Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55761 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3q_1q_3$ + $ \phi_1q_1^2$ | 0.9063 | 1.1357 | 0.7981 | [X:[], M:[0.6884, 0.844, 0.6884], q:[0.711, 0.6006, 0.6006], qb:[0.5919, 0.5919, 0.5919], phi:[0.578]] | [X:[], M:[[-8, -1, -1, -1, -1], [4, 4, 4, 4, 4], [-1, -8, -1, -1, -1]], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_1$, $ M_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ q_2q_3$, $ q_1\tilde{q}_1$, $ M_3^2$, $ M_1M_3$, $ M_1^2$, $ M_2M_3$, $ M_1M_2$, $ M_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_3\tilde{q}_1$, $ M_1q_3\tilde{q}_1$, $ M_3q_3\tilde{q}_2$, $ M_1q_3\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_3q_2q_3$, $ \phi_1q_1q_3$ | . | -13 | 2*t^2.07 + t^2.53 + 3*t^3.55 + 6*t^3.58 + t^3.6 + 3*t^3.91 + 3*t^4.13 + 2*t^4.6 + t^5.06 + 6*t^5.29 + 6*t^5.31 + 3*t^5.34 + 6*t^5.62 + 12*t^5.64 + 2*t^5.67 - 13*t^6. - 6*t^6.03 + 3*t^6.08 + 6*t^6.11 + t^6.14 + 4*t^6.2 - 2*t^6.33 - 3*t^6.36 + 3*t^6.44 + 3*t^6.66 + 6*t^7.1 + 18*t^7.13 + 21*t^7.16 + 6*t^7.18 + t^7.21 + 12*t^7.35 + 9*t^7.38 + 4*t^7.4 + 8*t^7.46 + 12*t^7.49 + t^7.6 + 9*t^7.68 + 12*t^7.71 - 9*t^7.73 - 6*t^7.76 + 6*t^7.82 - 3*t^8.04 - 26*t^8.07 - 12*t^8.09 + 6*t^8.15 + 9*t^8.17 + 5*t^8.26 - t^8.4 + 6*t^8.45 - 14*t^8.53 - 6*t^8.56 + 3*t^8.62 + 6*t^8.64 + t^8.67 + 4*t^8.73 + 15*t^8.84 + 34*t^8.86 + 30*t^8.89 + 18*t^8.92 + 3*t^8.94 + 3*t^8.97 - t^4.73/y - (2*t^6.8)/y + t^7.13/y + (2*t^7.6)/y + (6*t^8.62)/y + (12*t^8.64)/y + (4*t^8.67)/y - (3*t^8.86)/y + (6*t^8.97)/y - t^4.73*y - 2*t^6.8*y + t^7.13*y + 2*t^7.6*y + 6*t^8.62*y + 12*t^8.64*y + 4*t^8.67*y - 3*t^8.86*y + 6*t^8.97*y | t^2.07/(g1*g2^8*g3*g4*g5) + t^2.07/(g1^8*g2*g3*g4*g5) + g1^4*g2^4*g3^4*g4^4*g5^4*t^2.53 + g3^7*g4^7*t^3.55 + g3^7*g5^7*t^3.55 + g4^7*g5^7*t^3.55 + g1^7*g3^7*t^3.58 + g2^7*g3^7*t^3.58 + g1^7*g4^7*t^3.58 + g2^7*g4^7*t^3.58 + g1^7*g5^7*t^3.58 + g2^7*g5^7*t^3.58 + g1^7*g2^7*t^3.6 + g1*g2*g3^8*g4*g5*t^3.91 + g1*g2*g3*g4^8*g5*t^3.91 + g1*g2*g3*g4*g5^8*t^3.91 + t^4.13/(g1^2*g2^16*g3^2*g4^2*g5^2) + t^4.13/(g1^9*g2^9*g3^2*g4^2*g5^2) + t^4.13/(g1^16*g2^2*g3^2*g4^2*g5^2) + (g1^3*g3^3*g4^3*g5^3*t^4.6)/g2^4 + (g2^3*g3^3*g4^3*g5^3*t^4.6)/g1^4 + g1^8*g2^8*g3^8*g4^8*g5^8*t^5.06 + (g3^12*t^5.29)/(g1^2*g2^2*g4^2*g5^2) + (g3^5*g4^5*t^5.29)/(g1^2*g2^2*g5^2) + (g4^12*t^5.29)/(g1^2*g2^2*g3^2*g5^2) + (g3^5*g5^5*t^5.29)/(g1^2*g2^2*g4^2) + (g4^5*g5^5*t^5.29)/(g1^2*g2^2*g3^2) + (g5^12*t^5.29)/(g1^2*g2^2*g3^2*g4^2) + (g1^5*g3^5*t^5.31)/(g2^2*g4^2*g5^2) + (g2^5*g3^5*t^5.31)/(g1^2*g4^2*g5^2) + (g1^5*g4^5*t^5.31)/(g2^2*g3^2*g5^2) + (g2^5*g4^5*t^5.31)/(g1^2*g3^2*g5^2) + (g1^5*g5^5*t^5.31)/(g2^2*g3^2*g4^2) + (g2^5*g5^5*t^5.31)/(g1^2*g3^2*g4^2) + (g1^12*t^5.34)/(g2^2*g3^2*g4^2*g5^2) + (g1^5*g2^5*t^5.34)/(g3^2*g4^2*g5^2) + (g2^12*t^5.34)/(g1^2*g3^2*g4^2*g5^2) + (g3^6*g4^6*t^5.62)/(g1*g2^8*g5) + (g3^6*g4^6*t^5.62)/(g1^8*g2*g5) + (g3^6*g5^6*t^5.62)/(g1*g2^8*g4) + (g3^6*g5^6*t^5.62)/(g1^8*g2*g4) + (g4^6*g5^6*t^5.62)/(g1*g2^8*g3) + (g4^6*g5^6*t^5.62)/(g1^8*g2*g3) + (g1^6*g3^6*t^5.64)/(g2^8*g4*g5) + (2*g3^6*t^5.64)/(g1*g2*g4*g5) + (g2^6*g3^6*t^5.64)/(g1^8*g4*g5) + (g1^6*g4^6*t^5.64)/(g2^8*g3*g5) + (2*g4^6*t^5.64)/(g1*g2*g3*g5) + (g2^6*g4^6*t^5.64)/(g1^8*g3*g5) + (g1^6*g5^6*t^5.64)/(g2^8*g3*g4) + (2*g5^6*t^5.64)/(g1*g2*g3*g4) + (g2^6*g5^6*t^5.64)/(g1^8*g3*g4) + (g1^6*t^5.67)/(g2*g3*g4*g5) + (g2^6*t^5.67)/(g1*g3*g4*g5) - 5*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g3^7*t^6.)/g4^7 - (g4^7*t^6.)/g3^7 - (g3^7*t^6.)/g5^7 - (g4^7*t^6.)/g5^7 - (g5^7*t^6.)/g3^7 - (g5^7*t^6.)/g4^7 - (g1^7*t^6.03)/g3^7 - (g2^7*t^6.03)/g3^7 - (g1^7*t^6.03)/g4^7 - (g2^7*t^6.03)/g4^7 - (g1^7*t^6.03)/g5^7 - (g2^7*t^6.03)/g5^7 + g1^4*g2^4*g3^11*g4^11*g5^4*t^6.08 + g1^4*g2^4*g3^11*g4^4*g5^11*t^6.08 + g1^4*g2^4*g3^4*g4^11*g5^11*t^6.08 + g1^11*g2^4*g3^11*g4^4*g5^4*t^6.11 + g1^4*g2^11*g3^11*g4^4*g5^4*t^6.11 + g1^11*g2^4*g3^4*g4^11*g5^4*t^6.11 + g1^4*g2^11*g3^4*g4^11*g5^4*t^6.11 + g1^11*g2^4*g3^4*g4^4*g5^11*t^6.11 + g1^4*g2^11*g3^4*g4^4*g5^11*t^6.11 + g1^11*g2^11*g3^4*g4^4*g5^4*t^6.14 + t^6.2/(g1^3*g2^24*g3^3*g4^3*g5^3) + t^6.2/(g1^10*g2^17*g3^3*g4^3*g5^3) + t^6.2/(g1^17*g2^10*g3^3*g4^3*g5^3) + t^6.2/(g1^24*g2^3*g3^3*g4^3*g5^3) - (g1*g3*g4*g5*t^6.33)/g2^6 - (g2*g3*g4*g5*t^6.33)/g1^6 - (g1*g2*g3*g4*t^6.36)/g5^6 - (g1*g2*g3*g5*t^6.36)/g4^6 - (g1*g2*g4*g5*t^6.36)/g3^6 + g1^5*g2^5*g3^12*g4^5*g5^5*t^6.44 + g1^5*g2^5*g3^5*g4^12*g5^5*t^6.44 + g1^5*g2^5*g3^5*g4^5*g5^12*t^6.44 + (g1^2*g3^2*g4^2*g5^2*t^6.66)/g2^12 + (g3^2*g4^2*g5^2*t^6.66)/(g1^5*g2^5) + (g2^2*g3^2*g4^2*g5^2*t^6.66)/g1^12 + g3^14*g4^14*t^7.1 + g3^14*g4^7*g5^7*t^7.1 + g3^7*g4^14*g5^7*t^7.1 + g3^14*g5^14*t^7.1 + g3^7*g4^7*g5^14*t^7.1 + g4^14*g5^14*t^7.1 + g1^7*g3^14*g4^7*t^7.13 + g2^7*g3^14*g4^7*t^7.13 + g1^7*g3^7*g4^14*t^7.13 + g2^7*g3^7*g4^14*t^7.13 + g1^7*g3^14*g5^7*t^7.13 + g2^7*g3^14*g5^7*t^7.13 + 3*g1^7*g3^7*g4^7*g5^7*t^7.13 + 3*g2^7*g3^7*g4^7*g5^7*t^7.13 + g1^7*g4^14*g5^7*t^7.13 + g2^7*g4^14*g5^7*t^7.13 + g1^7*g3^7*g5^14*t^7.13 + g2^7*g3^7*g5^14*t^7.13 + g1^7*g4^7*g5^14*t^7.13 + g2^7*g4^7*g5^14*t^7.13 + g1^14*g3^14*t^7.16 + g1^7*g2^7*g3^14*t^7.16 + g2^14*g3^14*t^7.16 + g1^14*g3^7*g4^7*t^7.16 + 2*g1^7*g2^7*g3^7*g4^7*t^7.16 + g2^14*g3^7*g4^7*t^7.16 + g1^14*g4^14*t^7.16 + g1^7*g2^7*g4^14*t^7.16 + g2^14*g4^14*t^7.16 + g1^14*g3^7*g5^7*t^7.16 + 2*g1^7*g2^7*g3^7*g5^7*t^7.16 + g2^14*g3^7*g5^7*t^7.16 + g1^14*g4^7*g5^7*t^7.16 + 2*g1^7*g2^7*g4^7*g5^7*t^7.16 + g2^14*g4^7*g5^7*t^7.16 + g1^14*g5^14*t^7.16 + g1^7*g2^7*g5^14*t^7.16 + g2^14*g5^14*t^7.16 + g1^14*g2^7*g3^7*t^7.18 + g1^7*g2^14*g3^7*t^7.18 + g1^14*g2^7*g4^7*t^7.18 + g1^7*g2^14*g4^7*t^7.18 + g1^14*g2^7*g5^7*t^7.18 + g1^7*g2^14*g5^7*t^7.18 + g1^14*g2^14*t^7.21 + (g3^11*t^7.35)/(g1^3*g2^10*g4^3*g5^3) + (g3^11*t^7.35)/(g1^10*g2^3*g4^3*g5^3) + (g3^4*g4^4*t^7.35)/(g1^3*g2^10*g5^3) + (g3^4*g4^4*t^7.35)/(g1^10*g2^3*g5^3) + (g4^11*t^7.35)/(g1^3*g2^10*g3^3*g5^3) + (g4^11*t^7.35)/(g1^10*g2^3*g3^3*g5^3) + (g3^4*g5^4*t^7.35)/(g1^3*g2^10*g4^3) + (g3^4*g5^4*t^7.35)/(g1^10*g2^3*g4^3) + (g4^4*g5^4*t^7.35)/(g1^3*g2^10*g3^3) + (g4^4*g5^4*t^7.35)/(g1^10*g2^3*g3^3) + (g5^11*t^7.35)/(g1^3*g2^10*g3^3*g4^3) + (g5^11*t^7.35)/(g1^10*g2^3*g3^3*g4^3) + (g1^4*g3^4*t^7.38)/(g2^10*g4^3*g5^3) + (g3^4*t^7.38)/(g1^3*g2^3*g4^3*g5^3) + (g2^4*g3^4*t^7.38)/(g1^10*g4^3*g5^3) + (g1^4*g4^4*t^7.38)/(g2^10*g3^3*g5^3) + (g4^4*t^7.38)/(g1^3*g2^3*g3^3*g5^3) + (g2^4*g4^4*t^7.38)/(g1^10*g3^3*g5^3) + (g1^4*g5^4*t^7.38)/(g2^10*g3^3*g4^3) + (g5^4*t^7.38)/(g1^3*g2^3*g3^3*g4^3) + (g2^4*g5^4*t^7.38)/(g1^10*g3^3*g4^3) + (g1^11*t^7.4)/(g2^10*g3^3*g4^3*g5^3) + (g1^4*t^7.4)/(g2^3*g3^3*g4^3*g5^3) + (g2^4*t^7.4)/(g1^3*g3^3*g4^3*g5^3) + (g2^11*t^7.4)/(g1^10*g3^3*g4^3*g5^3) + g1*g2*g3^15*g4^8*g5*t^7.46 + g1*g2*g3^8*g4^15*g5*t^7.46 + g1*g2*g3^15*g4*g5^8*t^7.46 + 2*g1*g2*g3^8*g4^8*g5^8*t^7.46 + g1*g2*g3*g4^15*g5^8*t^7.46 + g1*g2*g3^8*g4*g5^15*t^7.46 + g1*g2*g3*g4^8*g5^15*t^7.46 + g1^8*g2*g3^15*g4*g5*t^7.49 + g1*g2^8*g3^15*g4*g5*t^7.49 + g1^8*g2*g3^8*g4^8*g5*t^7.49 + g1*g2^8*g3^8*g4^8*g5*t^7.49 + g1^8*g2*g3*g4^15*g5*t^7.49 + g1*g2^8*g3*g4^15*g5*t^7.49 + g1^8*g2*g3^8*g4*g5^8*t^7.49 + g1*g2^8*g3^8*g4*g5^8*t^7.49 + g1^8*g2*g3*g4^8*g5^8*t^7.49 + g1*g2^8*g3*g4^8*g5^8*t^7.49 + g1^8*g2*g3*g4*g5^15*t^7.49 + g1*g2^8*g3*g4*g5^15*t^7.49 + g1^12*g2^12*g3^12*g4^12*g5^12*t^7.6 + (g3^5*g4^5*t^7.68)/(g1^2*g2^16*g5^2) + (g3^5*g4^5*t^7.68)/(g1^9*g2^9*g5^2) + (g3^5*g4^5*t^7.68)/(g1^16*g2^2*g5^2) + (g3^5*g5^5*t^7.68)/(g1^2*g2^16*g4^2) + (g3^5*g5^5*t^7.68)/(g1^9*g2^9*g4^2) + (g3^5*g5^5*t^7.68)/(g1^16*g2^2*g4^2) + (g4^5*g5^5*t^7.68)/(g1^2*g2^16*g3^2) + (g4^5*g5^5*t^7.68)/(g1^9*g2^9*g3^2) + (g4^5*g5^5*t^7.68)/(g1^16*g2^2*g3^2) + (g1^5*g3^5*t^7.71)/(g2^16*g4^2*g5^2) + (g3^5*t^7.71)/(g1^2*g2^9*g4^2*g5^2) + (g3^5*t^7.71)/(g1^9*g2^2*g4^2*g5^2) + (g2^5*g3^5*t^7.71)/(g1^16*g4^2*g5^2) + (g1^5*g4^5*t^7.71)/(g2^16*g3^2*g5^2) + (g4^5*t^7.71)/(g1^2*g2^9*g3^2*g5^2) + (g4^5*t^7.71)/(g1^9*g2^2*g3^2*g5^2) + (g2^5*g4^5*t^7.71)/(g1^16*g3^2*g5^2) + (g1^5*g5^5*t^7.71)/(g2^16*g3^2*g4^2) + (g5^5*t^7.71)/(g1^2*g2^9*g3^2*g4^2) + (g5^5*t^7.71)/(g1^9*g2^2*g3^2*g4^2) + (g2^5*g5^5*t^7.71)/(g1^16*g3^2*g4^2) - (g3^5*t^7.73)/(g1^2*g2^2*g4^2*g5^9) - (g4^5*t^7.73)/(g1^2*g2^2*g3^2*g5^9) - (g3^5*t^7.73)/(g1^2*g2^2*g4^9*g5^2) - (3*t^7.73)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (g4^5*t^7.73)/(g1^2*g2^2*g3^9*g5^2) - (g5^5*t^7.73)/(g1^2*g2^2*g3^2*g4^9) - (g5^5*t^7.73)/(g1^2*g2^2*g3^9*g4^2) - (g1^5*t^7.76)/(g2^2*g3^2*g4^2*g5^9) - (g2^5*t^7.76)/(g1^2*g3^2*g4^2*g5^9) - (g1^5*t^7.76)/(g2^2*g3^2*g4^9*g5^2) - (g2^5*t^7.76)/(g1^2*g3^2*g4^9*g5^2) - (g1^5*t^7.76)/(g2^2*g3^9*g4^2*g5^2) - (g2^5*t^7.76)/(g1^2*g3^9*g4^2*g5^2) + g1^2*g2^2*g3^16*g4^2*g5^2*t^7.82 + g1^2*g2^2*g3^9*g4^9*g5^2*t^7.82 + g1^2*g2^2*g3^2*g4^16*g5^2*t^7.82 + g1^2*g2^2*g3^9*g4^2*g5^9*t^7.82 + g1^2*g2^2*g3^2*g4^9*g5^9*t^7.82 + g1^2*g2^2*g3^2*g4^2*g5^16*t^7.82 - (g3^6*t^8.04)/(g1^8*g2^8*g4*g5) - (g4^6*t^8.04)/(g1^8*g2^8*g3*g5) - (g5^6*t^8.04)/(g1^8*g2^8*g3*g4) - (g3^6*t^8.07)/(g1*g2^8*g4*g5^8) - (g3^6*t^8.07)/(g1^8*g2*g4*g5^8) - (g4^6*t^8.07)/(g1*g2^8*g3*g5^8) - (g4^6*t^8.07)/(g1^8*g2*g3*g5^8) - (g3^6*t^8.07)/(g1*g2^8*g4^8*g5) - (g3^6*t^8.07)/(g1^8*g2*g4^8*g5) - (g1^6*t^8.07)/(g2^15*g3*g4*g5) - (6*t^8.07)/(g1*g2^8*g3*g4*g5) - (6*t^8.07)/(g1^8*g2*g3*g4*g5) - (g2^6*t^8.07)/(g1^15*g3*g4*g5) - (g4^6*t^8.07)/(g1*g2^8*g3^8*g5) - (g4^6*t^8.07)/(g1^8*g2*g3^8*g5) - (g5^6*t^8.07)/(g1*g2^8*g3*g4^8) - (g5^6*t^8.07)/(g1^8*g2*g3*g4^8) - (g5^6*t^8.07)/(g1*g2^8*g3^8*g4) - (g5^6*t^8.07)/(g1^8*g2*g3^8*g4) - (g1^6*t^8.09)/(g2^8*g3*g4*g5^8) - (2*t^8.09)/(g1*g2*g3*g4*g5^8) - (g2^6*t^8.09)/(g1^8*g3*g4*g5^8) - (g1^6*t^8.09)/(g2^8*g3*g4^8*g5) - (2*t^8.09)/(g1*g2*g3*g4^8*g5) - (g2^6*t^8.09)/(g1^8*g3*g4^8*g5) - (g1^6*t^8.09)/(g2^8*g3^8*g4*g5) - (2*t^8.09)/(g1*g2*g3^8*g4*g5) - (g2^6*t^8.09)/(g1^8*g3^8*g4*g5) + (g1^3*g3^10*g4^10*g5^3*t^8.15)/g2^4 + (g2^3*g3^10*g4^10*g5^3*t^8.15)/g1^4 + (g1^3*g3^10*g4^3*g5^10*t^8.15)/g2^4 + (g2^3*g3^10*g4^3*g5^10*t^8.15)/g1^4 + (g1^3*g3^3*g4^10*g5^10*t^8.15)/g2^4 + (g2^3*g3^3*g4^10*g5^10*t^8.15)/g1^4 + (g1^10*g3^10*g4^3*g5^3*t^8.17)/g2^4 + g1^3*g2^3*g3^10*g4^3*g5^3*t^8.17 + (g2^10*g3^10*g4^3*g5^3*t^8.17)/g1^4 + (g1^10*g3^3*g4^10*g5^3*t^8.17)/g2^4 + g1^3*g2^3*g3^3*g4^10*g5^3*t^8.17 + (g2^10*g3^3*g4^10*g5^3*t^8.17)/g1^4 + (g1^10*g3^3*g4^3*g5^10*t^8.17)/g2^4 + g1^3*g2^3*g3^3*g4^3*g5^10*t^8.17 + (g2^10*g3^3*g4^3*g5^10*t^8.17)/g1^4 + t^8.26/(g1^4*g2^32*g3^4*g4^4*g5^4) + t^8.26/(g1^11*g2^25*g3^4*g4^4*g5^4) + t^8.26/(g1^18*g2^18*g3^4*g4^4*g5^4) + t^8.26/(g1^25*g2^11*g3^4*g4^4*g5^4) + t^8.26/(g1^32*g2^4*g3^4*g4^4*g5^4) - t^8.4/(g1^7*g2^7) + t^8.45/g3^14 + t^8.45/g4^14 + t^8.45/(g3^7*g4^7) + t^8.45/g5^14 + t^8.45/(g3^7*g5^7) + t^8.45/(g4^7*g5^7) - (g1^4*g2^4*g3^11*g4^4*t^8.53)/g5^3 - (g1^4*g2^4*g3^4*g4^11*t^8.53)/g5^3 - (g1^4*g2^4*g3^11*g5^4*t^8.53)/g4^3 - (g1^11*g3^4*g4^4*g5^4*t^8.53)/g2^3 - 6*g1^4*g2^4*g3^4*g4^4*g5^4*t^8.53 - (g2^11*g3^4*g4^4*g5^4*t^8.53)/g1^3 - (g1^4*g2^4*g4^11*g5^4*t^8.53)/g3^3 - (g1^4*g2^4*g3^4*g5^11*t^8.53)/g4^3 - (g1^4*g2^4*g4^4*g5^11*t^8.53)/g3^3 - (g1^11*g2^4*g3^4*g4^4*t^8.56)/g5^3 - (g1^4*g2^11*g3^4*g4^4*t^8.56)/g5^3 - (g1^11*g2^4*g3^4*g5^4*t^8.56)/g4^3 - (g1^4*g2^11*g3^4*g5^4*t^8.56)/g4^3 - (g1^11*g2^4*g4^4*g5^4*t^8.56)/g3^3 - (g1^4*g2^11*g4^4*g5^4*t^8.56)/g3^3 + g1^8*g2^8*g3^15*g4^15*g5^8*t^8.62 + g1^8*g2^8*g3^15*g4^8*g5^15*t^8.62 + g1^8*g2^8*g3^8*g4^15*g5^15*t^8.62 + g1^15*g2^8*g3^15*g4^8*g5^8*t^8.64 + g1^8*g2^15*g3^15*g4^8*g5^8*t^8.64 + g1^15*g2^8*g3^8*g4^15*g5^8*t^8.64 + g1^8*g2^15*g3^8*g4^15*g5^8*t^8.64 + g1^15*g2^8*g3^8*g4^8*g5^15*t^8.64 + g1^8*g2^15*g3^8*g4^8*g5^15*t^8.64 + g1^15*g2^15*g3^8*g4^8*g5^8*t^8.67 + (g1*g3*g4*g5*t^8.73)/g2^20 + (g3*g4*g5*t^8.73)/(g1^6*g2^13) + (g3*g4*g5*t^8.73)/(g1^13*g2^6) + (g2*g3*g4*g5*t^8.73)/g1^20 + (g3^19*g4^5*t^8.84)/(g1^2*g2^2*g5^2) + (g3^12*g4^12*t^8.84)/(g1^2*g2^2*g5^2) + (g3^5*g4^19*t^8.84)/(g1^2*g2^2*g5^2) + (g3^19*g5^5*t^8.84)/(g1^2*g2^2*g4^2) + (2*g3^12*g4^5*g5^5*t^8.84)/(g1^2*g2^2) + (2*g3^5*g4^12*g5^5*t^8.84)/(g1^2*g2^2) + (g4^19*g5^5*t^8.84)/(g1^2*g2^2*g3^2) + (g3^12*g5^12*t^8.84)/(g1^2*g2^2*g4^2) + (2*g3^5*g4^5*g5^12*t^8.84)/(g1^2*g2^2) + (g4^12*g5^12*t^8.84)/(g1^2*g2^2*g3^2) + (g3^5*g5^19*t^8.84)/(g1^2*g2^2*g4^2) + (g4^5*g5^19*t^8.84)/(g1^2*g2^2*g3^2) + (g1^5*g3^19*t^8.86)/(g2^2*g4^2*g5^2) + (g2^5*g3^19*t^8.86)/(g1^2*g4^2*g5^2) + (2*g1^5*g3^12*g4^5*t^8.86)/(g2^2*g5^2) + (2*g2^5*g3^12*g4^5*t^8.86)/(g1^2*g5^2) + (2*g1^5*g3^5*g4^12*t^8.86)/(g2^2*g5^2) + (2*g2^5*g3^5*g4^12*t^8.86)/(g1^2*g5^2) + (g1^5*g4^19*t^8.86)/(g2^2*g3^2*g5^2) + (g2^5*g4^19*t^8.86)/(g1^2*g3^2*g5^2) + (2*g1^5*g3^12*g5^5*t^8.86)/(g2^2*g4^2) + (2*g2^5*g3^12*g5^5*t^8.86)/(g1^2*g4^2) + (2*g1^5*g3^5*g4^5*g5^5*t^8.86)/g2^2 + (2*g2^5*g3^5*g4^5*g5^5*t^8.86)/g1^2 + (2*g1^5*g4^12*g5^5*t^8.86)/(g2^2*g3^2) + (2*g2^5*g4^12*g5^5*t^8.86)/(g1^2*g3^2) + (2*g1^5*g3^5*g5^12*t^8.86)/(g2^2*g4^2) + (2*g2^5*g3^5*g5^12*t^8.86)/(g1^2*g4^2) + (2*g1^5*g4^5*g5^12*t^8.86)/(g2^2*g3^2) + (2*g2^5*g4^5*g5^12*t^8.86)/(g1^2*g3^2) + (g1^5*g5^19*t^8.86)/(g2^2*g3^2*g4^2) + (g2^5*g5^19*t^8.86)/(g1^2*g3^2*g4^2) + (g1^12*g3^12*t^8.89)/(g2^2*g4^2*g5^2) + (2*g1^5*g2^5*g3^12*t^8.89)/(g4^2*g5^2) + (g2^12*g3^12*t^8.89)/(g1^2*g4^2*g5^2) + (2*g1^12*g3^5*g4^5*t^8.89)/(g2^2*g5^2) + (2*g1^5*g2^5*g3^5*g4^5*t^8.89)/g5^2 + (2*g2^12*g3^5*g4^5*t^8.89)/(g1^2*g5^2) + (g1^12*g4^12*t^8.89)/(g2^2*g3^2*g5^2) + (2*g1^5*g2^5*g4^12*t^8.89)/(g3^2*g5^2) + (g2^12*g4^12*t^8.89)/(g1^2*g3^2*g5^2) + (2*g1^12*g3^5*g5^5*t^8.89)/(g2^2*g4^2) + (2*g1^5*g2^5*g3^5*g5^5*t^8.89)/g4^2 + (2*g2^12*g3^5*g5^5*t^8.89)/(g1^2*g4^2) + (2*g1^12*g4^5*g5^5*t^8.89)/(g2^2*g3^2) + (2*g1^5*g2^5*g4^5*g5^5*t^8.89)/g3^2 + (2*g2^12*g4^5*g5^5*t^8.89)/(g1^2*g3^2) + (g1^12*g5^12*t^8.89)/(g2^2*g3^2*g4^2) + (2*g1^5*g2^5*g5^12*t^8.89)/(g3^2*g4^2) + (g2^12*g5^12*t^8.89)/(g1^2*g3^2*g4^2) + (g1^19*g3^5*t^8.92)/(g2^2*g4^2*g5^2) + (2*g1^12*g2^5*g3^5*t^8.92)/(g4^2*g5^2) + (2*g1^5*g2^12*g3^5*t^8.92)/(g4^2*g5^2) + (g2^19*g3^5*t^8.92)/(g1^2*g4^2*g5^2) + (g1^19*g4^5*t^8.92)/(g2^2*g3^2*g5^2) + (2*g1^12*g2^5*g4^5*t^8.92)/(g3^2*g5^2) + (2*g1^5*g2^12*g4^5*t^8.92)/(g3^2*g5^2) + (g2^19*g4^5*t^8.92)/(g1^2*g3^2*g5^2) + (g1^19*g5^5*t^8.92)/(g2^2*g3^2*g4^2) + (2*g1^12*g2^5*g5^5*t^8.92)/(g3^2*g4^2) + (2*g1^5*g2^12*g5^5*t^8.92)/(g3^2*g4^2) + (g2^19*g5^5*t^8.92)/(g1^2*g3^2*g4^2) + (g1^19*g2^5*t^8.94)/(g3^2*g4^2*g5^2) + (g1^12*g2^12*t^8.94)/(g3^2*g4^2*g5^2) + (g1^5*g2^19*t^8.94)/(g3^2*g4^2*g5^2) + g1^9*g2^9*g3^16*g4^9*g5^9*t^8.97 + g1^9*g2^9*g3^9*g4^16*g5^9*t^8.97 + g1^9*g2^9*g3^9*g4^9*g5^16*t^8.97 - t^4.73/(g1^2*g2^2*g3^2*g4^2*g5^2*y) - t^6.8/(g1^3*g2^10*g3^3*g4^3*g5^3*y) - t^6.8/(g1^10*g2^3*g3^3*g4^3*g5^3*y) + t^7.13/(g1^9*g2^9*g3^2*g4^2*g5^2*y) + (g1^3*g3^3*g4^3*g5^3*t^7.6)/(g2^4*y) + (g2^3*g3^3*g4^3*g5^3*t^7.6)/(g1^4*y) + (g3^6*g4^6*t^8.62)/(g1*g2^8*g5*y) + (g3^6*g4^6*t^8.62)/(g1^8*g2*g5*y) + (g3^6*g5^6*t^8.62)/(g1*g2^8*g4*y) + (g3^6*g5^6*t^8.62)/(g1^8*g2*g4*y) + (g4^6*g5^6*t^8.62)/(g1*g2^8*g3*y) + (g4^6*g5^6*t^8.62)/(g1^8*g2*g3*y) + (g1^6*g3^6*t^8.64)/(g2^8*g4*g5*y) + (2*g3^6*t^8.64)/(g1*g2*g4*g5*y) + (g2^6*g3^6*t^8.64)/(g1^8*g4*g5*y) + (g1^