Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55706 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3q_1q_3$ + $ M_4q_3\tilde{q}_1$ | 0.929 | 1.1663 | 0.7965 | [X:[], M:[0.7341, 0.863, 0.7141, 0.7341], q:[0.643, 0.623, 0.643], qb:[0.623, 0.5971, 0.5971], phi:[0.5685]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [2, 2, 2, 2, 2, 2], [-4, 0, -4, 0, 0, 0], [0, 0, -4, -4, 0, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_1$, $ M_4$, $ M_2$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_3\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_2q_3$, $ q_1\tilde{q}_1$, $ M_3^2$, $ M_1M_3$, $ M_3M_4$, $ M_1^2$, $ M_4^2$, $ M_1M_4$, $ M_2M_3$, $ M_2M_4$, $ M_1M_2$, $ M_2^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2q_3$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1^2$, $ \phi_1q_1q_3$, $ \phi_1q_3^2$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_4\tilde{q}_2\tilde{q}_3$, $ M_3q_2\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3q_3\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ M_1q_3\tilde{q}_2$, $ M_4q_1\tilde{q}_2$ | $M_4q_1\tilde{q}_1$ | -8 | t^2.14 + 2*t^2.2 + t^2.59 + t^3.58 + 4*t^3.66 + 4*t^3.72 + t^3.74 + 2*t^3.8 + t^4.28 + 2*t^4.34 + 3*t^4.4 + t^4.73 + 2*t^4.79 + t^5.18 + 3*t^5.29 + 4*t^5.37 + 4*t^5.43 + 3*t^5.44 + 4*t^5.5 + 3*t^5.56 + t^5.72 + 2*t^5.78 + 4*t^5.8 + 8*t^5.86 + t^5.88 + 4*t^5.92 - 8*t^6. - 4*t^6.06 - 4*t^6.08 - 4*t^6.14 + t^6.17 + 4*t^6.25 + 4*t^6.31 + t^6.33 + 2*t^6.39 + t^6.43 + 2*t^6.49 + 3*t^6.55 + 4*t^6.61 + t^6.87 + 2*t^6.93 + 3*t^6.99 + t^7.16 + 4*t^7.24 + 4*t^7.3 + 11*t^7.32 + 16*t^7.38 + 4*t^7.4 + 3*t^7.43 + 9*t^7.44 + 8*t^7.46 + t^7.48 + 6*t^7.49 + 4*t^7.51 + 4*t^7.52 + 2*t^7.54 + 8*t^7.57 + 3*t^7.59 + 2*t^7.6 + 4*t^7.63 + 6*t^7.65 + 3*t^7.77 - 4*t^7.78 - 4*t^7.84 + t^7.87 + 2*t^7.93 + 4*t^7.94 + 3*t^7.99 + 8*t^8. + t^8.02 + 8*t^8.06 + 4*t^8.12 - 10*t^8.14 - 18*t^8.2 - 4*t^8.22 - 5*t^8.26 - 8*t^8.28 + t^8.31 - 4*t^8.34 + 2*t^8.37 + 4*t^8.39 + 3*t^8.42 + 8*t^8.45 + t^8.47 + 4*t^8.51 + t^8.57 - 8*t^8.59 + 2*t^8.63 - 4*t^8.65 - 4*t^8.67 + 3*t^8.69 - 4*t^8.73 + 4*t^8.75 + t^8.76 + 5*t^8.81 + 4*t^8.84 + 3*t^8.87 + 4*t^8.9 + t^8.92 + 12*t^8.95 + 