Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55455 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ | 0.8641 | 1.0553 | 0.8188 | [M:[0.6776], q:[0.723, 0.7296, 0.5928], qb:[0.5884, 0.5884, 0.5884], phi:[0.5474]] | [M:[[-1, -3, 0, 0, 0]], q:[[-1, 1, 1, 1, 1], [1, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[0, -1, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{1}q_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{3}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}q_{3}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}q_{3}\tilde{q}_{1}$, ${ }M_{1}q_{3}\tilde{q}_{2}$, ${ }M_{1}q_{3}\tilde{q}_{3}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{3}$, ${ }M_{1}q_{1}q_{3}$ | ${}$ | -11 | t^2.033 + t^3.284 + 3*t^3.53 + 3*t^3.543 + 3*t^3.934 + t^3.947 + 3*t^3.954 + t^4.066 + t^4.358 + 6*t^5.172 + 3*t^5.186 + t^5.199 + t^5.317 + 3*t^5.563 + 3*t^5.576 + 3*t^5.967 + t^5.98 - 11*t^6. - 3*t^6.013 + t^6.099 - 3*t^6.404 - t^6.411 - 3*t^6.424 + t^6.569 + 3*t^6.814 + 3*t^6.828 + 6*t^7.06 + 8*t^7.074 + 6*t^7.087 + 6*t^7.205 + 3*t^7.218 + t^7.232 - t^7.251 + t^7.35 + 8*t^7.464 + 9*t^7.477 + 8*t^7.484 + 3*t^7.491 + 6*t^7.497 + 3*t^7.596 + 3*t^7.609 - 3*t^7.629 - 9*t^7.642 - 3*t^7.655 + 6*t^7.868 + 3*t^7.881 + 3*t^7.888 + t^7.895 + 6*t^7.908 - t^7.914 + 3*t^8. + t^8.013 - 11*t^8.033 - 3*t^8.046 + t^8.132 - t^8.325 - 3*t^8.437 + 6*t^8.457 + 9*t^8.47 + t^8.483 + t^8.602 - t^8.696 + 15*t^8.702 + 18*t^8.716 + 9*t^8.729 - t^8.735 + 3*t^8.742 + 3*t^8.847 + 3*t^8.861 - t^4.642/y - t^6.675/y + t^7.358/y - t^7.926/y + t^8.317/y + (3*t^8.563)/y + (3*t^8.576)/y + t^8.609/y - t^8.708/y + (3*t^8.967)/y + t^8.98/y + (3*t^8.987)/y - t^4.642*y - t^6.675*y + t^7.358*y - t^7.926*y + t^8.317*y + 3*t^8.563*y + 3*t^8.576*y + t^8.609*y - t^8.708*y + 3*t^8.967*y + t^8.98*y + 3*t^8.987*y | t^2.033/(g1*g2^3) + t^3.284/(g2^2*g3^2*g4^2*g5^2) + g3^3*g4^3*t^3.53 + g3^3*g5^3*t^3.53 + g4^3*g5^3*t^3.53 + g2^3*g3^3*t^3.543 + g2^3*g4^3*t^3.543 + g2^3*g5^3*t^3.543 + (g2*g3^4*g4*g5*t^3.934)/g1 + (g2*g3*g4^4*g5*t^3.934)/g1 + (g2*g3*g4*g5^4*t^3.934)/g1 + (g2^4*g3*g4*g5*t^3.947)/g1 + g1*g3^3*t^3.954 + g1*g4^3*t^3.954 + g1*g5^3*t^3.954 + t^4.066/(g1^2*g2^6) + g2*g3*g4*g5*t^4.358 + (g3^5*t^5.172)/(g2*g4*g5) + (g3^2*g4^2*t^5.172)/(g2*g5) + (g4^5*t^5.172)/(g2*g3*g5) + (g3^2*g5^2*t^5.172)/(g2*g4) + (g4^2*g5^2*t^5.172)/(g2*g3) + (g5^5*t^5.172)/(g2*g3*g4) + (g2^2*g3^2*t^5.186)/(g4*g5) + (g2^2*g4^2*t^5.186)/(g3*g5) + (g2^2*g5^2*t^5.186)/(g3*g4) + (g2^5*t^5.199)/(g3*g4*g5) + t^5.317/(g1*g2^5*g3^2*g4^2*g5^2) + (g3^3*g4^3*t^5.563)/(g1*g2^3) + (g3^3*g5^3*t^5.563)/(g1*g2^3) + (g4^3*g5^3*t^5.563)/(g1*g2^3) + (g3^3*t^5.576)/g1 + (g4^3*t^5.576)/g1 + (g5^3*t^5.576)/g1 + (g3^4*g4*g5*t^5.967)/(g1^2*g2^2) + (g3*g4^4*g5*t^5.967)/(g1^2*g2^2) + (g3*g4*g5^4*t^5.967)/(g1^2*g2^2) + (g2*g3*g4*g5*t^5.98)/g1^2 - 5*t^6. - (g3^3*t^6.)/g4^3 - (g4^3*t^6.)/g3^3 - (g3^3*t^6.)/g5^3 - (g4^3*t^6.)/g5^3 - (g5^3*t^6.)/g3^3 - (g5^3*t^6.)/g4^3 - (g2^3*t^6.013)/g3^3 - (g2^3*t^6.013)/g4^3 - (g2^3*t^6.013)/g5^3 + t^6.099/(g1^3*g2^9) - (g2*g3*g4*t^6.404)/(g1*g5^2) - (g2*g3*g5*t^6.404)/(g1*g4^2) - (g2*g4*g5*t^6.404)/(g1*g3^2) - (g1*t^6.411)/g2^3 - (g1*t^6.424)/g3^3 - (g1*t^6.424)/g4^3 - (g1*t^6.424)/g5^3 + t^6.569/(g2^4*g3^4*g4^4*g5^4) + (g3*g4*t^6.814)/(g2^2*g5^2) + (g3*g5*t^6.814)/(g2^2*g4^2) + (g4*g5*t^6.814)/(g2^2*g3^2) + (g2*g3*t^6.828)/(g4^2*g5^2) + (g2*g4*t^6.828)/(g3^2*g5^2) + (g2*g5*t^6.828)/(g3^2*g4^2) + g3^6*g4^6*t^7.06 + g3^6*g4^3*g5^3*t^7.06 + g3^3*g4^6*g5^3*t^7.06 + g3^6*g5^6*t^7.06 + g3^3*g4^3*g5^6*t^7.06 + g4^6*g5^6*t^7.06 + g2^3*g3^6*g4^3*t^7.074 + g2^3*g3^3*g4^6*t^7.074 + g2^3*g3^6*g5^3*t^7.074 + 2*g2^3*g3^3*g4^3*g5^3*t^7.074 + g2^3*g4^6*g5^3*t^7.074 + g2^3*g3^3*g5^6*t^7.074 + g2^3*g4^3*g5^6*t^7.074 + g2^6*g3^6*t^7.087 + g2^6*g3^3*g4^3*t^7.087 + g2^6*g4^6*t^7.087 + g2^6*g3^3*g5^3*t^7.087 + g2^6*g4^3*g5^3*t^7.087 + g2^6*g5^6*t^7.087 + (g3^5*t^7.205)/(g1*g2^4*g4*g5) + (g3^2*g4^2*t^7.205)/(g1*g2^4*g5) + (g4^5*t^7.205)/(g1*g2^4*g3*g5) + (g3^2*g5^2*t^7.205)/(g1*g2^4*g4) + (g4^2*g5^2*t^7.205)/(g1*g2^4*g3) + (g5^5*t^7.205)/(g1*g2^4*g3*g4) + (g3^2*t^7.218)/(g1*g2*g4*g5) + (g4^2*t^7.218)/(g1*g2*g3*g5) + (g5^2*t^7.218)/(g1*g2*g3*g4) + (g2^2*t^7.232)/(g1*g3*g4*g5) - (g1*g2*t^7.251)/(g3^2*g4^2*g5^2) + t^7.35/(g1^2*g2^8*g3^2*g4^2*g5^2) + (g2*g3^7*g4^4*g5*t^7.464)/g1 + (g2*g3^4*g4^7*g5*t^7.464)/g1 + (g2*g3^7*g4*g5^4*t^7.464)/g1 + (2*g2*g3^4*g4^4*g5^4*t^7.464)/g1 + (g2*g3*g4^7*g5^4*t^7.464)/g1 + (g2*g3^4*g4*g5^7*t^7.464)/g1 + (g2*g3*g4^4*g5^7*t^7.464)/g1 + (g2^4*g3^7*g4*g5*t^7.477)/g1 + (2*g2^4*g3^4*g4^4*g5*t^7.477)/g1 + (g2^4*g3*g4^7*g5*t^7.477)/g1 + (2*g2^4*g3^4*g4*g5^4*t^7.477)/g1 + (2*g2^4*g3*g4^4*g5^4*t^7.477)/g1 + (g2^4*g3*g4*g5^7*t^7.477)/g1 + g1*g3^6*g4^3*t^7.484 + g1*g3^3*g4^6*t^7.484 + g1*g3^6*g5^3*t^7.484 + 2*g1*g3^3*g4^3*g5^3*t^7.484 + g1*g4^6*g5^3*t^7.484 + g1*g3^3*g5^6*t^7.484 + g1*g4^3*g5^6*t^7.484 + (g2^7*g3^4*g4*g5*t^7.491)/g1 + (g2^7*g3*g4^4*g5*t^7.491)/g1 + (g2^7*g3*g4*g5^4*t^7.491)/g1 + g1*g2^3*g3^6*t^7.497 + g1*g2^3*g3^3*g4^3*t^7.497 + g1*g2^3*g4^6*t^7.497 + g1*g2^3*g3^3*g5^3*t^7.497 + g1*g2^3*g4^3*g5^3*t^7.497 + g1*g2^3*g5^6*t^7.497 + (g3^3*g4^3*t^7.596)/(g1^2*g2^6) + (g3^3*g5^3*t^7.596)/(g1^2*g2^6) + (g4^3*g5^3*t^7.596)/(g1^2*g2^6) + (g3^3*t^7.609)/(g1^2*g2^3) + (g4^3*t^7.609)/(g1^2*g2^3) + (g5^3*t^7.609)/(g1^2*g2^3) - (g3^2*t^7.629)/(g2^4*g4*g5) - (g4^2*t^7.629)/(g2^4*g3*g5) - (g5^2*t^7.629)/(g2^4*g3*g4) - (g3^2*t^7.642)/(g2*g4*g5^4) - (g4^2*t^7.642)/(g2*g3*g5^4) - (g3^2*t^7.642)/(g2*g4^4*g5) - (3*t^7.642)/(g2*g3*g4*g5) - (g4^2*t^7.642)/(g2*g3^4*g5) - (g5^2*t^7.642)/(g2*g3*g4^4) - (g5^2*t^7.642)/(g2*g3^4*g4) - (g2^2*t^7.655)/(g3*g4*g5^4) - (g2^2*t^7.655)/(g3*g4^4*g5) - (g2^2*t^7.655)/(g3^4*g4*g5) + (g2^2*g3^8*g4^2*g5^2*t^7.868)/g1^2 + (g2^2*g3^5*g4^5*g5^2*t^7.868)/g1^2 + (g2^2*g3^2*g4^8*g5^2*t^7.868)/g1^2 + (g2^2*g3^5*g4^2*g5^5*t^7.868)/g1^2 + (g2^2*g3^2*g4^5*g5^5*t^7.868)/g1^2 + (g2^2*g3^2*g4^2*g5^8*t^7.868)/g1^2 + (g2^5*g3^5*g4^2*g5^2*t^7.881)/g1^2 + (g2^5*g3^2*g4^5*g5^2*t^7.881)/g1^2 + (g2^5*g3^2*g4^2*g5^5*t^7.881)/g1^2 + g2*g3^4*g4^4*g5*t^7.888 + g2*g3^4*g4*g5^4*t^7.888 + g2*g3*g4^4*g5^4*t^7.888 + (g2^8*g3^2*g4^2*g5^2*t^7.895)/g1^2 + g1^2*g3^6*t^7.908 + g1^2*g3^3*g4^3*t^7.908 + g1^2*g4^6*t^7.908 + g1^2*g3^3*g5^3*t^7.908 + g1^2*g4^3*g5^3*t^7.908 + g1^2*g5^6*t^7.908 - g2^7*g3*g4*g5*t^7.914 + (g3^4*g4*g5*t^8.)/(g1^3*g2^5) + (g3*g4^4*g5*t^8.)/(g1^3*g2^5) + (g3*g4*g5^4*t^8.)/(g1^3*g2^5) + (g3*g4*g5*t^8.013)/(g1^3*g2^2) - (5*t^8.033)/(g1*g2^3) - (g3^3*t^8.033)/(g1*g2^3*g4^3) - (g4^3*t^8.033)/(g1*g2^3*g3^3) - (g3^3*t^8.033)/(g1*g2^3*g5^3) - (g4^3*t^8.033)/(g1*g2^3*g5^3) - (g5^3*t^8.033)/(g1*g2^3*g3^3) - (g5^3*t^8.033)/(g1*g2^3*g4^3) - t^8.046/(g1*g3^3) - t^8.046/(g1*g4^3) - t^8.046/(g1*g5^3) + t^8.132/(g1^4*g2^12) - g1*g2^4*g3*g4*g5*t^8.325 - (g3*g4*t^8.437)/(g1^2*g2^2*g5^2) - (g3*g5*t^8.437)/(g1^2*g2^2*g4^2) - (g4*g5*t^8.437)/(g1^2*g2^2*g3^2) + t^8.457/(g2^3*g3^3) + t^8.457/(g2^3*g4^3) + t^8.457/(g2^3*g5^3) + (g3^3*t^8.457)/(g2^3*g4^3*g5^3) + (g4^3*t^8.457)/(g2^3*g3^3*g5^3) + (g5^3*t^8.457)/(g2^3*g3^3*g4^3) + t^8.47/g3^6 + t^8.47/g4^6 + (2*t^8.47)/(g3^3*g4^3) + t^8.47/g5^6 + (2*t^8.47)/(g3^3*g5^3) + (2*t^8.47)/(g4^3*g5^3) + (g2^3*t^8.483)/(g3^3*g4^3*g5^3) + t^8.602/(g1*g2^7*g3^4*g4^4*g5^4) - (g2^3*g3^3*g4^3*g5^3*t^8.696)/g1^2 + (g3^8*g4^2*t^8.702)/(g2*g5) + (g3^5*g4^5*t^8.702)/(g2*g5) + (g3^2*g4^8*t^8.702)/(g2*g5) + (g3^8*g5^2*t^8.702)/(g2*g4) + (2*g3^5*g4^2*g5^2*t^8.702)/g2 + (2*g3^2*g4^5*g5^2*t^8.702)/g2 + (g4^8*g5^2*t^8.702)/(g2*g3) + (g3^5*g5^5*t^8.702)/(g2*g4) + (2*g3^2*g4^2*g5^5*t^8.702)/g2 + (g4^5*g5^5*t^8.702)/(g2*g3) + (g3^2*g5^8*t^8.702)/(g2*g4) + (g4^2*g5^8*t^8.702)/(g2*g3) + (g2^2*g3^8*t^8.716)/(g4*g5) + (2*g2^2*g3^5*g4^2*t^8.716)/g5 + (2*g2^2*g3^2*g4^5*t^8.716)/g5 + (g2^2*g4^8*t^8.716)/(g3*g5) + (2*g2^2*g3^5*g5^2*t^8.716)/g4 + 