Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55455 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1q_2q_3$ 0.8641 1.0553 0.8188 [X:[], M:[0.6776], q:[0.723, 0.7296, 0.5928], qb:[0.5884, 0.5884, 0.5884], phi:[0.5474]] [X:[], M:[[-1, -3, 0, 0, 0]], q:[[-1, 1, 1, 1, 1], [1, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[0, -1, -1, -1, -1]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_1$, $ q_1q_3$, $ M_1^2$, $ q_1q_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_3^2$, $ M_1\phi_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_1$, $ M_1q_1\tilde{q}_1$, $ M_1q_1\tilde{q}_2$, $ M_1q_1q_3$ . -11 t^2.03 + t^3.28 + 3*t^3.53 + 3*t^3.54 + 3*t^3.93 + 4*t^3.95 + t^4.07 + t^4.36 + 6*t^5.17 + 3*t^5.19 + t^5.2 + t^5.32 + 3*t^5.56 + 3*t^5.58 + 3*t^5.97 + t^5.98 - 11*t^6. - 3*t^6.01 + t^6.1 - 3*t^6.4 - t^6.41 - 3*t^6.42 + t^6.57 + 3*t^6.81 + 3*t^6.83 + 6*t^7.06 + 8*t^7.07 + 6*t^7.09 + 6*t^7.21 + 3*t^7.22 + t^7.23 - t^7.25 + t^7.35 + 8*t^7.46 + 17*t^7.48 + 3*t^7.49 + 6*t^7.5 + 3*t^7.6 + 3*t^7.61 - 3*t^7.63 - 9*t^7.64 - 3*t^7.66 + 6*t^7.87 + 3*t^7.88 + 4*t^7.89 + 5*t^7.91 + 3*t^8. + t^8.01 - 11*t^8.03 - 3*t^8.05 + t^8.13 - t^8.32 - 3*t^8.44 + 6*t^8.46 + 9*t^8.47 + t^8.48 + t^8.6 + 14*t^8.7 + 18*t^8.72 + 9*t^8.73 + 2*t^8.74 + 3*t^8.85 + 3*t^8.86 - t^4.64/y - t^6.68/y + t^7.36/y - t^7.93/y + t^8.32/y + (3*t^8.56)/y + (3*t^8.58)/y + t^8.61/y - t^8.71/y + (3*t^8.97)/y + t^8.98/y + (3*t^8.99)/y - t^4.64*y - t^6.68*y + t^7.36*y - t^7.93*y + t^8.32*y + 3*t^8.56*y + 3*t^8.58*y + t^8.61*y - t^8.71*y + 3*t^8.97*y + t^8.98*y + 3*t^8.99*y t^2.03/(g1*g2^3) + t^3.28/(g2^2*g3^2*g4^2*g5^2) + g3^3*g4^3*t^3.53 + g3^3*g5^3*t^3.53 + g4^3*g5^3*t^3.53 + g2^3*g3^3*t^3.54 + g2^3*g4^3*t^3.54 + g2^3*g5^3*t^3.54 + (g2*g3^4*g4*g5*t^3.93)/g1 + (g2*g3*g4^4*g5*t^3.93)/g1 + (g2*g3*g4*g5^4*t^3.93)/g1 + g1*g3^3*t^3.95 + g1*g4^3*t^3.95 + (g2^4*g3*g4*g5*t^3.95)/g1 + g1*g5^3*t^3.95 + t^4.07/(g1^2*g2^6) + g2*g3*g4*g5*t^4.36 + (g3^5*t^5.17)/(g2*g4*g5) + (g3^2*g4^2*t^5.17)/(g2*g5) + (g4^5*t^5.17)/(g2*g3*g5) + (g3^2*g5^2*t^5.17)/(g2*g4) + (g4^2*g5^2*t^5.17)/(g2*g3) + (g5^5*t^5.17)/(g2*g3*g4) + (g2^2*g3^2*t^5.19)/(g4*g5) + (g2^2*g4^2*t^5.19)/(g3*g5) + (g2^2*g5^2*t^5.19)/(g3*g4) + (g2^5*t^5.2)/(g3*g4*g5) + t^5.32/(g1*g2^5*g3^2*g4^2*g5^2) + (g3^3*g4^3*t^5.56)/(g1*g2^3) + (g3^3*g5^3*t^5.56)/(g1*g2^3) + (g4^3*g5^3*t^5.56)/(g1*g2^3) + (g3^3*t^5.58)/g1 + (g4^3*t^5.58)/g1 + (g5^3*t^5.58)/g1 + (g3^4*g4*g5*t^5.97)/(g1^2*g2^2) + (g3*g4^4*g5*t^5.97)/(g1^2*g2^2) + (g3*g4*g5^4*t^5.97)/(g1^2*g2^2) + (g2*g3*g4*g5*t^5.98)/g1^2 - 5*t^6. - (g3^3*t^6.)