^2*t^4.73)/(g1^2*g2^2) + g1^4*g2^4*g3^4*g4^4*g5^4*g6^4*t^5.1 + (g4^7*t^5.33)/(g1*g2*g3*g5*g6) + (g4^3*g5^3*t^5.33)/(g1*g2*g3*g6) + (g5^7*t^5.33)/(g1*g2*g3*g4*g6) + (g4^3*g6^3*t^5.33)/(g1*g2*g3*g5) + (g5^3*g6^3*t^5.33)/(g1*g2*g3*g4) + (g6^7*t^5.33)/(g1*g2*g3*g4*g5) + (g2^3*g4^3*t^5.4)/(g1*g3*g5*g6) + (g3^3*g4^3*t^5.4)/(g1*g2*g5*g6) + (g2^3*g5^3*t^5.4)/(g1*g3*g4*g6) + (g3^3*g5^3*t^5.4)/(g1*g2*g4*g6) + (g2^3*g6^3*t^5.4)/(g1*g3*g4*g5) + (g3^3*g6^3*t^5.4)/(g1*g2*g4*g5) + (g2^7*t^5.47)/(g1*g3*g4*g5*g6) + (g2^3*g3^3*t^5.47)/(g1*g4*g5*g6) + (g3^7*t^5.47)/(g1*g2*g4*g5*g6) + (g1^3*g4^3*t^5.48)/(g2*g3*g5*g6) + (g1^3*g5^3*t^5.48)/(g2*g3*g4*g6) + (g1^3*g6^3*t^5.48)/(g2*g3*g4*g5) + (g1^3*g2^3*t^5.55)/(g3*g4*g5*g6) + (g1^3*g3^3*t^5.55)/(g2*g4*g5*g6) + (g1^7*t^5.62)/(g2*g3*g4*g5*g6) + (g4^4*g5^4*t^5.78)/(g1^4*g2^4) + (g4^4*g5^4*t^5.78)/(g1^4*g3^4) + (g4^4*g6^4*t^5.78)/(g1^4*g2^4) + (g4^4*g6^4*t^5.78)/(g1^4*g3^4) + (g5^4*g6^4*t^5.78)/(g1^4*g2^4) + (g5^4*g6^4*t^5.78)/(g1^4*g3^4) + (g4^4*t^5.85)/g1^4 + (g2^4*g4^4*t^5.85)/(g1^4*g3^4) + (g3^4*g4^4*t^5.85)/(g1^4*g2^4) + (g5^4*t^5.85)/g1^4 + (g2^4*g5^4*t^5.85)/(g1^4*g3^4) + (g3^4*g5^4*t^5.85)/(g1^4*g2^4) + (g6^4*t^5.85)/g1^4 + (g2^4*g6^4*t^5.85)/(g1^4*g3^4) + (g3^4*g6^4*t^5.85)/(g1^4*g2^4) - 6*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g4^4*t^6.)/g5^4 - (g5^4*t^6.)/g4^4 - (g4^4*t^6.)/g6^4 - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g4^4 - (g6^4*t^6.)/g5^4 - (g1^4*t^6.07)/g2^4 - (g1^4*t^6.07)/g3^4 - (g2^4*t^6.07)/g4^4 - (g3^4*t^6.07)/g4^4 - (g2^4*t^6.07)/g5^4 - (g3^4*t^6.07)/g5^4 - (g2^4*t^6.07)/g6^4 - (g3^4*t^6.07)/g6^4 - (g1^4*t^6.15)/g4^4 - (g1^4*t^6.15)/g5^4 - (g1^4*t^6.15)/g6^4 + g1^2*g2^2*g3^2*g4^6*g5^6*g6^2*t^6.16 + g1^2*g2^2*g3^2*g4^6*g5^2*g6^6*t^6.16 + g1^2*g2^2*g3^2*g4^2*g5^6*g6^6*t^6.16 + g1^2*g2^6*g3^2*g4^6*g5^2*g6^2*t^6.23 + g1^2*g2^2*g3^6*g4^6*g5^2*g6^2*t^6.23 + g1^2*g2^6*g3^2*g4^2*g5^6*g6^2*t^6.23 + g1^2*g2^2*g3^6*g4^2*g5^6*g6^2*t^6.23 + g1^2*g2^6*g3^2*g4^2*g5^2*g6^6*t^6.23 + g1^2*g2^2*g3^6*g4^2*g5^2*g6^6*t^6.23 + g1^2*g2^6*g3^6*g4^2*g5^2*g6^2*t^6.3 + g1^6*g2^2*g3^2*g4^6*g5^2*g6^2*t^6.3 + g1^6*g2^2*g3^2*g4^2*g5^6*g6^2*t^6.3 + g1^6*g2^2*g3^2*g4^2*g5^2*g6^6*t^6.3 + t^6.54/(g1^12*g2^12) + t^6.54/(g1^12*g3^12) + t^6.54/(g1^12*g2^4*g3^8) + t^6.54/(g1^12*g2^8*g3^4) + (g2^2*g4^2*g5^2*g6^2*t^6.91)/(g1^6*g3^6) + (g4^2*g5^2*g6^2*t^6.91)/(g1^6*g2^2*g3^2) + (g3^2*g4^2*g5^2*g6^2*t^6.91)/(g1^6*g2^6) + g4^8*g5^8*t^7.21 + g4^8*g5^4*g6^4*t^7.21 + g4^4*g5^8*g6^4*t^7.21 + g4^8*g6^8*t^7.21 + g4^4*g5^4*g6^8*t^7.21 + g5^8*g6^8*t^7.21 + g2^4*g4^8*g5^4*t^7.28 + g3^4*g4^8*g5^4*t^7.28 + g2^4*g4^4*g5^8*t^7.28 + g3^4*g4^4*g5^8*t^7.28 + g2^4*g4^8*g6^4*t^7.28 + g3^4*g4^8*g6^4*t^7.28 + 3*g2^4*g4^4*g5^4*g6^4*t^7.28 + 3*g3^4*g4^4*g5^4*g6^4*t^7.28 + g2^4*g5^8*g6^4*t^7.28 + g3^4*g5^8*g6^4*t^7.28 + g2^4*g4^4*g6^8*t^7.28 + g3^4*g4^4*g6^8*t^7.28 + g2^4*g5^4*g6^8*t^7.28 + g3^4*g5^4*g6^8*t^7.28 + g2^8*g4^8*t^7.35 + g2^4*g3^4*g4^8*t^7.35 + g3^8*g4^8*t^7.35 + g2^8*g4^4*g5^4*t^7.35 + 2*g2^4*g3^4*g4^4*g5^4*t^7.35 + g3^8*g4^4*g5^4*t^7.35 + g2^8*g5^8*t^7.35 + g2^4*g3^4*g5^8*t^7.35 + g3^8*g5^8*t^7.35 + g2^8*g4^4*g6^4*t^7.35 + 2*g2^4*g3^4*g4^4*g6^4*t^7.35 + g3^8*g4^4*g6^4*t^7.35 + g2^8*g5^4*g6^4*t^7.35 + 2*g2^4*g3^4*g5^4*g6^4*t^7.35 + g3^8*g5^4*g6^4*t^7.35 + g2^8*g6^8*t^7.35 + g2^4*g3^4*g6^8*t^7.35 + g3^8*g6^8*t^7.35 + g1^4*g4^8*g5^4*t^7.36 + g1^4*g4^4*g5^8*t^7.36 + g1^4*g4^8*g6^4*t^7.36 + 2*g1^4*g4^4*g5^4*g6^4*t^7.36 + g1^4*g5^8*g6^4*t^7.36 + g1^4*g4^4*g6^8*t^7.36 + g1^4*g5^4*g6^8*t^7.36 + g2^8*g3^4*g4^4*t^7.42 + g2^4*g3^8*g4^4*t^7.42 + g2^8*g3^4*g5^4*t^7.42 + g2^4*g3^8*g5^4*t^7.42 + g2^8*g3^4*g6^4*t^7.42 + g2^4*g3^8*g6^4*t^7.42 + g1^4*g2^4*g4^8*t^7.43 + g1^4*g3^4*g4^8*t^7.43 + g1^4*g2^4*g4^4*g5^4*t^7.43 + g1^4*g3^4*g4^4*g5^4*t^7.43 + g1^4*g2^4*g5^8*t^7.43 + g1^4*g3^4*g5^8*t^7.43 + g1^4*g2^4*g4^4*g6^4*t^7.43 + g1^4*g3^4*g4^4*g6^4*t^7.43 + g1^4*g2^4*g5^4*g6^4*t^7.43 + g1^4*g3^4*g5^4*g6^4*t^7.43 + g1^4*g2^4*g6^8*t^7.43 + g1^4*g3^4*g6^8*t^7.43 + g2^8*g3^8*t^7.49 + g1^8*g4^8*t^7.5 + g1^8*g4^4*g5^4*t^7.5 + g1^8*g5^8*t^7.5 + g1^8*g4^4*g6^4*t^7.5 + g1^8*g5^4*g6^4*t^7.5 + g1^8*g6^8*t^7.5 + (g4^7*t^7.51)/(g1^5*g2*g3^5*g5*g6) + (g4^7*t^7.51)/(g1^5*g2^5*g3*g5*g6) + (g4^3*g5^3*t^7.51)/(g1^5*g2*g3^5*g6) + (g4^3*g5^3*t^7.51)/(g1^5*g2^5*g3*g6) + (g5^7*t^7.51)/(g1^5*g2*g3^5*g4*g6) + (g5^7*t^7.51)/(g1^5*g2^5*g3*g4*g6) + (g4^3*g6^3*t^7.51)/(g1^5*g2*g3^5*g5) + (g4^3*g6^3*t^7.51)/(g1^5*g2^5*g3*g5) + (g5^3*g6^3*t^7.51)/(g1^5*g2*g3^5*g4) + (g5^3*g6^3*t^7.51)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.51)/(g1^5*g2*g3^5*g4*g5) + (g6^7*t^7.51)/(g1^5*g2^5*g3*g4*g5) + (g2^3*g4^3*t^7.58)/(g1^5*g3^5*g5*g6) + (g4^3*t^7.58)/(g1^5*g2*g3*g5*g6) + (g3^3*g4^3*t^7.58)/(g1^5*g2^5*g5*g6) + (g2^3*g5^3*t^7.58)/(g1^5*g3^5*g4*g6) + (g5^3*t^7.58)/(g1^5*g2*g3*g4*g6) + (g3^3*g5^3*t^7.58)/(g1^5*g2^5*g4*g6) + (g2^3*g6^3*t^7.58)/(g1^5*g3^5*g4*g5) + (g6^3*t^7.58)/(g1^5*g2*g3*g4*g5) + (g3^3*g6^3*t^7.58)/(g1^5*g2^5*g4*g5) + (g2^7*t^7.65)/(g1^5*g3^5*g4*g5*g6) + (g2^3*t^7.65)/(g1^5*g3*g4*g5*g6) + (g3^3*t^7.65)/(g1^5*g2*g4*g5*g6) + (g3^7*t^7.65)/(g1^5*g2^5*g4*g5*g6) + g1^6*g2^6*g3^6*g4^6*g5^6*g6^6*t^7.65 - (g4^3*t^7.72)/(g1*g2*g3*g5*g6^5) - (g5^3*t^7.72)/(g1*g2*g3*g4*g6^5) - (g4^3*t^7.72)/(g1*g2*g3*g5^5*g6) - (3*t^7.72)/(g1*g2*g3*g4*g5*g6) - (g5^3*t^7.72)/(g1*g2*g3*g4^5*g6) - (g6^3*t^7.72)/(g1*g2*g3*g4*g5^5) - (g6^3*t^7.72)/(g1*g2*g3*g4^5*g5) - (g2^3*t^7.8)/(g1*g3*g4*g5*g6^5) - (g3^3*t^7.8)/(g1*g2*g4*g5*g6^5) - (g2^3*t^7.8)/(g1*g3*g4*g5^5*g6) - (g3^3*t^7.8)/(g1*g2*g4*g5^5*g6) - (g2^3*t^7.8)/(g1*g3*g4^5*g5*g6) - (g3^3*t^7.8)/(g1*g2*g4^5*g5*g6) - (g1^3*t^7.87)/(g2*g3*g4*g5*g6^5) - (g1^3*t^7.87)/(g2*g3*g4*g5^5*g6) - (g1^3*t^7.87)/(g2*g3*g4^5*g5*g6) + (g4^4*g5^4*t^7.96)/(g1^8*g2^8) + (g4^4*g5^4*t^7.96)/(g1^8*g3^8) + (g4^4*g5^4*t^7.96)/(g1^8*g2^4*g3^4) + (g4^4*g6^4*t^7.96)/(g1^8*g2^8) + (g4^4*g6^4*t^7.96)/(g1^8*g3^8) + (g4^4*g6^4*t^7.96)/(g1^8*g2^4*g3^4) + (g5^4*g6^4*t^7.96)/(g1^8*g2^8) + (g5^4*g6^4*t^7.96)/(g1^8*g3^8) + (g5^4*g6^4*t^7.96)/(g1^8*g2^4*g3^4) + (g4^4*t^8.03)/(g1^8*g2^4) + (g2^4*g4^4*t^8.03)/(g1^8*g3^8) + (g4^4*t^8.03)/(g1^8*g3^4) + (g3^4*g4^4*t^8.03)/(g1^8*g2^8) + (g5^4