3*g2^2*g3^2*g4^2*g5^2*t^8.716 + (2*g2^2*g4^5*g5^2*t^8.716)/g3 + (2*g2^2*g3^2*g5^5*t^8.716)/g4 + (2*g2^2*g4^2*g5^5*t^8.716)/g3 + (g2^2*g5^8*t^8.716)/(g3*g4) + (g2^5*g3^5*t^8.729)/(g4*g5) + (2*g2^5*g3^2*g4^2*t^8.729)/g5 + (g2^5*g4^5*t^8.729)/(g3*g5) + (2*g2^5*g3^2*g5^2*t^8.729)/g4 + (2*g2^5*g4^2*g5^2*t^8.729)/g3 + (g2^5*g5^5*t^8.729)/(g3*g4) - g1^2*g2*g3*g4*g5*t^8.735 + (g2^8*g3^2*t^8.742)/(g4*g5) + (g2^8*g4^2*t^8.742)/(g3*g5) + (g2^8*g5^2*t^8.742)/(g3*g4) + (g3*g4*t^8.847)/(g1*g2^5*g5^2) + (g3*g5*t^8.847)/(g1*g2^5*g4^2) + (g4*g5*t^8.847)/(g1*g2^5*g3^2) + (g3*t^8.861)/(g1*g2^2*g4^2*g5^2) + (g4*t^8.861)/(g1*g2^2*g3^2*g5^2) + (g5*t^8.861)/(g1*g2^2*g3^2*g4^2) - t^4.642/(g2*g3*g4*g5*y) - t^6.675/(g1*g2^4*g3*g4*g5*y) + (g2*g3*g4*g5*t^7.358)/y - t^7.926/(g2^3*g3^3*g4^3*g5^3*y) + t^8.317/(g1*g2^5*g3^2*g4^2*g5^2*y) + (g3^3*g4^3*t^8.563)/(g1*g2^3*y) + (g3^3*g5^3*t^8.563)/(g1*g2^3*y) + (g4^3*g5^3*t^8.563)/(g1*g2^3*y) + (g3^3*t^8.576)/(g1*y) + (g4^3*t^8.576)/(g1*y) + (g5^3*t^8.576)/(g1*y) + (g1*g2^2*t^8.609)/(g3*g4*g5*y) - t^8.708/(g1^2*g2^7*g3*g4*g5*y) + (g3^4*g4*g5*t^8.967)/(g1^2*g2^2*y) + (g3*g4^4*g5*t^8.967)/(g1^2*g2^2*y) + (g3*g4*g5^4*t^8.967)/(g1^2*g2^2*y) + (g2*g3*g4*g5*t^8.98)/(g1^2*y) + (g3^3*t^8.987)/(g2^3*y) + (g4^3*t^8.987)/(g2^3*y) + (g5^3*t^8.987)/(g2^3*y) - (t^4.642*y)/(g2*g3*g4*g5) - (t^6.675*y)/(g1*g2^4*g3*g4*g5) + g2*g3*g4*g5*t^7.358*y - (t^7.926*y)/(g2^3*g3^3*g4^3*g5^3) + (t^8.317*y)/(g1*g2^5*g3^2*g4^2*g5^2) + (g3^3*g4^3*t^8.563*y)/(g1*g2^3) + (g3^3*g5^3*t^8.563*y)/(g1*g2^3) + (g4^3*g5^3*t^8.563*y)/(g1*g2^3) + (g3^3*t^8.576*y)/g1 + (g4^3*t^8.576*y)/g1 + (g5^3*t^8.576*y)/g1 + (g1*g2^2*t^8.609*y)/(g3*g4*g5) - (t^8.708*y)/(g1^2*g2^7*g3*g4*g5) + (g3^4*g4*g5*t^8.967*y)/(g1^2*g2^2) + (g3*g4^4*g5*t^8.967*y)/(g1^2*g2^2) + (g3*g4*g5^4*t^8.967*y)/(g1^2*g2^2) + (g2*g3*g4*g5*t^8.98*y)/g1^2 + (g3^3*t^8.987*y)/g2^3 + (g4^3*t^8.987*y)/g2^3 + (g5^3*t^8.987*y)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55693 