Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55814 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ | 0.8954 | 1.1204 | 0.7992 | [X:[], M:[0.6922, 0.8618, 0.6922], q:[0.7298, 0.578, 0.578], qb:[0.7011, 0.5684, 0.5684], phi:[0.5691]] | [X:[], M:[[-4, -1, 1, -1, -1], [2, 2, 0, 2, 2], [-1, -4, 1, -1, -1]], q:[[1, 1, -1, 1, 1], [3, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[-1, -1, 0, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_1$, $ M_2$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ q_2q_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_3^2$, $ M_1M_3$, $ M_1^2$, $ q_1\tilde{q}_1$, $ M_2M_3$, $ M_1M_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ M_2^2$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_3q_2\tilde{q}_2$, $ M_3q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1q_3\tilde{q}_2$, $ M_3q_2q_3$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ M_3q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_1q_3\tilde{q}_1$ | $M_2\tilde{q}_2\tilde{q}_3$ | -8 | 2*t^2.08 + t^2.59 + t^3.41 + 4*t^3.44 + t^3.47 + 2*t^3.81 + 2*t^3.84 + 2*t^3.89 + 3*t^4.15 + t^4.29 + 2*t^4.66 + 3*t^5.12 + 4*t^5.15 + t^5.17 + 3*t^5.18 + 2*t^5.49 + 8*t^5.52 + 2*t^5.54 + 4*t^5.88 + 4*t^5.91 - 8*t^6. + 4*t^6.02 - 4*t^6.03 + t^6.05 + 4*t^6.23 + 2*t^6.39 - 2*t^6.4 + 2*t^6.42 - 2*t^6.46 + 3*t^6.74 + t^6.82 + 4*t^6.85 + 11*t^6.88 + 4*t^6.91 + t^6.94 + 6*t^7.19 + 8*t^7.22 + 14*t^7.25 + 8*t^7.28 + 4*t^7.3 - 2*t^7.31 + 6*t^7.33 - 2*t^7.34 + 3*t^7.56 + 12*t^7.59 + 6*t^7.62 + 4*t^7.65 + 3*t^7.67 - 4*t^7.68 + 4*t^7.7 - 8*t^7.71 + 4*t^7.73 - 4*t^7.74 + t^7.76 + 3*t^7.79 + 6*t^7.96 + 6*t^7.99 - 2*t^8.05 + 2*t^8.07 - 18*t^8.08 + 8*t^8.1 - 8*t^8.11 + 2*t^8.13 - 2*t^8.22 + 5*t^8.31 - t^8.45 + 3*t^8.5 + 2*t^8.53 + 12*t^8.56 + t^8.58 + 9*t^8.59 + 12*t^8.61 + 4*t^8.64 - t^8.67 + 4*t^8.82 + 2*t^8.9 + 12*t^8.93 + 26*t^8.95 + 14*t^8.98 - t^4.71/y - (2*t^6.78)/y + t^7.15/y + (2*t^7.66)/y + (2*t^8.49)/y + (8*t^8.52)/y + (2*t^8.54)/y + (2*t^8.63)/y - (3*t^8.86)/y + (4*t^8.88)/y + (4*t^8.91)/y + (4*t^8.97)/y - t^4.71*y - 2*t^6.78*y + t^7.15*y + 2*t^7.66*y + 2*t^8.49*y + 8*t^8.52*y + 2*t^8.54*y + 2*t^8.63*y - 3*t^8.86*y + 4*t^8.88*y + 4*t^8.91*y + 4*t^8.97*y | (g3*t^2.08)/(g1*g2^4*g4*g5) + (g3*t^2.08)/(g1^4*g2*g4*g5) + g1^2*g2^2*g4^2*g5^2*t^2.59 + g4^3*g5^3*t^3.41 + g1^3*g4^3*t^3.44 + g2^3*g4^3*t^3.44 + g1^3*g5^3*t^3.44 + g2^3*g5^3*t^3.44 + g1^3*g2^3*t^3.47 + g3*g4^3*t^3.81 + g3*g5^3*t^3.81 + g1^3*g3*t^3.84 + g2^3*g3*t^3.84 + (g1*g2*g4^4*g5*t^3.89)/g3 + (g1*g2*g4*g5^4*t^3.89)/g3 + (g3^2*t^4.15)/(g1^2*g2^8*g4^2*g5^2) + (g3^2*t^4.15)/(g1^5*g2^5*g4^2*g5^2) + (g3^2*t^4.15)/(g1^8*g2^2*g4^2*g5^2) + g1*g2*g4*g5*t^4.29 + (g1*g3*g4*g5*t^4.66)/g2^2 + (g2*g3*g4*g5*t^4.66)/g1^2 + (g4^5*t^5.12)/(g1*g2*g5) + (g4^2*g5^2*t^5.12)/(g1*g2) + (g5^5*t^5.12)/(g1*g2*g4) + (g1^2*g4^2*t^5.15)/(g2*g5) + (g2^2*g4^2*t^5.15)/(g1*g5) + (g1^2*g5^2*t^5.15)/(g2*g4) + (g2^2*g5^2*t^5.15)/(g1*g4) + g1^4*g2^4*g4^4*g5^4*t^5.17 + (g1^5*t^5.18)/(g2*g4*g5) + (g1^2*g2^2*t^5.18)/(g4*g5) + (g2^5*t^5.18)/(g1*g4*g5) + (g3*g4^2*g5^2*t^5.49)/(g1*g2^4) + (g3*g4^2*g5^2*t^5.49)/(g1^4*g2) + (g1^2*g3*g4^2*t^5.52)/(g2^4*g5) + (2*g3*g4^2*t^5.52)/(g1*g2*g5) + (g2^2*g3*g4^2*t^5.52)/(g1^4*g5) + (g1^2*g3*g5^2*t^5.52)/(g2^4*g4) + (2*g3*g5^2*t^5.52)/(g1*g2*g4) + (g2^2*g3*g5^2*t^5.52)/(g1^4*g4) + (g1^2*g3*t^5.54)/(g2*g4*g5) + (g2^2*g3*t^5.54)/(g1*g4*g5) + (g3^2*g4^2*t^5.88)/(g1*g2^4*g5) + (g3^2*g4^2*t^5.88)/(g1^4*g2*g5) + (g3^2*g5^2*t^5.88)/(g1*g2^4*g4) + (g3^2*g5^2*t^5.88)/(g1^4*g2*g4) + (g1^2*g3^2*t^5.91)/(g2^4*g4*g5) + (2*g3^2*t^5.91)/(g1*g2*g4*g5) + (g2^2*g3^2*t^5.91)/(g1^4*g4*g5) - 5*t^6. - (g1^3*t^6.)