*t^8.03)/(g1^8*g2^4) + (g2^4*g5^4*t^8.03)/(g1^8*g3^8) + (g5^4*t^8.03)/(g1^8*g3^4) + (g3^4*g5^4*t^8.03)/(g1^8*g2^8) + (g6^4*t^8.03)/(g1^8*g2^4) + (g2^4*g6^4*t^8.03)/(g1^8*g3^8) + (g6^4*t^8.03)/(g1^8*g3^4) + (g3^4*g6^4*t^8.03)/(g1^8*g2^8) - (g4^4*t^8.11)/(g1^4*g2^4*g3^4) - (g5^4*t^8.11)/(g1^4*g2^4*g3^4) - (g6^4*t^8.11)/(g1^4*g2^4*g3^4) - (6*t^8.18)/(g1^4*g2^4) - (g2^4*t^8.18)/(g1^4*g3^8) - (6*t^8.18)/(g1^4*g3^4) - (g3^4*t^8.18)/(g1^4*g2^8) - (g4^4*t^8.18)/(g1^4*g2^4*g5^4) - (g4^4*t^8.18)/(g1^4*g3^4*g5^4) - (g5^4*t^8.18)/(g1^4*g2^4*g4^4) - (g5^4*t^8.18)/(g1^4*g3^4*g4^4) - (g4^4*t^8.18)/(g1^4*g2^4*g6^4) - (g4^4*t^8.18)/(g1^4*g3^4*g6^4) - (g5^4*t^8.18)/(g1^4*g2^4*g6^4) - (g5^4*t^8.18)/(g1^4*g3^4*g6^4) - (g6^4*t^8.18)/(g1^4*g2^4*g4^4) - (g6^4*t^8.18)/(g1^4*g3^4*g4^4) - (g6^4*t^8.18)/(g1^4*g2^4*g5^4) - (g6^4*t^8.18)/(g1^4*g3^4*g5^4) - t^8.25/(g2^4*g3^4) - t^8.25/(g1^4*g4^4) - (g2^4*t^8.25)/(g1^4*g3^4*g4^4) - (g3^4*t^8.25)/(g1^4*g2^4*g4^4) - t^8.25/(g1^4*g5^4) - (g2^4*t^8.25)/(g1^4*g3^4*g5^4) - (g3^4*t^8.25)/(g1^4*g2^4*g5^4) - t^8.25/(g1^4*g6^4) - (g2^4*t^8.25)/(g1^4*g3^4*g6^4) - (g3^4*t^8.25)/(g1^4*g2^4*g6^4) + (g2^2*g4^6*g5^6*g6^2*t^8.33)/(g1^2*g3^2) + (g3^2*g4^6*g5^6*g6^2*t^8.33)/(g1^2*g2^2) + (g2^2*g4^6*g5^2*g6^6*t^8.33)/(g1^2*g3^2) + (g3^2*g4^6*g5^2*g6^6*t^8.33)/(g1^2*g2^2) + (g2^2*g4^2*g5^6*g6^6*t^8.33)/(g1^2*g3^2) + (g3^2*g4^2*g5^6*g6^6*t^8.33)/(g1^2*g2^2) + t^8.4/g4^8 + t^8.4/g5^8 + t^8.4/(g4^4*g5^4) + t^8.4/g6^8 + t^8.4/(g4^4*g6^4) + t^8.4/(g5^4*g6^4) + (g2^6*g4^6*g5^2*g6^2*t^8.4)/(g1^2*g3^2) + (g2^2*g3^2*g4^6*g5^2*g6^2*t^8.4)/g1^2 + (g3^6*g4^6*g5^2*g6^2*t^8.4)/(g1^2*g2^2) + (g2^6*g4^2*g5^6*g6^2*t^8.4)/(g1^2*g3^2) + (g2^2*g3^2*g4^2*g5^6*g6^2*t^8.4)/g1^2 + (g3^6*g4^2*g5^6*g6^2*t^8.4)/(g1^2*g2^2) + (g2^6*g4^2*g5^2*g6^6*t^8.4)/(g1^2*g3^2) + (g2^2*g3^2*g4^2*g5^2*g6^6*t^8.4)/g1^2 + (g3^6*g4^2*g5^2*g6^6*t^8.4)/(g1^2*g2^2) - (g1^2*g2^2*g3^2*g4^6*g5^2*t^8.55)/g6^2 - (g1^2*g2^2*g3^2*g4^2*g5^6*t^8.55)/g6^2 - (g1^2*g2^2*g3^2*g4^6*g6^2*t^8.55)/g5^2 - (g1^2*g2^6*g4^2*g5^2*g6^2*t^8.55)/g3^2 - 