2*t^8.98 - t^4.71/y - t^6.85/y - (2*t^6.91)/y + (2*t^7.34)/y + t^7.4/y + t^7.73/y + (2*t^7.79)/y + (2*t^8.5)/y + t^8.56/y + t^8.72/y + (2*t^8.78)/y + (4*t^8.8)/y + (12*t^8.86)/y + t^8.88/y + (8*t^8.92)/y + (4*t^8.94)/y - t^8.99/y - t^4.71*y - t^6.85*y - 2*t^6.91*y + 2*t^7.34*y + t^7.4*y + t^7.73*y + 2*t^7.79*y + 2*t^8.5*y + t^8.56*y + t^8.72*y + 2*t^8.78*y + 4*t^8.8*y + 12*t^8.86*y + t^8.88*y + 8*t^8.92*y + 4*t^8.94*y - t^8.99*y | t^2.14/(g1^4*g3^4) + t^2.2/(g1^4*g2^4) + t^2.2/(g3^4*g4^4) + g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^2.59 + g5^4*g6^4*t^3.58 + g2^4*g5^4*t^3.66 + g4^4*g5^4*t^3.66 + g2^4*g6^4*t^3.66 + g4^4*g6^4*t^3.66 + g1^4*g5^4*t^3.72 + g3^4*g5^4*t^3.72 + g1^4*g6^4*t^3.72 + g3^4*g6^4*t^3.72 + g2^4*g4^4*t^3.74 + g2^4*g3^4*t^3.8 + g1^4*g4^4*t^3.8 + t^4.28/(g1^8*g3^8) + t^4.34/(g1^8*g2^4*g3^4) + t^4.34/(g1^4*g3^8*g4^4) + t^4.4/(g1^8*g2^8) + t^4.4/(g3^8*g4^8) + t^4.4/(g1^4*g2^4*g3^4*g4^4) + (g2^2*g4^2*g5^2*g6^2*t^4.73)/(g1^2*g3^2) + (g1^2*g2^2*g5^2*g6^2*t^4.79)/(g3^2*g4^2) + (g3^2*g4^2*g5^2*g6^2*t^4.79)/(g1^2*g2^2) + g1^4*g2^4*g3^4*g4^4*g5^4*g6^4*t^5.18 + (g5^7*t^5.29)/(g1*g2*g3*g4*g6) + (g5^3*g6^3*t^5.29)/(g1*g2*g3*g4) + (g6^7*t^5.29)/(g1*g2*g3*g4*g5) + (g2^3*g5^3*t^5.37)/(g1*g3*g4*g6) + (g4^3*g5^3*t^5.37)/(g1*g2*g3*g6) + (g2^3*g6^3*t^5.37)/(g1*g3*g4*g5) + (g4^3*g6^3*t^5.37)/(g1*g2*g3*g5) + (g1^3*g5^3*t^5.43)/(g2*g3*g4*g6) + (g3^3*g5^3*t^5.43)/(g1*g2*g4*g6) + (g1^3*g6^3*t^5.43)/(g2*g3*g4*g5) + (g3^3*g6^3*t^5.43)/(g1*g2*g4*g5) + (g2^7*t^5.44)/(g1*g3*g4*g5*g6) + (g2^3*g4^3*t^5.44)/(g1*g3*g5*g6) + (g4^7*t^5.44)/(g1*g2*g3*g5*g6) + (g1^3*g2^3*t^5.5)/(g3*g4*g5*g6) + (g2^3*g3^3*t^5.5)/(g1*g4*g5*g6) + (g1^3*g4^3*t^5.5)/(g2*g3*g5*g6) + (g3^3*g4^3*t^5.5)/(g1*g2*g5*g6) + (g1^7*t^5.56)/(g2*g3*g4*g5*g6) + (g1^3*g3^3*t^5.56)/(g2*g4*g5*g6) + (g3^7*t^5.56)/(g1*g2*g4*g5*g6) + (g5^4*g6^4*t^5.72)/(g1^4*g3^4) + (g5^4*g6^4*t^5.78)/(g1^4*g2^4) + (g5^4*g6^4*t^5.78)/(g3^4*g4^4) + (g2^4*g5^4*t^5.8)/(g1^4*g3^4) + (g4^4*g5^4*t^5.8)/(g1^4*g3^4) + (g2^4*g6^4*t^5.8)/(g1^4*g3^4) + (g4^4*g6^4*t^5.8)/(g1^4*g3^4) + (g5^4*t^5.86)/g1^4 + (g5^4*t^5.86)/g3^4 + (g2^4*g5^4*t^5.86)/(g3^4*g4^4) + (g4^4*g5^4*t^5.86)/(g1^4*g2^4) + (g6^4*t^5.86)/g1^4 + (g6^4*t^5.86)/g3^4 + (g2^4*g6^4*t^5.86)/(g3^4*g4^4) + (g4^4*g6^4*t^5.86)/(g1^4*g2^4) + (g2^4*g4^4*t^5.88)/(g1^4*g3^4) + (g3^4*g5^4*t^5.92)/(g1^4*g2^4) + (g1^4*g5^4*t^5.92)/(g3^4*g4^4) + (g3^4*g6^4*t^5.92)/(g1^4*g2^4) + (g1^4*g6^4*t^5.92)/(g3^4*g4^4) - 6*t^6. - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g5^4 - (g1^4*t^6.06)/g2^4 - (g3^4*t^6.06)/g2^4 - (g1^4*t^6.06)/g4^4 - (g3^4*t^6.06)/g4^4 - (g2^4*t^6.08)/g5^4 - (g4^4*t^6.08)/g5^4 - (g2^4*t^6.08)/g6^4 - (g4^4*t^6.08)/g6^4 - (g1^4*t^6.14)/g5^4 - (g3^4*t^6.14)/g5^4 - (g1^4*t^6.14)/g6^4 - (g3^4*t^6.14)/g6^4 + g1^2*g2^2*g3^2*g4^2*g5^6*g6^6*t^6.17 + g1^2*g2^6*g3^2*g4^2*g5^6*g6^2*t^6.25 + g1^2*g2^2*g3^2*g4^6*g5^6*g6^2*t^6.25 + g1^2*g2^6*g3^2*g4^2*g5^2*g6^6*t^6.25 + g1^2*g2^2*g3^2*g4^6*g5^2*g6^6*t^6.25 + g1^6*g2^2*g3^2*g4^2*g5^6*g6^2*t^6.31 + g1^2*g2^2*g3^6*g4^2*g5^6*g6^2*t^6.31 + g1^6*g2^2*g3^2*g4^2*g5^2*g6^6*t^6.31 + g1^2*g2^2*g3^6*g4^2*g5^2*g6^6*t^6.31 + g1^2*g2^6*g3^2*g4^6*g5^2*g6^2*t^6.33 + g1^2*g2^6*g3^6*g4^2*g5^2*g6^2*t^6.39 + g1^6*g2^2*g3^2*g4^6*g5^2*g6^2*t^6.39 + t^6.43/(g1^12*g3^12) + t^6.49/(g1^12*g2^4*g3^8) + t^6.49/(g1^8*g3^12*g4^4) + t^6.55/(g1^12*g2^8*g3^4) + t^6.55/(g1^4*g3^12*g4^8) + t^6.55/(g1^8*g2^4*g3^8*g4^4) + t^6.61/(g1^12*g2^12) + t^6.61/(g3^12*g4^12) + t^6.61/(g1^4*g2^4*g3^8*g4^8) + t^6.61/(g1^8*g2^8*g3^4*g4^4) + (g2^2*g4^2*g5^2*g6^2*t^6.87)/(g1^6*g3^6) + (g2^2*g5^2*g6^2*t^6.93)/(g1^2*g3^6*g4^2) + (g4^2*g5^2*g6^2*t^6.93)/(g1^6*g2^2*g3^2) + (g1^2*g2^2*g5^2*g6^2*t^6.99)/(g3^6*g4^6) + (g5^2*g6^2*t^6.99)/(g1^2*g2^2*g3^2*g4^2) + (g3^2*g4^2*g5^2*g6^2*t^6.99)/(g1^6*g2^6) + g5^8*g6^8*t^7.16 + g2^4*g5^8*g6^4*t^7.24 + g4^4*g5^8*g6^4*t^7.24 + g2^4*g5^4*g6^8*t^7.24 + g4^4*g5^4*g6^8*t^7.24 + g1^4*g5^8*g6^4*t^7.3 + g3^4*g5^8*g6^4*t^7.3 + g1^4*g5^4*g6^8*t^7.3 + g3^4*g5^4*g6^8*t^7.3 + g2^8*g5^8*t^7.32 + g2^4*g4^4*g5^8*t^7.32 + g4^8*g5^8*t^7.32 + g2^8*g5^4*g6^4*t^7.32 + 3*g2^4*g4^4*g5^4*g6^4*t^7.32 + g4^8*g5^4*g6^4*t^7.32 + g2^8*g6^8*t^7.32 + g2^4*g4^4*g6^8*t^7.32 + g4^8*g6^8*t^7.32 + g1^4*g2^4*g5^8*t^7.38 + g2^4*g3^4*g5^8*t^7.38 + g1^4*g4^4*g5^8*t^7.38 + g3^4*g4^4*g5^8*t^7.38 + 2*g1^4*g2^4*g5^4*g6^4*t^7.38 + 2*g2^4*g3^4*g5^4*g6^4*t^7.38 + 2*g1^4*g4^4*g5^4*g6^4*t^7.38 + 