/g2^3 - (g2^3*t^6.)/g1^3 - (g4^3*t^6.)/g5^3 - (g5^3*t^6.)/g4^3 + g1^2*g2^2*g4^5*g5^5*t^6. + g1^5*g2^2*g4^5*g5^2*t^6.02 + g1^2*g2^5*g4^5*g5^2*t^6.02 + g1^5*g2^2*g4^2*g5^5*t^6.02 + g1^2*g2^5*g4^2*g5^5*t^6.02 - (g1^3*t^6.03)/g4^3 - (g2^3*t^6.03)/g4^3 - (g1^3*t^6.03)/g5^3 - (g2^3*t^6.03)/g5^3 + g1^5*g2^5*g4^2*g5^2*t^6.05 + (g3^3*t^6.23)/(g1^3*g2^12*g4^3*g5^3) + (g3^3*t^6.23)/(g1^6*g2^9*g4^3*g5^3) + (g3^3*t^6.23)/(g1^9*g2^6*g4^3*g5^3) + (g3^3*t^6.23)/(g1^12*g2^3*g4^3*g5^3) + g1^2*g2^2*g3*g4^5*g5^2*t^6.39 + g1^2*g2^2*g3*g4^2*g5^5*t^6.39 - (g3*t^6.4)/g4^3 - (g3*t^6.4)/g5^3 + g1^5*g2^2*g3*g4^2*g5^2*t^6.42 + g1^2*g2^5*g3*g4^2*g5^2*t^6.42 - (g1*g4*g5*t^6.46)/(g2^2*g3) - (g2*g4*g5*t^6.46)/(g1^2*g3) - (g1*g2*g4*t^6.48)/(g3*g5^2) - (g1*g2*g5*t^6.48)/(g3*g4^2) + (g1^3*g2^3*g4^6*g5^3*t^6.48)/g3 + (g1^3*g2^3*g4^3*g5^6*t^6.48)/g3 + (g3^2*t^6.74)/g1^6 + (g3^2*t^6.74)/g2^6 + (g3^2*t^6.74)/(g1^3*g2^3) + g4^6*g5^6*t^6.82 + g1^3*g4^6*g5^3*t^6.85 + g2^3*g4^6*g5^3*t^6.85 + g1^3*g4^3*g5^6*t^6.85 + g2^3*g4^3*g5^6*t^6.85 + g1^6*g4^6*t^6.88 + g1^3*g2^3*g4^6*t^6.88 + g2^6*g4^6*t^6.88 + g1^6*g4^3*g5^3*t^6.88 + 3*g1^3*g2^3*g4^3*g5^3*t^6.88 + g2^6*g4^3*g5^3*t^6.88 + g1^6*g5^6*t^6.88 + g1^3*g2^3*g5^6*t^6.88 + g2^6*g5^6*t^6.88 + g1^6*g2^3*g4^3*t^6.91 + g1^3*g2^6*g4^3*t^6.91 + g1^6*g2^3*g5^3*t^6.91 + g1^3*g2^6*g5^3*t^6.91 + g1^6*g2^6*t^6.94 + (g3*g4^4*t^7.19)/(g1^2*g2^5*g5^2) + (g3*g4^4*t^7.19)/(g1^5*g2^2*g5^2) + (g3*g4*g5*t^7.19)/(g1^2*g2^5) + (g3*g4*g5*t^7.19)/(g1^5*g2^2) + (g3*g5^4*t^7.19)/(g1^2*g2^5*g4^2) + (g3*g5^4*t^7.19)/(g1^5*g2^2*g4^2) + (g1*g3*g4*t^7.22)/(g2^5*g5^2) + (g3*g4*t^7.22)/(g1^2*g2^2*g5^2) + (g2*g3*g4*t^7.22)/(g1^5*g5^2) + (g1*g3*g5*t^7.22)/(g2^5*g4^2) + (g3*g5*t^7.22)/(g1^2*g2^2*g4^2) + (g2*g3*g5*t^7.22)/(g1^5*g4^2) + g3*g4^6*g5^3*t^7.22 + g3*g4^3*g5^6*t^7.22 + g1^3*g3*g4^6*t^7.25 + g2^3*g3*g4^6*t^7.25 + (g1^4*g3*t^7.25)/(g2^5*g4^2*g5^2) + (g1*g3*t^7.25)/(g2^2*g4^2*g5^2) + (g2*g3*t^7.25)/(g1^2*g4^2*g5^2) + (g2^4*g3*t^7.25)/(g1^5*g4^2*g5^2) + 3*g1^3*g3*g4^3*g5^3*t^7.25 + 3*g2^3*g3*g4^3*g5^3*t^7.25 + g1^3*g3*g5^6*t^7.25 + g2^3*g3*g5^6*t^7.25 + g1^6*g3*g4^3*t^7.28 + 2*g1^3*g2^3*g3*g4^3*t^7.28 + g2^6*g3*g4^3*t^7.28 + g1^6*g3*g5^3*t^7.28 + 2*g1^3*g2^3*g3*g5^3*t^7.28 + g2^6*g3*g5^3*t^7.28 + g1^6*g2^3*g3*t^7.3 + g1^3*g2^6*g3*t^7.3 + (g1*g2*g4^7*g5^4*t^7.3)/g3 + (g1*g2*g4^4*g5^7*t^7.3)/g3 - (g4^2*t^7.31)/(g1*g2*g3*g5) - (g5^2*t^7.31)/(g1*g2*g3*g4) + (g1^4*g2*g4^7*g5*t^7.33)/g3 + (g1*g2^4*g4^7*g5*t^7.33)/g3 + (g1^4*g2*g4^4*g5^4*t^7.33)/g3 + (g1*g2^4*g4^4*g5^4*t^7.33)/g3 + (g1^4*g2*g4*g5^7*t^7.33)/g3 + (g1*g2^4*g4*g5^7*t^7.33)/g3 - (g1^2*t^7.34)/(g2*g3*g4*g5) - (g2^2*t^7.34)/(g1*g3*g4*g5) + (g3^2*g4*g5*t^7.56)/(g1^2*g2^8) + (g3^2*g4*g5*t^7.56)/(g1^5*g2^5) + (g3^2*g4*g5*t^7.56)/(g1^8*g2^2) + (g1*g3^2*g4*t^7.59)/(g2^8*g5^2) + (2*g3^2*g4*t^7.59)/(g1^2*g2^5*g5^2) + (2*g3^2*g4*t^7.59)/(g1^5*g2^2*g5^2) + (g2*g3^2*g4*t^7.59)/(g1^8*g5^2) + (g1*g3^2*g5*t^7.59)/(g2^8*g4^2) + (2*g3^2*g5*t^7.59)/(g1^2*g2^5*g4^2) + (2*g3^2*g5*t^7.59)/(g1^5*g2^2*g4^2) + (g2*g3^2*g5*t^7.59)/(g1^8*g4^2) + g3^2*g4^6*t^7.62 + (g1*g3^2*t^7.62)/(g2^5*g4^2*g5^2) + (g3^2*t^7.62)/(g1^2*g2^2*g4^2*g5^2) + (g2*g3^2*t^7.62)/(g1^5*g4^2*g5^2) + g3^2*g4^3*g5^3*t^7.62 + g3^2*g5^6*t^7.62 + g1^3*g3^2*g4^3*t^7.65 + g2^3*g3^2*g4^3*t^7.65 + g1^3*g3^2*g5^3*t^7.65 + g2^3*g3^2*g5^3*t^7.65 + g1^6*g3^2*t^7.67 + g1^3*g2^3*g3^2*t^7.67 + g2^6*g3^2*t^7.67 - (g4^2*t^7.68)/(g1*g2^4*g5) - (g4^2*t^7.68)/(g1^4*g2*g5) - (g5^2*t^7.68)/(g1*g2^4*g4) - (g5^2*t^7.68)/(g1^4*g2*g4) + g1*g2*g4^7*g5*t^7.7 + 2*g1*g2*g4^4*g5^4*t^7.7 + g1*g2*g4*g5^7*t^7.7 - (g4^2*t^7.71)/(g1*g2*g5^4) - (g1^2*t^7.71)/(g2^4*g4*g5) - (4*t^7.71)/(g1*g2*g4*g5) - (g2^2*t^7.71)/(g1^4*g4*g5) - (g5^2*t^7.71)/(g1*g2*g4^4) + g1^4*g2*g4^4*g5*t^7.73 + g1*g2^4*g4^4*g5*t^7.73 + g1^4*g2*g4*g5^4*t^7.73 + g1*g2^4*g4*g5^4*t^7.73 - (g1^2*t^7.74)/(g2*g4*g5^4) - (g2^2*t^7.74)/(g1*g4*g5^4) - (g1^2*t^7.74)/(g2*g4^4*g5) - (g2^2*t^7.74)/(g1*g4^4*g5) + g1^6*g2^6*g4^6*g5^6*t^7.76 + (g1^2*g2^2*g4^8*g5^2*t^7.79)/g3^2 + (g1^2*g2^2*g4^5*g5^5*t^7.79)/g3^2 + (g1^2*g2^2*g4^2*g5^8*t^7.79)/g3^2 + (g3^3*g4*t^7.96)/(g1^2*g2^8*g5^2) + (g3^3*g4*t^7.96)/(g1^5*g2^5*g5^2) + (g3^3*g4*t^7.96)/(g1^8*g2^2*g5^2) + (g3^3*g5*t^7.96)/(g1^2*g2^8*g4^2) + (g3^3*g5*t^7.96)/(g1^5*g2^5*g4^2) + (g3^3*g5*t^7.96)/(g1^8*g2^2*g4^2) + (g1*g3^3*t^7.99)/(g2^8*g4^2*g5^2) + (2*g3^3*t^7.99)/(g1^2*g2^5*g4^2*g5^2) + (2*g3^3*t^7.99)/(g1^5*g2^2*g4^2*g5^2) + (g2*g3^3*t^7.99)/(g1^8*g4^2*g5^2) - (g3*g4^2*t^8.05)/(g1^4*g2^4*g5) - (g3*g5^2*t^8.05)/(g1^4*g2^4*g4) + (g1*g3*g4^4*g5^4*t^8.07)/g2^2 + (g2*g3*g4^4*g5^4*t^8.07)/g1^2 - (g3*g4^2*t^8.08)/(g1*g2^4*g5^4) - (g3*g4^2*t^8.08)/(g1^4*g2*g5^4) - (g1^2*g3*t^8.08)/(g2^7*g4*g5) - (6*g3*t^8.08)/(g1*g2^4*g4*g5) - (6*g3*t^8.08)/(g1^4*g2*g4*g5) - (g2^2*g3*t^8.08)/(g1^7*g4*g5) - (g3*g5^2*t^8.08)/(g1*g2^4*g4^4) - (g3*g5^2*t^8.08)/(g1^4*g2*g4^4) + (g1^4*g3*g4^4*g5*t^8.1)/g2^2 + 2*g1*g2*g3*g4^4*g5*t^8.1 + (g2^4*g3*g4^4*g5*t^8.1)/g1^2 + (g1^4*g3*g4*g5^4*t^8.1)/g2^2 + 2*g1*g2*g3*g4*g5^4*t^8.1 + (g2^4*g3*g4*g5^4*t^8.1)/g1^2 - (g1^2*g3*t^8.11)/(g2^4*g4*g5^4) - (2*g3*t^8.11)/(g1*g2*g4*g5^4) - (g2^2*g3*t^8.11)/(g1^4*g4*g5^4) - (g1^2*g3*t^8.11)/(g2^4*g4^4*g5) - (2*g3*t^8.11)/(g1*g2*g4^4*g5) - (g2^2*g3*t^8.11)/(g1^4*g4^4*g5) + g1^4*g2*g3*g4*g5*t^8.13 + g1*g2^4*g3*g4*g5*t^8.13 - (g1^5*g2^2*g4^2*g5^2*t^8.22)/g3 - (g1^2*g2^5*g4^2*g5^2*t^8.22)/g3 + (g3^4*t^8.31)/(g1^4*g2^16*g4^4*g5^4) + (g3^4*t^8.31)/(g1^7*g2^13*g4^4*g5^4) + (g3^4*t^8.31)/(g1^10*g2^10*g4^4*g5^4) + (g3^4*t^8.31)/(g1^13*g2^7*g4^4*g5^4) + (g3^4*t^8.31)/(g1^16*g2^4*g4^4*g5^4) - (g3^2*t^8.45)/(g1^4*g2^4*g4*g5) - (g3^2*t^8.47)/(g1*g2^4*g4*g5^4) - (g3^2*t^8.47)/(g1^4*g2*g4*g5^4) - (g3^2*t^8.47)/(g1*g2^4*g4^4*g5) - (g3^2*t^8.47)/(g1^4*g2*g4^4*g5) + (g1*g3^2*g4^4*g5*t^8.47)/g2^2 + (g2*g3^2*g4^4*g5*t^8.47)/g1^2 + (g1*g3^2*g4*g5^4*t^8.47)/g2^2 + (g2*g3^2*g4*g5^4*t^8.47)/g1^2 + (g1^4*g3^2*g4*g5*t^8.5)/g2^2 + g1*g2*g3^2*g4*g5*t^8.5 + (g2^4*g3^2*g4*g5*t^8.5)/g1^2 - t^8.53/(g1^3*g2^3) + (g4^8*g5^2*t^8.53)/(g1*g2) + (g4^5*g5^5*t^8.53)/(g1*g2) + (g4^2*g5^8*t^8.53)/(g1*g2) + (g1^2*g4^8*t^8.56)/(g2*g5) + (g2^2*g4^8*t^8.56)/(g1*g5) + (2*g1^2*g4^5*g5^2*t^8.56)/g2 + (2*g2^2*g4^5*g5^2*t^8.56)/g1 + (2*g1^2*g4^2*g5^5*t^8.56)/g2 + (2*g2^2*g4^2*g5^5*t^8.56)/g1 + (g1^2*g5^8*t^8.56)/(g2*g4) + (g2^2*g5^8*t^8.56)/(g1*g4) + g1^4*g2^4*g4^7*g5^7*t^8.58 + t^8.59/g4^6 + t^8.59/g5^6 + t^8.59/(g4^3*g5^3) + (g1^5*g4^5*t^8.59)/(g2*g5) + (g1^2*g2^2*g4^5*t^8.59)/g5 + (g2^5*g4^5*t^8.59)/(g1*g5) + (g1^5*g4^2*g5^2*t^8.59)/g2 - 2*g1^2*g2^2*g4^2*g5^2*t^8.59 + (g2^5*g4^2*g5^2*t^8.59)/g1 + (g1^5*g5^5*t^8.59)/(g2*g4) + (g1^2*g2^2*g5^5*t^8.59)/g4 + (g2^5*g5^5*t^8.59)/(g1*g4) + (g1^8*g4^2*t^8.61)/(g2*g5) + (g1^5*g2^2*g4^2*t^8.61)/g5 + (g1^2*g2^5*g4^2*t^8.61)/g5 + (g2^8*g4^2*t^8.61)/(g1*g5) + (g1^8*g5^2*t^8.61)/(g2*g4) + (g1^5*g2^2*g5^2*t^8.61)/g4 + (g1^2*g2^5*g5^2*t^8.61)/g4 + (g2^8*g5^2*t^8.61)/(g1*g4) + g1^7*g2^4*g4^7*g5^4*t^8.61 + g1^4*g2^7*g4^7*g5^4*t^8.61 + g1^7*g2^4*g4^4*g5^7*t^8.61 + g1^4*g2^7*g4^4*g5^7*t^8.61 + (g1^8*g2^2*t^8.64)/(g4*g5) + (g1^5*g2^5*t^8.64)/(g4*g5) + (g1^2*g2^8*t^8.64)/(g4*g5) + g1^7*g2^7*g4^4*g5^4*t^8.64 - (g1^3*g2^3*g4^3*g5^3*t^8.67)/g3^2 + (g3^3*t^8.82)/(g1*g2^10*g4*g5) + (g3^3*t^8.82)/(g1^4*g2^7*g4*g5) + (g3^3*t^8.82)/(g1^7*g2^4*g4*g5) + (g3^3*t^8.82)/(g1^10*g2*g4*g5) + (g3*g4^5*g5^5*t^8.9)/(g1*g2^4) + (g3*g4^5*g5^5*t^8.9)/(g1^4*g2) + (g3*g4^8*t^8.93)/(g1*g2*g5) + (g1^2*g3*g4^5*g5^2*t^8.93)/g2^4 + (3*g3*g4^5*g5^2*t^8.93)/(g1*g2) + (g2^2*g3*g4^5*g5^2*t^8.93)/g1^4 + (g1^2*g3*g4^2*g5^5*t^8.93)/g2^4 + (3*g3*g4^2*g5^5*t^8.93)/(g1*g2) + (g2^2*g3*g4^2*g5^5*t^8.93)/g1^4 + (g3*g5^8*t^8.93)/(g1*g2*g4) + (g1^5*g3*g4^5*t^8.95)/(g2^4*g5) + (3*g1^2*g3*g4^5*t^8.95)/(g2*g5) + (3*g2^2*g3*g4^5*t^8.95)/(g1*g5) + (g2^5*g3*g4^5*t^8.95)/(g1^4*g5) + (g1^5*g3*g4^2*g5^2*t^8.95)/g2^4 + (4*g1^2*g3*g4^2*g5^2*t^8.95)/g2 + (4*g2^2*g3*g4^2*g5^2*t^8.95)/g1 + (g2^5*g3*g4^2*g5^2*t^8.95)/g1^4 + (g1^5*g3*g5^5*t^8.95)/(g2^4*g4) + (3*g1^2*g3*g5^5*t^8.95)/(g2*g4) + (3*g2^2*g3*g5^5*t^8.95)/(g1*g4) + (g2^5*g3*g5^5*t^8.95)/(g1^4*g4) + (2*g1^5*g3*g4^2*t^8.98)/(g2*g5) + (2*g1^2*g2^2*g3*g4^2*t^8.98)/g5 + (2*g2^5*g3*g4^2*t^8.98)/(g1*g5) + (2*g1^5*g3*g5^2*t^8.98)/(g2*g4) + (2*g1^2*g2^2*g3*g5^2*t^8.98)/g4 + (2*g2^5*g3*g5^2*t^8.98)/(g1*g4) + g1^4*g2^4*g3*g4^7*g5^4*t^8.98 + g1^4*g2^4*g3*g4^4*g5^7*t^8.98 - t^4.71/(g1*g2*g4*g5*y) - (g3*t^6.78)/(g1^2*g2^5*g4^2*g5^2*y) - (g3*t^6.78)/(g1^5*g2^2*g4^2*g5^2*y) + (g3^2*t^7.15)/(g1^5*g2^5*g4^2*g5^2*y) + (g1*g3*g4*g5*t^7.66)/(g2^2*y) + (g2*g3*g4*g5*t^7.66)/(g1^2*y) + (g3*g4^2*g5^2*t^8.49)/(g1*g2^4*y) + (g3*g4^2*g5^2*t^8.49)/(g1^4*g2*y) + (g1^2*g3*g4^2*t^8.52)/(g2^4*g5*y) + (2*g3*g4^2*t^8.52)/(g1*g2*g5*y) + (g2^2*g3*g4^2*t^8.52)/(g1^4*g5*y) + (g1^2*g3*g5^2*t^8.52)/(g2^4*g4*y) + (2*g3*g5^2*t^8.52)/(g1*g2*g4*y) + (g2^2*g3*g5^2*t^8.52)/(g1^4*g4*y) + (g1^2*g3*t^8.54)/(g2*g4*g5*y) + (g2^2*g3*t^8.54)/(g1*g4*g5*y) + (g1^3*t^8.63)/(g3*y) + (g2^3*t^8.63)/(g3*y) - (g3^2*t^8.86)/(g1^3*g2^9*g4^3*g5^3*y) - (g3^2*t^8.86)/(g1^6*g2^6*g4^3*g5^3*y) - (g3^2*t^8.86)/(g1^9*g2^3*g4^3*g5^3*y) + (g3^2*g4^2*t^8.88)/(g1*g2^4*g5*y) + (g3^2*g4^2*t^8.88)/(g1^4