6*g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^8.55 - (g1^2*g3^6*g4^2*g5^2*g6^2*t^8.55)/g2^2 - (g1^2*g2^2*g3^2*g5^6*g6^2*t^8.55)/g4^2 - (g1^2*g2^2*g3^2*g4^2*g6^6*t^8.55)/g5^2 - (g1^2*g2^2*g3^2*g5^2*g6^6*t^8.55)/g4^2 - (g1^2*g2^6*g3^2*g4^2*g5^2*t^8.62)/g6^2 - (g1^2*g2^2*g3^6*g4^2*g5^2*t^8.62)/g6^2 - (g1^2*g2^6*g3^2*g4^2*g6^2*t^8.62)/g5^2 - (g1^2*g2^2*g3^6*g4^2*g6^2*t^8.62)/g5^2 - (g1^2*g2^6*g3^2*g5^2*g6^2*t^8.62)/g4^2 - (g1^2*g2^2*g3^6*g5^2*g6^2*t^8.62)/g4^2 - (g1^6*g2^2*g4^2*g5^2*g6^2*t^8.63)/g3^2 - (g1^6*g3^2*g4^2*g5^2*g6^2*t^8.63)/g2^2 - (g1^6*g2^2*g3^2*g4^2*g5^2*t^8.7)/g6^2 - (g1^6*g2^2*g3^2*g4^2*g6^2*t^8.7)/g5^2 - (g1^6*g2^2*g3^2*g5^2*g6^2*t^8.7)/g4^2 + g1^4*g2^4*g3^4*g4^8*g5^8*g6^4*t^8.71 + g1^4*g2^4*g3^4*g4^8*g5^4*g6^8*t^8.71 + g1^4*g2^4*g3^4*g4^4*g5^8*g6^8*t^8.71 + t^8.72/(g1^16*g2^16) + t^8.72/(g1^16*g3^16) + t^8.72/(g1^16*g2^4*g3^12) + t^8.72/(g1^16*g2^8*g3^8) + t^8.72/(g1^16*g2^12*g3^4) + g1^4*g2^8*g3^4*g4^8*g5^4*g6^4*t^8.78 + g1^4*g2^4*g3^8*g4^8*g5^4*g6^4*t^8.78 + g1^4*g2^8*g3^4*g4^4*g5^8*g6^4*t^8.78 + g1^4*g2^4*g3^8*g4^4*g5^8*g6^4*t^8.78 + g1^4*g2^8*g3^4*g4^4*g5^4*g6^8*t^8.78 + g1^4*g2^4*g3^8*g4^4*g5^4*g6^8*t^8.78 + g1^4*g2^8*g3^8*g4^4*g5^4*g6^4*t^8.85 + g1^8*g2^4*g3^4*g4^8*g5^4*g6^4*t^8.85 + g1^8*g2^4*g3^4*g4^4*g5^8*g6^4*t^8.85 + g1^8*g2^4*g3^4*g4^4*g5^4*g6^8*t^8.85 + (g4^11*g5^3*t^8.93)/(g1*g2*g3*g6) + (g4^7*g5^7*t^8.93)/(g1*g2*g3*g6) + (g4^3*g5^11*t^8.93)/(g1*g2*g3*g6) + (g4^11*g6^3*t^8.93)/(g1*g2*g3*g5) + (2*g4^7*g5^3*g6^3*t^8.93)/(g1*g2*g3) + (2*g4^3*g5^7*g6^3*t^8.93)/(g1*g2*g3) + (g5^11*g6^3*t^8.93)/(g1*g2*g3*g4) + (g4^7*g6^7*t^8.93)/(g1*g2*g3*g5) + (2*g4^3*g5^3*g6^7*t^8.93)/(g1*g2*g3) + (g5^7*g6^7*t^8.93)/(g1*g2*g3*g4) + (g4^3*g6^11*t^8.93)/(g1*g2*g3*g5) + (g5^3*g6^11*t^8.93)/(g1*g2*g3*g4) - t^4.72/(g1*g2*g3*g4*g5*g6*y) - t^6.9/(g1^5*g2*g3^5*g4*g5*g6*y) - t^6.9/(g1^5*g2^5*g3*g4*g5*g6*y) + t^7.36/(g1^8*g2^4*g3^4*y) + (g2^2*g4^2*g5^2*g6^2*t^7.73)/(g1^2*g3^2*y) + (g3^2*g4^2*g5^2*g6^2*t^7.73)/(g1^2*g2^2*y) + (g1^3*g2^3*t^8.55)/(g3*g4*g5*g6*y) + (g1^3*g3^3*t^8.55)/(g2*g