2*g3^4*g4^4*g5^4*g6^4*t^7.38 + g1^4*g2^4*g6^8*t^7.38 + g2^4*g3^4*g6^8*t^7.38 + g1^4*g4^4*g6^8*t^7.38 + g3^4*g4^4*g6^8*t^7.38 + g2^8*g4^4*g5^4*t^7.4 + g2^4*g4^8*g5^4*t^7.4 + g2^8*g4^4*g6^4*t^7.4 + g2^4*g4^8*g6^4*t^7.4 + (g5^7*t^7.43)/(g1^5*g2*g3^5*g4*g6) + (g5^3*g6^3*t^7.43)/(g1^5*g2*g3^5*g4) + (g6^7*t^7.43)/(g1^5*g2*g3^5*g4*g5) + g1^8*g5^8*t^7.44 + g1^4*g3^4*g5^8*t^7.44 + g3^8*g5^8*t^7.44 + g1^8*g5^4*g6^4*t^7.44 + g1^4*g3^4*g5^4*g6^4*t^7.44 + g3^8*g5^4*g6^4*t^7.44 + g1^8*g6^8*t^7.44 + g1^4*g3^4*g6^8*t^7.44 + g3^8*g6^8*t^7.44 + g2^8*g3^4*g5^4*t^7.46 + g1^4*g2^4*g4^4*g5^4*t^7.46 + g2^4*g3^4*g4^4*g5^4*t^7.46 + g1^4*g4^8*g5^4*t^7.46 + g2^8*g3^4*g6^4*t^7.46 + g1^4*g2^4*g4^4*g6^4*t^7.46 + g2^4*g3^4*g4^4*g6^4*t^7.46 + g1^4*g4^8*g6^4*t^7.46 + g2^8*g4^8*t^7.48 + (g5^7*t^7.49)/(g1*g2*g3^5*g4^5*g6) + (g5^7*t^7.49)/(g1^5*g2^5*g3*g4*g6) + (g5^3*g6^3*t^7.49)/(g1*g2*g3^5*g4^5) + (g5^3*g6^3*t^7.49)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.49)/(g1*g2*g3^5*g4^5*g5) + (g6^7*t^7.49)/(g1^5*g2^5*g3*g4*g5) + (g2^3*g5^3*t^7.51)/(g1^5*g3^5*g4*g6) + (g4^3*g5^3*t^7.51)/(g1^5*g2*g3^5*g6) + (g2^3*g6^3*t^7.51)/(g1^5*g3^5*g4*g5) + (g4^3*g6^3*t^7.51)/(g1^5*g2*g3^5*g5) + g2^4*g3^8*g5^4*t^7.52 + g1^8*g4^4*g5^4*t^7.52 + g2^4*g3^8*g6^4*t^7.52 + g1^8*g4^4*g6^4*t^7.52 + g2^8*g3^4*g4^4*t^7.54 + g1^4*g2^4*g4^8*t^7.54 + (g2^3*g5^3*t^7.57)/(g1*g3^5*g4^5*g6) + (g5^3*t^7.57)/(g1*g2*g3^5*g4*g6) + (g5^3*t^7.57)/(g1^5*g2*g3*g4*g6) + (g4^3*g5^3*t^7.57)/(g1^5*g2^5*g3*g6) + (g2^3*g6^3*t^7.57)/(g1*g3^5*g4^5*g5) + (g6^3*t^7.57)/(g1*g2*g3^5*g4*g5) + (g6^3*t^7.57)/(g1^5*g2*g3*g4*g5) + (g4^3*g6^3*t^7.57)/(g1^5*g2^5*g3*g5) + (g2^7*t^7.59)/(g1^5*g3^5*g4*g5*g6) + (g2^3*g4^3*t^7.59)/(g1^5*g3^5*g5*g6) + (g4^7*t^7.59)/(g1^5*g2*g3^5*g5*g6) + g2^8*g3^8*t^7.6 + g1^8*g4^8*t^7.6 + (g1^3*g5^3*t^7.63)/(g2*g3^5*g4^5*g6) + (g3^3*g5^3*t^7.63)/(g1^5*g2^5*g4*g6) + (g1^3*g6^3*t^7.63)/(g2*g3^5*g4^5*g5) + (g3^3*g6^3*t^7.63)/(g1^5*g2^5*g4*g5) + (g2^7*t^7.65)/(g1*g3^5*g4^5*g5*g6) + (g2^3*t^7.65)/(g1*g3^5*g4*g5*g6) + (g2^3*t^7.65)/(g1^5*g3*g4*g5*g6) + (g4^3*t^7.65)/(g1*g2*g3^5*g5*g6) + (g4^3*t^7.65)/(g1^5*g2*g3*g5*g6) + (g4^7*t^7.65)/(g1^5*g2^5*g3*g5*g6) - (g5^3*t^7.71)/(g1*g2*g3*g4*g6^5) + (g1^3*g2^3*t^7.71)/(g3^5*g4^5*g5*g6) + (g1^3*t^7.71)/(g2*g3^5*g4*g5*g6) - (2*t^7.71)/(g1*g2*g3*g4*g5*g6) + (g3^3*t^7.71)/(g1^5*g2*g4*g5*g6) + (g3^3*g4^3*t^7.71)/(g1^5*g2^5*g5*g6) - (g6^3*t^7.71)/(g1*g2*g3*g4*g5^5) + (g1^7*t^7.77)/(g2*g3^5*g4^5*g5*g6) + (g3^7*t^7.77)/(g1^5*g2^5*g4*g5*g6) + g1^6*g2^6*g3^6*g4^6*g5^6*g6^6*t^7.77 - (g2^3*t^7.78)/(g1*g3*g4*g5*g6^5) - (g4^3*t^7.78)/(g1*g2*g3*g5*g6^5) - (g2^3*t^7.78)/(g1*g3*g4*g5^5*g6) - (g4^3*t^7.78)/(g1*g2*g3*g5^5*g6) - (g1^3*t^7.84)/(g2*g3*g4*g5*g6^5) - (g3^3*t^7.84)/(g1*g2*g4*g5*g6^5) - (g1^3*t^7.84)/(g2*g3*g4*g5^5*g6) - (g3^3*t^7.84)/(g1*g2*g4*g5^5*g6) + (g5^4*g6^4*t^7.87)/(g1^8*g3^8) + (g5^4*g6^4*t^7.93)/(g1^8*g2^4*g3^4) + (g5^4*g6^4*t^7.93)/(g1^4*g3^8*g4^4) + (g2^4*g5^4*t^7.94)/(g1^8*g3^8) + (g4^4*g5^4*t^7.94)/(g1^8*g3^8) + (g2^4*g6^4*t^7.94)/(g1^8*g3^8) + (g4^4*g6^4*t^7.94)/(g1^8*g3^8) + (g5^4*g6^4*t^7.99)/(g1^8*g2^8) + (g5^4*g6^4*t^7.99)/(g3^8*g4^8) + (g5^4*g6^4*t^7.99)/(g1^4*g2^4*g3^4*g4^4) + (g5^4*t^8.)/(g1^4*g3^8) + (g5^4*t^8.)/(g1^8*g3^4) + (g2^4*g5^4*t^8.)/(g1^4*g3^8*g4^4) + (g4^4*g5^4*t^8.)/(g1^8*g2^4*g3^4) + (g6^4*t^8.)/(g1^4*g3^8) + (g6^4*t^8.)/(g1^8*g3^4) + (g2^4*g6^4*t^8.)/(g1^4*g3^8*g4^4) + (g4^4*g6^4*t^8.)/(g1^8*g2^4*g3^4) + (g2^4*g4^4*t^8.02)/(g1^8*g3^8) + (g5^4*t^8.06)/(g1^8*g2^4) + (g2^4*g5^4*t^8.06)/(g3^8*g4^8) + (g5^4*t^8.06)/(g3^8*g4^4) + (g4^4*g5^4*t^8.06)/(g1^8*g2^8) + (g6^4*t^8.06)/(g1^8*g2^4) + (g2^4*g6^4*t^8.06)/(g3^8*g4^8) + (g6^4*t^8.06)/(g3^8*g4^4) + (g4^4*g6^4*t^8.06)/(g1^8*g2^8) + (g3^4*g5^4*t^8.12)/(g1^8*g2^8) + (g1^4*g5^4*t^8.12)/(g3^8*g4^8) + (g3^4*g6^4*t^8.12)/(g1^8*g2^8) + (g1^4*g6^4*t^8.12)/(g3^8*g4^8) - (6*t^8.14)/(g1^4*g3^4) - (g2^4*t^8.14)/(g1^4*g3^4*g4^4) - (g4^4*t^8.14)/(g1^4*g2^4*g3^4) - (g5^4*t^8.14)/(g1^4*g3^4*g6^4) - (g6^4*t^8.14)/(g1^4*g3^4*g5^4) - (6*t^8.2)/(g1^4*g2^4) - t^8.2/(g2^4*g3^4) - t^8.2/(g1^4*g4^4) - (6*t^8.2)/(g3^4*g4^4) - (g5^4*t^8.2)/(g1^4*g2^4*g6^4) - (g5^4*t^8.2)/(g3^4*g4^4*g6^4) - (g6^4*t^8.2)/(g1^4*g2^4*g5^4) - (g6^4*t^8.2)/(g3^4*g4^4*g5^4) - (g2^4*t^8.22)/(g1^4*g3^4*g5^4) - (g4^4*t^8.22)/(g1^4*g3^4*g5^4) - (g2^4*t^8.22)/(g1^4*g3^4*g6^4) - (g4^4*t^8.22)/(g1^4*g3^4*g6^4) - (g3^4*t^8.26)/(g1^4*g2^8) - (g1^4*t^8.26)/(g3^4*g4^8) - t^8.26/(g2^4*g4^4) - (g1^4*t^8.26)/(g2^4*g3^4*g4^4) - (g3^4*t^8.26)/(g1^4*g2^4*g4^4) - t^8.28/(g1^4*g5^4) - t^8.28/(g3^4*g5^4) - (g2^4*t^8.28)/(g3^4*g4^4*g5^4) - (g4^4*t^8.28)/(g1^4*g2^4*g5^4) - t^8.28/(g1^4*g6^4) - t^8.28/(g3^4*g6^4) - (g2^4*t^8.28)/(g3^4*g4^4*g6^4) - (g4^4*t^8.28)/(g1^4*g2^4*g6^4) + (g2^2*g4^2*g5^6*g6^6*t^8.31)/(g1^2*g3^2) - (g3^4*t^8.34)/(g1^4*g2^4*g5^4) - (g1^4*t^8.34)/(g3^4*g4^4*g5^4) - (g3^4*t^8.34)/(g1^4*g2^4*g6^4) - (g1^4*t^8.34)/(g3^4*g4^4*g6^4) + (g1^2*g2^2*g5^6*g6^6*t^8.37)/(g3^2*g4^2) + (g3^2*g4^2*g5^6*g6^6*t^8.37)/(g1^2*g2^2) + (g2^6*g4^2*g5^6*g6^2*t^8.39)/(g1^2*g3^2) + (g2^2*g4^6*g5^6*g6^2*t^8.39)/(g1^2*g3^2) + (g2^6*g4^2*g5^2*g6^6*t^8.39)/(g1^2*g3^2) + (g2^2*g4^6*g5^2*g6^6*t^8.39)/(g1^2*g3^2) + t^8.42/g5^8 + t^8.42/g6^8 + t^8.42/(g5^4*g6^4) + (g1^2*g2^6*g5^6*g6^2*t^8.45)/(g3^2*g4^2) + (g1^2*g2^2*g4^2*g5^6*g6^2*t^8.45)/g3^2 + (g2^2*g3^2*g4^2*g5^6*g6^2*t^8.45)/g1^2 + (g3^2*g4^6*g5^6*g6^2*t^8.45)/(g1^2*g2^2) + (g1^2*g2^6*g5^2*g6^6*t^8.45)/(g3^2*g4^2) + (g1^2*g2^2*g4^2*g5^2*g6^6*t^8.45)/g3^2 + (g2^2*g3^2*g4^2*g5^2*g6^6*t^8.45)/g1^2 + (g3^2*g4^6*g5^2*g6^6*t^8.45)/(g1^2*g2^2) + (g2^6*g4^6*g5^2*g6^2*t^8.47)/(g1^2*g3^2) + (g1^6*g2^2*g5^6*g6^2*t^8.51)/(g3^2*g4^2) + (g3^6*g4^2*g5^6*g6^2*t^8.51)/(g1^2*g2^2) + (g1^6*g2^2*g5^2*g6^6*t^8.51)/(g3^2*g4^2) + (g3^6*g4^2*g5^2*g6^6*t^8.51)/(g1^2*g2^2) + t^8.57/(g1^16*g3^16) - (g1^2*g2^2*g3^2*g4^2*g5^6*t^8.59)/g6^2 - 6*g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^8.59 - (g1^2*g2^2*g3^2*g4^2*g6^6*t^8.59)/g5^2 + t^8.63/(g1^16*g2^4*g3^12) + t^8.63/(g1^12*g3^16*g4^4) - (g1^6*g2^2*g3^2*g5^2*g6^2*t^8.65)/g4^2 - (g1^2*g2^2*g3^6*g5^2*g6^2*t^8.65)/g4^2 - (g1^6*g3^2*g4^2*g5^2*g6^2*t^8.65)/g2^2 - (g1^2*g3^6*g4^2*g5^2*g6^2*t^8.65)/g2^2 - (g1^2*g2^6*g3^2*g4^2*g5^2*t^8.67)/g6^2 - (g1^2*g2^2*g3^2*g4^6*g5^2*t^8.67)/g6^2 - (g1^2*g2^6*g3^2*g4^2*g6^2*t^8.67)/g5^2 - (g1^2*g2^2*g3^2*g4^6*g6^2*t^8.67)/g5^2 + t^8.69/(g1^16*g2^8*g3^8) + t^8.69/(g1^8*g3^16*g4^8) + t^8.69/(g1^12*g2^4*g3^12*g4^4) - (g1^6*g2^2*g3^2*g4^2*g5^2*t^8.73)/g6^2 - (g1^2*g2^2*g3^6*g4^2*g5^2*t^8.73)/g6^2 - (g1^6*g2^2*g3^2*g4^2*g6^2*t^8.73)/g5^2 - (g1^2*g2^2*g3^6*g4^2*g6^2*t^8.73)/g5^2 + t^8.75/(g1^16*g2^12*g3^4) + t^8.75/(g1^4*g3^16*g4^12) + t^8.75/(g1^8*g2^4*g3^12*g4^8) + t^8.75/(g1^12*g2^8*g3^8*g4^4) + g1^4*g2^4*g3^4*g4^4*g5^8*g6^8*t^8.76 + t^8.81/(g1^16*g2^16) + t^8.81/(g3^16*g4^16) + t^8.81/(g1^4*g2^4*g3^12*g4^12) + t^8.81/(g1^8*g2^8*g3^8*g4^8) + t^8.81/(g1^12*g2^12*g3^4*g4^4) + g1^4*g2^8*g3^4*g4^4*g5^8*g6^4*t^8.84 + g1^4*g2^4*g3^4*g4^8*g5^8*g6^4*t^8.84 + g1^4*g2^8*g3^4*g4^4*g5^4*g6^8*t^8.84 + g1^4*g2^4*g3^4*g4^8*g5^4*g6^8*t^8.84 + (g5^11*g6^3*t^8.87)/(g1*g2*g3*g4) + (g5^7*g6^7*t^8.87)/(g1*g2*g3*g4) + (g5^3*g6^11*t^8.87)/(g1*g2*g3*g4) + g1^8*g2^4*g3^4*g4^4*g5^8*g6^4*t^8.9 + g1^4*g2^4*g3^8*g4^4*g5^8*g6^4*t^8.9 + g1^8*g2^4*g3^4*g4^4*g5^4*g6^8*t^8.9 + g1^4*g2^4*g3^8*g4^4*g5^4*g6^8*t^8.9 + g1^4*g2^8*g3^4*g4^8*g5^4*g6^4*t^8.92 + (g2^3*g5^11*t^8.95)/(g1*g3*g4*g6) + (g4^3*g5^11*t^8.95)/(g1*g2*g3*g6) + (2*g2^3*g5^7*g6^3*t^8.95)/(g1*g3*g4) + (2*g4^3*g5^7*g6^3*t^8.95)/(g1*g2*g3) + (2*g2^3*g5^3*g6^7*t^8.95)/(g1*g3*g4) + (2*g4^3*g5^3*g6^7*t^8.95)/(g1*g2*g3) + (g2^3*g6^11*t^8.95)/(g1*g3*g4*g5) + (g4^3*g6^11*t^8.95)/(g1*g2*g3*g5) + g1^4*g2^8*g3^8*g4^4*g5^4*g6^4*t^8.98 + g1^8*g2^4*g3^4*g4^8*g5^4*g6^4*t^8.98 - t^4.71/(g1*g2*g3*g4*g5*g6*y) - t^6.85/(g1^5*g2*g3^5*g4*g5*g6*y) - t^6.91/(g1*g2*g3^5*g4^5*g5*g6*y) - t^6.91/(g1^5*g2^5*g3*g4*g5*g6*y) + t^7.34/(g1^8*g2^4*g3^4*y) + t^7.34/(g1^4*g3^8*g4^4*y) + t^7.4/(g1^4*g2^4*g3^4*g4^4*y) + (g2^2*g4^2*g5^2*g6^2*t^7.73)/(g1^2*g3^2*y) + (g1^2*g2^2*g5^2*g6^2*t^7.79)/(g3^2*g4^2*y) + (g3^2*g4^2*g5^2*g6^2*t^7.79)/(g1^2*g2^2*y) + (g1^3*g2^3*t^8.5)/(g3*g4*g5*g6*y) + (g3^3*g4^3*t^8.5)/(g1*g2*g5*g6*y) + (g1^3*g3^3*t^8.56)/(g2*g4*g5*g6*y) + (g5^4*g6^4*t^8.72)/(g1^4*g3^4*y) + (g5^4*g6^4*t^8.78)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.78)/(g3^4*g4^4*y) + (g2^4*g5^4*t^8.8)/(g1^4*g3^4*y) + (g4^4*g5^4*t^8.8)/(g1^4*g3^4*y) + (g2^4*g6^4*t^8.8)/(g1^4*g3^4*y) + (g4^4*g6^4*t^8.8)/(g1^4*g3^4*y) + (2*g5^4*t^8.86)/(g1^4*y) + (2*g5^4*t^8.86)/(g3^4*y) + (g2^4*g5^4*t^8.86)/(g3^4*g4^4*y) + (g4^4*g5^4*t^8.86)/(g1^4*g2^4*y) + (2*g6^4*t^8.86)/(g1^4*y) + (2*g6^4*t^8.86)/(g3^4*y) + (g2^4*g6^4*t^8.86)/(g3^4*g4^4*y) + (g4^4*g6^4*t^8.86)/(g1^4*g2^4*y) + (g2^4*g4^4*t^8.88)/(g1^4*g3^4*y) + (g5^4*t^8.92)/(g2^4*y) + (g3^4*g5^4*t^8.92)/(g