Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55775 SU2adj1nf3 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3q_1q_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ 0.8849 1.0897 0.8121 [X:[], M:[0.7846, 0.9015, 0.7846], q:[0.6283, 0.5871, 0.5871], qb:[0.7254, 0.7254, 0.5496], phi:[0.5493]] [X:[], M:[[0, 1, -3, -3, 1], [0, 0, 2, 2, 0], [1, 0, -3, -3, 1]], q:[[-1, -1, 3, 3, -1], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], phi:[[0, 0, -1, -1, 0]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_1$, $ M_2$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_2q_3$, $ q_1\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ q_1\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_1M_3$, $ M_1^2$, $ \phi_1\tilde{q}_3^2$, $ M_2M_3$, $ \phi_1q_2\tilde{q}_3$, $ M_1M_2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_1q_3$, $ \phi_1q_1q_2$, $ M_2^2$, $ \phi_1q_1^2$, $ M_3q_2\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_1q_3\tilde{q}_3$ . -7 2*t^2.35 + t^2.7 + 2*t^3.41 + t^3.52 + t^3.53 + 2*t^3.82 + 4*t^3.94 + 2*t^4.06 + t^4.35 + 3*t^4.71 + t^4.95 + 4*t^5.06 + 3*t^5.17 + t^5.18 + 2*t^5.29 + t^5.41 + t^5.42 + 3*t^5.76 - 7*t^6. - 2*t^6.12 + 4*t^6.18 + t^6.23 + 6*t^6.29 + 4*t^6.64 + 2*t^6.71 + 2*t^6.77 + 3*t^6.82 + 2*t^6.93 + 2*t^6.94 + t^7.05 + 5*t^7.06 + t^7.07 - 2*t^7.12 - 4*t^7.23 + 4*t^7.24 + 2*t^7.3 + 8*t^7.35 + 6*t^7.41 + 4*t^7.46 + 4*t^7.47 + 4*t^7.52 + 2*t^7.6 + t^7.65 + 8*t^7.76 + 10*t^7.87 - t^7.88 + 4*t^7.89 + 6*t^8. + t^8.11 + 7*t^8.12 - t^8.24 - 12*t^8.35 + 2*t^8.36 + 4*t^8.47 + 6*t^8.53 + 6*t^8.58 + 2*t^8.59 + 8*t^8.64 + 3*t^8.69 - 5*t^8.7 + t^8.72 + 4*t^8.88 + t^8.93 + t^8.95 - t^4.65/y - (2*t^7.)/y + t^7.71/y + (2*t^8.06)/y + (2*t^8.29)/y + (4*t^8.76)/y + (2*t^8.88)/y + (2*t^8.89)/y - t^4.65*y - 2*t^7.*y + t^7.71*y + 2*t^8.06*y + 2*t^8.29*y + 4*t^8.76*y + 2*t^8.88*y + 2*t^8.89*y (g1*g5*t^2.35)/(g3^3*g4^3) + (g2*g5*t^2.35)/(g3^3*g4^3) + g3^2*g4^2*t^2.7 + g1*g5*t^3.41 + g2*g5*t^3.41 + g1*g2*t^3.52 + (g3^3*g4^3*t^3.53)/(g1*g2) + g3*g5*t^3.82 + g4*g5*t^3.82 + g1*g3*t^3.94 + g2*g3*t^3.94 + g1*g4*t^3.94 + g2*g4*t^3.94 + (g3^4*g4^3*t^4.06)/(g1*g2*g5) + (g3^3*g4^4*t^4.06)/(g1*g2*g5) + g3*g4*t^4.35 + (g1^2*g5^2*t^4.71)/(g3^6*g4^6) + (g1*g2*g5^2*t^4.71)/(g3^6*g4^6) + (g2^2*g5^2*t^4.71)/(g3^6*g4^6) + (g5^2*t^4.95)/(g3*g4) + (2*g1*g5*t^5.06)/(g3*g4) + (2*g2*g5*t^5.06)/(g3*g4) + (g1^2*t^5.17)/(g3*g4) + (g1*g2*t^5.17)/(g3*g4) + (g2^2*t^5.17)/(g3*g4) + (g3^2*g4^2*t^5.18)/(g1*g2) + (g3^2*g4^2*t^5.29)/(g1*g5) + (g3^2*g4^2*t^5.29)/(g2*g5) + g3^4*g4^4*t^5.41 + (g3^5*g4^5*t^5.42)/(g1^2*g2^2*g5^2) + (g1^2*g5^2*t^5.76)/(g3^3*g4^3) + (g1*g2*g5^2*t^5.76)/(g3^3*g4^3) + (g2^2*g5^2*t^5.76)/(g3^3*g4^3) - 5*t^6. - (g1*t^6.)/g2 - (g2*t^6.)/g1 - (g1*t^6.11)/g5 - (g2*t^6.11)/g5 + g1*g3^2*g4^2*g5*t^6.11 + g2*g3^2*g4^2*g5*t^6.11 - (g3^3*g4^3*t^6.12)/(g1*g2^2*g5) - (g3^3*g4^3*t^6.12)/(g1^2*g2*g5) + (g1*g5^2*t^6.18)/(g3^2*g4^3) + (g2*g5^2*t^6.18)/(g3^2*g4^3) + (g1*g5^2*t^6.18)/(g3^3*g4^2) + (g2*g5^2*t^6.18)/(g3^3*g4^2) + g1*g2*g3^2*g4^2*t^6.23 + (g3^5*g4^5*t^6.24)/(g1*g2) - (g3^3*g4^3*t^6.24)/(g1*g2*g5^2) + (g1^2*g5*t^6.29)/(g3^2*g4^3) + (g1*g2*g5*t^6.29)/(g3^2*g4^3) + (g2^2*g5*t^6.29)/(g3^2*g4^3) + (g1^2*g5*t^6.29)/(g3^3*g4^2) + (g1*g2*g5*t^6.29)/(g3^3*g4^2) + (g2^2*g5*t^6.29)/(g3^3*g4^2) - (g3*t^6.53)/g5 - (g4*t^6.53)/g5 + g3^3*g4^2*g5*t^6.53 + g3^2*g4^3*g5*t^6.53 + g1*g3^3*g4^2*t^6.64 + g2*g3^3*g4^2*t^6.64 + g1*g3^2*g4^3*t^6.64 + g2*g3^2*g4^3*t^6.64 + (g1*g5*t^6.71)/(g3^2*g4^2) + (g2*g5*t^6.71)/(g3^2*g4^2) + (g3^6*g4^5*t^6.77)/(g1*g2*g5) + (g3^5*g4^6*t^6.77)/(g1*g2*g5) + g1^2*g5^2*t^6.82 + g1*g2*g5^2*t^6.82 + g2^2*g5^2*t^6.82 + g1^2*g2*g5*t^6.93 + g1*g2^2*g5*t^6.93 + (g3^3*g4^3*g5*t^6.94)/g1 + (g3^3*g4^3*g5*t^6.94)/g2 + g1^2*g2^2*t^7.05 + g3^3*g4^3*t^7.06 + (g1^3*g5^3*t^7.06)/(g3^9*g4^9) + (g1^2*g2*g5^3*t^7.06)/(g3^9*g4^9) + (g1*g2^2*g5^3*t^7.06)/(g3^9*g4^9) + (g2^3*g5^3*t^7.06)/(g3^9*g4^9) + (g3^6*g4^6*t^7.07)/(g1^2*g2^2) - (g5*t^7.12)/(g3*g4^2) - (g5*t^7.12)/(g3^2*g4) - (g1*t^7.23)/(g3*g4^2) - (g2*t^7.23)/(g3*g4^2) - (g1*t^7.23)/(g3^2*g4) - (g2*t^7.23)/(g3^2*g4) + g1*g3*g5^2*t^7.24 + g2*g3*g5^2*t^7.24 + g1*g4*g5^2*t^7.24 + g2*g4*g5^2*t^7.24 + (g1*g5^3*t^7.3)/(g3^4*g4^4) + (g2*g5^3*t^7.3)/(g3^4*g4^4) + g1^2*g3*g5*t^7.35 + 2*g1*g2*g3*g5*t^7.35 + g2^2*g3*g5*t^7.35 + g1^2*g4*g5*t^7.35 + 2*g1*g2*g4*g5*t^7.35 + g2^2*g4*g5*t^7.35 - (g3^2*g4*t^7.36)/(g1*g2*g5) - (g3*g4^2*t^7.36)/(g1*g2*g5) + (g3^4*g4^3*g5*t^7.36)/(g1*g2) + (g3^3*g4^4*g5*t^7.36)/(g1*g2) + (2*g1^2*g5^2*t^7.41)/(g3^4*g4^4) + (2*g1*g2*g5^2*t^7.41)/(g3^4*g4^4) + (2*g2^2*g5^2*t^7.41)/(g3^4*g4^4) + g1^2*g2*g3*t^7.46 + g1*g2^2*g3*t^7.46 + g1^2*g2*g4*t^7.46 + g1*g2^2*g4*t^7.46 + (g3^4*g4^3*t^7.47)/g1 + (g3^4*g4^3*t^7.47)/g2 + (g3^3*g4^4*t^7.47)/g1 + (g3^3*g4^4*t^7.47)/g2 + (g1^3*g5*t^7.52)/(g3^4*g4^4) + (g1^2*g2*g5*t^7.52)/(g3^4*g4^4) + (g1*g2^2*g5*t^7.52)/(g3^4*g4^4) + (g2^3*g5*t^7.52)/(g3^4*g4^4) + (g3^7*g4^6*t^7.6)/(g1^2*g2^2*g5) + (g3^6*g4^7*t^7.6)/(g1^2*g2^2*g5) - (2*t^7.65)/(g3*g4) + g3^2*g5^2*t^7.65 + g3*g4*g5^2*t^7.65 + g4^2*g5^2*t^7.65 - (g1*t^7.76)/(g3*g4*g5) - (g2*t^7.76)/(g3*g4*g5) + g1*g3^2*g5*t^7.76 + g2*g3^2*g5*t^7.76 + 3*g1*g3*g4*g5*t^7.76 + 3*g2*g3*g4*g5*t^7.76 + g1*g4^2*g5*t^7.76 + g2*g4^2*g5*t^7.76 + g1^2*g3^2*t^7.87 + g1*g2*g3^2*t^7.87 + g2^2*g3^2*t^7.87 + g1^2*g3*g4*t^7.87 + 2*g1*g2*g3*g4*t^7.87 + g2^2*g3*g4*t^7.87 + g1^2*g4^2*t^7.87 + g1*g2*g4^2*t^7.87 + g2^2*g4^2*t^7.87 - (g3^2*g4^2*t^7.88)/(g1*g2*g5^2) + (g3^5*g4^3*t^7.89)/(g1*g2) + (2*g3^4*g4^4*t^7.89)/(g1*g2) + (g3^3*g4^5*t^7.89)/(g1*g2) + (g3^5*g4^3*t^8.)/(g1*g5) + (g3^5*g4^3*t^8.)/(g2*g5) + (g3^4*g4^4*t^8.)/(g1*g5) + (g3^4*g4^4*t^8.)/(g2*g5) + (g3^3*g4^5*t^8.)/(g1*g5) + (g3^3*g4^5*t^8.)/(g2*g5) + g3^6*g4^6*t^8.11 + (g3^8*g4^6*t^8.12)/(g1^2*g2^2*g5^2) + (g3^7*g4^7*t^8.12)/(g1^2*g2^2*g5^2) + (g3^6*g4^8*t^8.12)/(g1^2*g2^2*g5^2) + (g1^3*g5^3*t^8.12)/(g3^6*g4^6) + (g1^2*g2*g5^3*t^8.12)/(g3^6*g4^6) + (g1*g2^2*g5^3*t^8.12)/(g3^6*g4^6) + (g2^3*g5^3*t^8.12)/(g3^6*g4^6) - (g5^2*t^8.24)/(g3^3*g4^3) - (5*g1*g5*t^8.35)/(g3^3*g4^3) - (g1^2*g5*t^8.35)/(g2*g3^3*g4^3) - (5*g2*g5*t^8.35)/(g3^3*g4^3) - (g2^2*g5*t^8.35)/(g1*g3^3*g4^3) + (g1*g5^3*t^8.36)/(g3*g4) + (g2*g5^3*t^8.36)/(g3*g4) - (g1^2*t^8.47)/(g3^3*g4^3) - (g1*g2*t^8.47)/(g3^3*g4^3) - (g2^2*t^8.47)/(g3^3*g4^3) + (2*g1^2*g5^2*t^8.47)/(g3*g4) + (3*g1*g2*g5^2*t^8.47)/(g3*g4) + (2*g2^2*g5^2*t^8.47)/(g3*g4) - t^8.48/(g1*g2) + (g3^2*g4^2*g5^2*t^8.48)/(g1*g2) + (g1^2*g5^3*t^8.53)/(g3^5*g4^6) + (g1*g2*g5^3*t^8.53)/(g3^5*g4^6) + (g2^2*g5^3*t^8.53)/(g3^5*g4^6) + (g1^2*g5^3*t^8.53)/(g3^6*g4^5) + (g1*g2*g5^3*t^8.53)/(g3^6*g4^5) + (g2^2*g5^3*t^8.53)/(g3^6*g4^5) + (g1^3*g5*t^8.58)/(g3*g4) + (2*g1^2*g2*g5*t^8.58)/(g3*g4) + (2*g1*g2^2*g5*t^8.58)/(g3*g4) + (g2^3*g5*t^8.58)/(g3*g4) + (g3^2*g4^2*g5*t^8.59)/g1 + (g3^2*g4^2*g5*t^8.59)/g2 + (g1^3*g5^2*t^8.64)/(g3^5*g4^6) + (g1^2*g2*g5^2*t^8.64)/(g3^5*g4^6) + (g1*g2^2*g5^2*t^8.64)/(g3^5*g4^6) + (g2^3*g5^2*t^8.64)/(g3^5*g4^6) + (g1^3*g5^2*t^8.64)/(g3^6*g4^5) + (g1^2*g2*g5^2*t^8.64)/(g3^6*g4^5) + (g1*g2^2*g5^2*t^8.64)/(g3^6*g4^5) + (g2^3*g5^2*t^8.64)/(g3^6*g4^5) + (g1^3*g2*t^8.69)/(g3*g4) + (g1^2*g2^2*t^8.69)/(g3*g4) + (g1*g2^3*t^8.69)/(g3*g4) - g3^3*g4*t^8.7 - 4*g3^2*g4^2*t^8.7 - g3*g4^3*t^8.7 + t^8.7/g5^2 + (g3^5*g4^5*t^8.72)/(g1^2*g2^2) - (g5*t^8.77)/(g3^2*g4^3) - (g5*t^8.77)/(g3^3*g4^2) + (g5^3*t^8.77)/g3 + (g5^3*t^8.77)/g4 - (g1*g3^2*g4^2*t^8.82)/g5 - (g2*g3^2*g4^2*t^8.82)/g5 + g1*g3^4*g4^4*g5*t^8.82 + g2*g3^4*g4^4*g5*t^8.82 - (g1*t^8.88)/(g3^2*g4^3) - (g2*t^8.88)/(g3^2*g4^3) - (g1*t^8.88)/(g3^3*g4^2) - (g2*t^8.88)/(g3^3*g4^2) + (2*g1*g5^2*t^8.88)/g3 + (2*g2*g5^2*t^8.88)/g3 + (2*g1*g5^2*t^8.88)/g4 + (2*g2*g5^2*t^8.88)/g4 + g1*g2*g3^4*g4^4*t^8.93 + (g3^7*g4^7*t^8.94)/(g1*g2) - (g3^5*g4^5*t^8.94)/(g1*g2*g5^2) + (g3^8*g4^8*t^8.95)/(g1^3*g2^3*g5^2) - t^4.65/(g3*g4*y) - (g1*g5*t^7.)/(g3^4*g4^4*y) - (g2*g5*t^7.)/(g3^4*g4^4*y) + (g1*g2*g5^2*t^7.71)/(g3^6*g4^6*y) + (g1*g5*t^8.06)/(g3*g4*y) + (g2*g5*t^8.06)/(g3*g4*y) + (g3^2*g4^2*t^8.29)/(g1*g5*y) + (g3^2*g4^2*t^8.29)/(g2*g5*y) + (g1^2*g5^2*t^8.76)/(g3^3*g4^3*y) + (2*g1*g2*g5^2*t^8.76)/(g3^3*g4^3*y) + (g2^2*g5^2*t^8.76)/(g3^3*g4^3*y) + (g1^2*g2*g5*t^8.88)/(g3^3*g4^3*y) + (g1*g2^2*g5*t^8.88)/(g3^3*g4^3*y) + (g5*t^8.89)/(g1*y) + (g5*t^8.89)/(g2*y) - (t^4.65*y)/(g3*g4) - (g1*g5*t^7.*y)/(g3^4*g4^4) - (g2*g5*t^7.*y)/(g3^4*g4^4) + (g1*g2*g5^2*t^7.71*y)/(g3^6*g4^6) + (g1*g5*t^8.06*y)/(g3*g4) + (g2*g5*t^8.06*y)/(g3*g4) + (g3^2*g4^2*t^8.29*y)/(g1*g5) + (g3^2*g4^2*t^8.29*y)/(g2*g5) + (g1^2*g5^2*t^8.76*y)/(g3^3*g4^3) + (2*g1*g2*g5^2*t^8.76*y)/(g3^3*g4^3) + (g2^2*g5^2*t^8.76*y)/(g3^3*g4^3) + (g1^2*g2*g5*t^8.88*y)/(g3^3*g4^3) + (g1*g2^2*g5*t^8.88*y)/(g3^3*g4^3) + (g5*t^8.89*y)/g1 + (g5*t^8.89*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55672 SU2adj1nf3 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3q_1q_3$ 0.91 1.1333 0.803 [X:[], M:[0.7265, 0.8501, 0.7265], q:[0.6492, 0.6242, 0.6242], qb:[0.6008, 0.6008, 0.6008], phi:[0.575]] 2*t^2.18 + t^2.55 + 3*t^3.6 + 6*t^3.68 + 4*t^3.75 + 3*t^4.36 + 2*t^4.73 + t^5.1 + 6*t^5.33 + 6*t^5.4 + 3*t^5.47 + 3*t^5.48 + 2*t^5.55 + t^5.62 + 6*t^5.78 + 9*t^5.85 - 14*t^6. - t^4.72/y - t^4.72*y detail