4*g5*g6*y) + (g4^4*g5^4*t^8.78)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.78)/(g1^4*g3^4*y) + (g4^4*g6^4*t^8.78)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.78)/(g1^4*g3^4*y) + (g5^4*g6^4*t^8.78)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.78)/(g1^4*g3^4*y) + (2*g4^4*t^8.85)/(g1^4*y) + (g2^4*g4^4*t^8.85)/(g1^4*g3^4*y) + (g3^4*g4^4*t^8.85)/(g1^4*g2^4*y) + (2*g5^4*t^8.85)/(g1^4*y) + (g2^4*g5^4*t^8.85)/(g1^4*g3^4*y) + (g3^4*g5^4*t^8.85)/(g1^4*g2^4*y) + (2*g6^4*t^8.85)/(g1^4*y) + (g2^4*g6^4*t^8.85)/(g1^4*g3^4*y) + (g3^4*g6^4*t^8.85)/(g1^4*g2^4*y) + (g2^4*t^8.93)/(g1^4*y) + (g3^4*t^8.93)/(g1^4*y) + (g4^4*t^8.93)/(g2^4*y) + (g4^4*t^8.93)/(g3^4*y) + (g5^4*t^8.93)/(g2^4*y) + (g5^4*t^8.93)/(g3^4*y) + (g6^4*t^8.93)/(g2^4*y) + (g6^4*t^8.93)/(g3^4*y) - (t^4.72*y)/(g1*g2*g3*g4*g5*g6) - (t^6.9*y)/(g1^5*g2*g3^5*g4*g5*g6) - (t^6.9*y)/(g1^5*g2^5*g3*g4*g5*g6) + (t^7.36*y)/(g1^8*g2^4*g3^4) + (g2^2*g4^2*g5^2*g6^2*t^7.73*y)/(g1^2*g3^2) + (g3^2*g4^2*g5^2*g6^2*t^7.73*y)/(g1^2*g2^2) + (g1^3*g2^3*t^8.55*y)/(g3*g4*g5*g6) + (g1^3*g3^3*t^8.55*y)/(g2*g4*g5*g6) + (g4^4*g5^4*t^8.78*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.78*y)/(g1^4*g3^4) + (g4^4*g6^4*t^8.78*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.78*y)/(g1^4*g3^4) + (g5^4*g6^4*t^8.78*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.78*y)/(g1^4*g3^4) + (2*g4^4*t^8.85*y)/g1^4 + (g2^4*g4^4*t^8.85*y)/(g1^4*g3^4) + (g3^4*g4^4*t^8.85*y)/(g1^4*g2^4) + (2*g5^4*t^8.85*y)/g1^4 + (g2^4*g5^4*t^8.85*y)/(g1^4*g3^4) + (g3^4*g5^4*t^8.85*y)/(g1^4*g2^4) + (2*g6^4*t^8.85*y)/g1^4 + (g2^4*g6^4*t^8.85*y)/(g1^4*g3^4) + (g3^4*g6^4*t^8.85*y)/(g1^4*g2^4) + (g2^4*t^8.93*y)/g1^4 + (g3^4*t^8.93*y)/g1^4 + (g4^4*t^8.93*y)/g2^4 + (g4^4*t^8.93*y)/g3^4 + (g5^4*t^8.93*y)/g2^4 + (g5^4*t^8.93*y)/g3^4 + (g6^4*t^8.93*y)/g2^4 + (g6^4*t^8.93*y)/g3^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55706 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3q_1q_3$ + $ M_4q_3\tilde{q}_1$ 0.929 1.1663 0.7965 [X:[], M:[0.7341, 0.863, 0.7141, 