1^4*g2^4*y) + (g5^4*t^8.92)/(g4^4*y) + (g1^4*g5^4*t^8.92)/(g3^4*g4^4*y) + (g6^4*t^8.92)/(g2^4*y) + (g3^4*g6^4*t^8.92)/(g1^4*g2^4*y) + (g6^4*t^8.92)/(g4^4*y) + (g1^4*g6^4*t^8.92)/(g3^4*g4^4*y) + (g2^4*t^8.94)/(g1^4*y) + (g2^4*t^8.94)/(g3^4*y) + (g4^4*t^8.94)/(g1^4*y) + (g4^4*t^8.94)/(g3^4*y) - t^8.99/(g1^9*g2*g3^9*g4*g5*g6*y) - (t^4.71*y)/(g1*g2*g3*g4*g5*g6) - (t^6.85*y)/(g1^5*g2*g3^5*g4*g5*g6) - (t^6.91*y)/(g1*g2*g3^5*g4^5*g5*g6) - (t^6.91*y)/(g1^5*g2^5*g3*g4*g5*g6) + (t^7.34*y)/(g1^8*g2^4*g3^4) + (t^7.34*y)/(g1^4*g3^8*g4^4) + (t^7.4*y)/(g1^4*g2^4*g3^4*g4^4) + (g2^2*g4^2*g5^2*g6^2*t^7.73*y)/(g1^2*g3^2) + (g1^2*g2^2*g5^2*g6^2*t^7.79*y)/(g3^2*g4^2) + (g3^2*g4^2*g5^2*g6^2*t^7.79*y)/(g1^2*g2^2) + (g1^3*g2^3*t^8.5*y)/(g3*g4*g5*g6) + (g3^3*g4^3*t^8.5*y)/(g1*g2*g5*g6) + (g1^3*g3^3*t^8.56*y)/(g2*g4*g5*g6) + (g5^4*g6^4*t^8.72*y)/(g1^4*g3^4) + (g5^4*g6^4*t^8.78*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.78*y)/(g3^4*g4^4) + (g2^4*g5^4*t^8.8*y)/(g1^4*g3^4) + (g4^4*g5^4*t^8.8*y)/(g1^4*g3^4) + (g2^4*g6^4*t^8.8*y)/(g1^4*g3^4) + (g4^4*g6^4*t^8.8*y)/(g1^4*g3^4) + (2*g5^4*t^8.86*y)/g1^4 + (2*g5^4*t^8.86*y)/g3^4 + (g2^4*g5^4*t^8.86*y)/(g3^4*g4^4) + (g4^4*g5^4*t^8.86*y)/(g1^4*g2^4) + (2*g6^4*t^8.86*y)/g1^4 + (2*g6^4*t^8.86*y)/g3^4 + (g2^4*g6^4*t^8.86*y)/(g3^4*g4^4) + (g4^4*g6^4*t^8.86*y)/(g1^4*g2^4) + (g2^4*g4^4*t^8.88*y)/(g1^4*g3^4) + (g5^4*t^8.92*y)/g2^4 + (g3^4*g5^4*t^8.92*y)/(g1^4*g2^4) + (g5^4*t^8.92*y)/g4^4 + (g1^4*g5^4*t^8.92*y)/(g3^4*g4^4) + (g6^4*t^8.92*y)/g2^4 + (g3^4*g6^4*t^8.92*y)/(g1^4*g2^4) + (g6^4*t^8.92*y)/g4^4 + (g1^4*g6^4*t^8.92*y)/(g3^4*g4^4) + (g2^4*t^8.94*y)/g1^4 + (g2^4*t^8.94*y)/g3^4 + (g4^4*t^8.94*y)/g1^4 + (g4^4*t^8.94*y)/g3^4 - (t^8.99*y)/(g1^9*g2*g3^9*g4*g5*g6) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55672 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3q_1q_3$ | 0.91 | 1.1333 | 0.803 | [X:[], M:[0.7265, 0.8501, 0.7265], q:[0.6492, 0.6242, 0.6242], qb:[0.6008, 0.6008, 0.6008], phi:[0.575]] | 2*t^2.18 + t^2.55 + 3*t^3.6 + 6*t^3.68 + 4*t^3.75 + 3*t^4.36 + 2*t^4.73 + t^5.1 + 6*t^5.33 + 6*t^5.4 + 3*t^5.47 + 3*t^5.48 + 2*t^5.55 + t^5.62 + 6*t^5.78 + 9*t^5.85 - 14*t^6. - t^4.72/y - t^4.72*y | detail |