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }M_{1}q_{1}q_{3}$ | 0.8641 | 1.0551 | 0.819 | [M:[0.6799], q:[0.7264, 0.7264, 0.5936], qb:[0.5883, 0.5883, 0.5883], phi:[0.5471]] | t^2.04 + t^3.283 + 3*t^3.53 + 3*t^3.546 + 6*t^3.944 + t^3.96 + t^4.08 + t^4.359 + 6*t^5.171 + 3*t^5.187 + t^5.203 + t^5.323 + 3*t^5.57 + 3*t^5.586 + 3*t^5.984 - 10*t^6. - t^4.641/y - t^4.641*y | detail | |
55600 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ | 0.8641 | 1.0549 | 0.8192 | [M:[0.6821], q:[0.7266, 0.7266, 0.5914], qb:[0.5914, 0.5883, 0.5883], phi:[0.5469]] | t^2.046 + t^3.281 + t^3.53 + 4*t^3.539 + t^3.548 + 4*t^3.945 + 3*t^3.954 + t^4.092 + t^4.359 + 3*t^5.17 + 4*t^5.18 + 3*t^5.189 + t^5.328 + t^5.576 + 4*t^5.585 + t^5.594 - 6*t^6. - t^4.641/y - t^4.641*y | detail | |
55687 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ | 0.8849 | 1.0955 | 0.8078 | [M:[0.6795, 0.6795], q:[0.7272, 0.7272, 0.5933], qb:[0.5933, 0.5882, 0.5882], phi:[0.5457]] | 2*t^2.039 + t^3.274 + t^3.529 + 4*t^3.545 + t^3.56 + 4*t^3.946 + 2*t^3.961 + 3*t^4.077 + t^4.363 + 3*t^5.166 + 4*t^5.182 + 3*t^5.197 + 2*t^5.313 + 2*t^5.568 + 8*t^5.583 + 2*t^5.598 + 4*t^5.985 - 5*t^6. - t^4.637/y - t^4.637*y | detail | |
55678 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ | 0.8484 | 1.0335 | 0.8208 | [M:[0.6937], q:[0.7263, 0.7425, 0.5638], qb:[0.7344, 0.554, 0.554], phi:[0.5312]] | t^2.081 + t^3.187 + t^3.324 + 2*t^3.354 + 2*t^3.841 + 2*t^3.865 + t^3.87 + 2*t^3.89 + t^3.895 + t^4.162 + t^4.382 + t^4.406 + t^4.431 + 3*t^4.918 + 2*t^4.947 + t^4.977 + t^5.268 + t^5.405 + 2*t^5.435 + 2*t^5.922 + 2*t^5.946 + t^5.951 - 6*t^6. - t^4.594/y - t^4.594*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55430 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ | 0.8434 | 1.0148 | 0.831 | [q:[0.7257, 0.7257, 0.5885], qb:[0.5885, 0.5885, 0.5885], phi:[0.5487]] | t^3.292 + 6*t^3.531 + 8*t^3.942 + t^4.354 + 10*t^5.177 - 17*t^6. - t^4.646/y - t^4.646*y | detail |