0.7341], q:[0.643, 0.623, 0.643], qb:[0.623, 0.5971, 0.5971], phi:[0.5685]] t^2.14 + 2*t^2.2 + t^2.59 + t^3.58 + 4*t^3.66 + 4*t^3.72 + t^3.74 + 2*t^3.8 + t^4.28 + 2*t^4.34 + 3*t^4.4 + t^4.73 + 2*t^4.79 + t^5.18 + 3*t^5.29 + 4*t^5.37 + 4*t^5.43 + 3*t^5.44 + 4*t^5.5 + 3*t^5.56 + t^5.72 + 2*t^5.78 + 4*t^5.8 + 8*t^5.86 + t^5.88 + 4*t^5.92 - 8*t^6. - t^4.71/y - t^4.71*y detail
55814 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ 0.8954 1.1204 0.7992 [X:[], M:[0.6922, 0.8618, 0.6922], q:[0.7298, 0.578, 0.578], qb:[0.7011, 0.5684, 0.5684], phi:[0.5691]] 2*t^2.08 + t^2.59 + t^3.41 + 4*t^3.44 + t^3.47 + 2*t^3.81 + 2*t^3.84 + 2*t^3.89 + 3*t^4.15 + t^4.29 + 2*t^4.66 + 3*t^5.12 + 4*t^5.15 + t^5.17 + 3*t^5.18 + 2*t^5.49 + 8*t^5.52 + 2*t^5.54 + 4*t^5.88 + 4*t^5.91 - 8*t^6. - t^4.71/y - t^4.71*y detail
55761 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3q_1q_3$ + $ \phi_1q_1^2$ 0.9063 1.1357 0.7981 [X:[], M:[0.6884, 0.844, 0.6884], q:[0.711, 0.6006, 0.6006], qb:[0.5919, 0.5919, 0.5919], phi:[0.578]] 2*t^2.07 + t^2.53 + 3*t^3.55 + 6*t^3.58 + t^3.6 + 3*t^3.91 + 3*t^4.13 + 2*t^4.6 + t^5.06 + 6*t^5.29 + 6*t^5.31 + 3*t^5.34 + 6*t^5.62 + 12*t^5.64 + 2*t^5.67 - 13*t^6. - t^4.73/y - t^4.73*y detail
55775 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3q_1q_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ 0.8849 1.0897 0.8121 [X:[], M:[0.7846, 0.9015, 0.7846], q:[0.6283, 0.5871, 0.5871], qb:[0.7254, 0.7254, 0.5496], phi:[0.5493]] 2*t^2.35 + t^2.7 + 2*t^3.41 + t^3.52 + t^3.53 + 2*t^3.82 + 4*t^3.94 + 2*t^4.06 + t^4.35 + 3*t^4.71 + t^4.95 + 4*t^5.06 + 3*t^5.17 + t^5.18 + 2*t^5.29 + t^5.41 + t^5.42 + 3*t^5.76 - 7*t^6. - t^4.65/y - t^4.65*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55441 SU2adj1nf3 $M_1q_1q_2$ + $ M_2\phi_1^2$ 0.8907 1.0986 0.8108 [X:[], M:[0.7371, 0.8394], q:[0.6314, 0.6314, 0.604], qb:[0.604, 0.604, 0.604], phi:[0.5803]] t^2.21 + t^2.52 + 6*t^3.62 + 8*t^3.71 + t^4.42 + t^4.73 + t^5.04 + 10*t^5.36 + 8*t^5.45 + 3*t^5.53 + 6*t^5.84 - 20*t^6. - t^4.74/y - t^4.74*y detail