*g2*g5*y) + (g3^2*g5^2*t^8.88)/(g1*g2^4*g4*y) + (g3^2*g5^2*t^8.88)/(g1^4*g2*g4*y) + (g1^2*g3^2*t^8.91)/(g2^4*g4*g5*y) + (2*g3^2*t^8.91)/(g1*g2*g4*g5*y) + (g2^2*g3^2*t^8.91)/(g1^4*g4*g5*y) + (g4^3*t^8.97)/(g1^3*y) + (g4^3*t^8.97)/(g2^3*y) + (g5^3*t^8.97)/(g1^3*y) + (g5^3*t^8.97)/(g2^3*y) - (t^4.71*y)/(g1*g2*g4*g5) - (g3*t^6.78*y)/(g1^2*g2^5*g4^2*g5^2) - (g3*t^6.78*y)/(g1^5*g2^2*g4^2*g5^2) + (g3^2*t^7.15*y)/(g1^5*g2^5*g4^2*g5^2) + (g1*g3*g4*g5*t^7.66*y)/g2^2 + (g2*g3*g4*g5*t^7.66*y)/g1^2 + (g3*g4^2*g5^2*t^8.49*y)/(g1*g2^4) + (g3*g4^2*g5^2*t^8.49*y)/(g1^4*g2) + (g1^2*g3*g4^2*t^8.52*y)/(g2^4*g5) + (2*g3*g4^2*t^8.52*y)/(g1*g2*g5) + (g2^2*g3*g4^2*t^8.52*y)/(g1^4*g5) + (g1^2*g3*g5^2*t^8.52*y)/(g2^4*g4) + (2*g3*g5^2*t^8.52*y)/(g1*g2*g4) + (g2^2*g3*g5^2*t^8.52*y)/(g1^4*g4) + (g1^2*g3*t^8.54*y)/(g2*g4*g5) + (g2^2*g3*t^8.54*y)/(g1*g4*g5) + (g1^3*t^8.63*y)/g3 + (g2^3*t^8.63*y)/g3 - (g3^2*t^8.86*y)/(g1^3*g2^9*g4^3*g5^3) - (g3^2*t^8.86*y)/(g1^6*g2^6*g4^3*g5^3) - (g3^2*t^8.86*y)/(g1^9*g2^3*g4^3*g5^3) + (g3^2*g4^2*t^8.88*y)/(g1*g2^4*g5) + (g3^2*g4^2*t^8.88*y)/(g1^4*g2*g5) + (g3^2*g5^2*t^8.88*y)/(g1*g2^4*g4) + (g3^2*g5^2*t^8.88*y)/(g1^4*g2*g4) + (g1^2*g3^2*t^8.91*y)/(g2^4*g4*g5) + (2*g3^2*t^8.91*y)/(g1*g2*g4*g5) + (g2^2*g3^2*t^8.91*y)/(g1^4*g4*g5) + (g4^3*t^8.97*y)/g1^3 + (g4^3*t^8.97*y)/g2^3 + (g5^3*t^8.97*y)/g1^3 + (g5^3*t^8.97*y)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55672 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3q_1q_3$ | 0.91 | 1.1333 | 0.803 | [X:[], M:[0.7265, 0.8501, 0.7265], q:[0.6492, 0.6242, 0.6242], qb:[0.6008, 0.6008, 0.6008], phi:[0.575]] | 2*t^2.18 + t^2.55 + 3*t^3.6 + 6*t^3.68 + 4*t^3.75 + 3*t^4.36 + 2*t^4.73 + t^5.1 + 6*t^5.33 + 6*t^5.4 + 3*t^5.47 + 3*t^5.48 + 2*t^5.55 + t^5.62 + 6*t^5.78 + 9*t^5.85 - 14*t^6. - t^4.72/y - t^4.72*y | detail |