6*g4^6*t^8.64)/(g2^8*g3*g5*y) + (2*g4^6*t^8.64)/(g1*g2*g3*g5*y) + (g2^6*g4^6*t^8.64)/(g1^8*g3*g5*y) + (g1^6*g5^6*t^8.64)/(g2^8*g3*g4*y) + (2*g5^6*t^8.64)/(g1*g2*g3*g4*y) + (g2^6*g5^6*t^8.64)/(g1^8*g3*g4*y) + (2*g1^6*t^8.67)/(g2*g3*g4*g5*y) + (2*g2^6*t^8.67)/(g1*g3*g4*g5*y) - t^8.86/(g1^4*g2^18*g3^4*g4^4*g5^4*y) - t^8.86/(g1^11*g2^11*g3^4*g4^4*g5^4*y) - t^8.86/(g1^18*g2^4*g3^4*g4^4*g5^4*y) + (g3^7*t^8.97)/(g1^7*y) + (g3^7*t^8.97)/(g2^7*y) + (g4^7*t^8.97)/(g1^7*y) + (g4^7*t^8.97)/(g2^7*y) + (g5^7*t^8.97)/(g1^7*y) + (g5^7*t^8.97)/(g2^7*y) - (t^4.73*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (t^6.8*y)/(g1^3*g2^10*g3^3*g4^3*g5^3) - (t^6.8*y)/(g1^10*g2^3*g3^3*g4^3*g5^3) + (t^7.13*y)/(g1^9*g2^9*g3^2*g4^2*g5^2) + (g1^3*g3^3*g4^3*g5^3*t^7.6*y)/g2^4 + (g2^3*g3^3*g4^3*g5^3*t^7.6*y)/g1^4 + (g3^6*g4^6*t^8.62*y)/(g1*g2^8*g5) + (g3^6*g4^6*t^8.62*y)/(g1^8*g2*g5) + (g3^6*g5^6*t^8.62*y)/(g1*g2^8*g4) + (g3^6*g5^6*t^8.62*y)/(g1^8*g2*g4) + (g4^6*g5^6*t^8.62*y)/(g1*g2^8*g3) + (g4^6*g5^6*t^8.62*y)/(g1^8*g2*g3) + (g1^6*g3^6*t^8.64*y)/(g2^8*g4*g5) + (2*g3^6*t^8.64*y)/(g1*g2*g4*g5) + (g2^6*g3^6*t^8.64*y)/(g1^8*g4*g5) + (g1^6*g4^6*t^8.64*y)/(g2^8*g3*g5) + (2*g4^6*t^8.64*y)/(g1*g2*g3*g5) + (g2^6*g4^6*t^8.64*y)/(g1^8*g3*g5) + (g1^6*g5^6*t^8.64*y)/(g2^8*g3*g4) + (2*g5^6*t^8.64*y)/(g1*g2*g3*g4) + (g2^6*g5^6*t^8.64*y)/(g1^8*g3*g4) + (2*g1^6*t^8.67*y)/(g2*g3*g4*g5) + (2*g2^6*t^8.67*y)/(g1*g3*g4*g5) - (t^8.86*y)/(g1^4*g2^18*g3^4*g4^4*g5^4) - (t^8.86*y)/(g1^11*g2^11*g3^4*g4^4*g5^4) - (t^8.86*y)/(g1^18*g2^4*g3^4*g4^4*g5^4) + (g3^7*t^8.97*y)/g1^7 + (g3^7*t^8.97*y)/g2^7 + (g4^7*t^8.97*y)/g1^7 + (g4^7*t^8.97*y)/g2^7 + (g5^7*t^8.97*y)/g1^7 + (g5^7*t^8.97*y)/g2^7 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55672 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3q_1q_3$ | 0.91 | 1.1333 | 0.803 | [X:[], M:[0.7265, 0.8501, 0.7265], q:[0.6492, 0.6242, 0.6242], qb:[0.6008, 0.6008, 0.6008], phi:[0.575]] | 2*t^2.18 + t^2.55 + 3*t^3.6 + 6*t^3.68 + 4*t^3.75 + 3*t^4.36 + 2*t^4.73 + t^5.1 + 6*t^5.33 + 6*t^5.4 + 3*t^5.47 + 3*t^5.48 + 2*t^5.55 + t^5.62 + 6*t^5.78 + 9*t^5.85 - 14*t^6. - t^4.72/y - t^4.72*y | detail |