/g4^3 - (g4^3*t^6.)/g3^3 - (g3^3*t^6.)/g5^3 - (g4^3*t^6.)/g5^3 - (g5^3*t^6.)/g3^3 - (g5^3*t^6.)/g4^3 - (g2^3*t^6.01)/g3^3 - (g2^3*t^6.01)/g4^3 - (g2^3*t^6.01)/g5^3 + t^6.1/(g1^3*g2^9) - (g2*g3*g4*t^6.4)/(g1*g5^2) - (g2*g3*g5*t^6.4)/(g1*g4^2) - (g2*g4*g5*t^6.4)/(g1*g3^2) - (g1*t^6.41)/g2^3 - (g1*t^6.42)/g3^3 - (g1*t^6.42)/g4^3 - (g1*t^6.42)/g5^3 + t^6.57/(g2^4*g3^4*g4^4*g5^4) + (g3*g4*t^6.81)/(g2^2*g5^2) + (g3*g5*t^6.81)/(g2^2*g4^2) + (g4*g5*t^6.81)/(g2^2*g3^2) + (g2*g3*t^6.83)/(g4^2*g5^2) + (g2*g4*t^6.83)/(g3^2*g5^2) + (g2*g5*t^6.83)/(g3^2*g4^2) + g3^6*g4^6*t^7.06 + g3^6*g4^3*g5^3*t^7.06 + g3^3*g4^6*g5^3*t^7.06 + g3^6*g5^6*t^7.06 + g3^3*g4^3*g5^6*t^7.06 + g4^6*g5^6*t^7.06 + g2^3*g3^6*g4^3*t^7.07 + g2^3*g3^3*g4^6*t^7.07 + g2^3*g3^6*g5^3*t^7.07 + 2*g2^3*g3^3*g4^3*g5^3*t^7.07 + g2^3*g4^6*g5^3*t^7.07 + g2^3*g3^3*g5^6*t^7.07 + g2^3*g4^3*g5^6*t^7.07 + g2^6*g3^6*t^7.09 + g2^6*g3^3*g4^3*t^7.09 + g2^6*g4^6*t^7.09 + g2^6*g3^3*g5^3*t^7.09 + g2^6*g4^3*g5^3*t^7.09 + g2^6*g5^6*t^7.09 + (g3^5*t^7.21)/(g1*g2^4*g4*g5) + (g3^2*g4^2*t^7.21)/(g1*g2^4*g5) + (g4^5*t^7.21)/(g1*g2^4*g3*g5) + (g3^2*g5^2*t^7.21)/(g1*g2^4*g4) + (g4^2*g5^2*t^7.21)/(g1*g2^4*g3) + (g5^5*t^7.21)/(g1*g2^4*g3*g4) + (g3^2*t^7.22)/(g1*g2*g4*g5) + (g4^2*t^7.22)/(g1*g2*g3*g5) + (g5^2*t^7.22)/(g1*g2*g3*g4) + (g2^2*t^7.23)/(g1*g3*g4*g5) - (g1*g2*t^7.25)/(g3^2*g4^2*g5^2) + t^7.35/(g1^2*g2^8*g3^2*g4^2*g5^2) + (g2*g3^7*g4^4*g5*t^7.46)/g1 + (g2*g3^4*g4^7*g5*t^7.46)/g1 + (g2*g3^7*g4*g5^4*t^7.46)/g1 + (2*g2*g3^4*g4^4*g5^4*t^7.46)/g1 + (g2*g3*g4^7*g5^4*t^7.46)/g1 + (g2*g3^4*g4*g5^7*t^7.46)/g1 + (g2*g3*g4^4*g5^7*t^7.46)/g1 + g1*g3^6*g4^3*t^7.48 + g1*g3^3*g4^6*t^7.48 + (g2^4*g3^7*g4*g5*t^7.48)/g1 + (2*g2^4*g3^4*g4^4*g5*t^7.48)/g1 + (g2^4*g3*g4^7*g5*t^7.48)/g1 + g1*g3^6*g5^3*t^7.48 + 2*g1*g3^3*g4^3*g5^3*t^7.48 + g1*g4^6*g5^3*t^7.48 + (2*g2^4*g3^4*g4*g5^4*t^7.48)/g1 + (2*g2^4*g3*g4^4*g5^4*t^7.48)/g1 + g1*g3^3*g5^6*t^7.48 + g1*g4^3*g5^6*t^7.48 + (g2^4*g3*g4*g5^7*t^7.48)/g1 + (g2^7*g3^4*g4*g5*t^7.49)/g1 + (g2^7*g3*g4^4*g5*t^7.49)/g1 + (g2^7*g3*g4*g5^4*t^7.49)/g1 + g1*g2^3*g3^6*t^7.5 + g1*g2^3*g3^3*g4^3*t^7.5 + g1*g2^3*g4^6*t^7.5 + g1*g2^3*g3^3*g5^3*t^7.5 + g1*g2^3*g4^3*g5^3*t^7.5 + g1*g2^3*g5^6*t^7.5 + (g3^3*g4^3*t^7.6)/(g1^2*g2^6) + (g3^3*g5^3*t^7.6)/(g1^2*g2^6) + (g4^3*g5^3*t^7.6)/(g1^2*g2^6) + (g3^3*t^7.61)/(g1^2*g2^3) + (g4^3*t^7.61)/(g1^2*g2^3) + (g5^3*t^7.61)/(g1^2*g2^3) - (g3^2*t^7.63)/(g2^4*g4*g5) - (g4^2*t^7.63)/(g2^4*g3*g5) - (g5^2*t^7.63)/(g2^4*g3*g4) - (g3^2*t^7.64)/(g2*g4*g5^4) - (g4^2*t^7.64)/(g2*g3*g5^4) - (g3^2*t^7.64)/(g2*g4^4*g5) - (3*t^7.64)/(g2*g3*g4*g5) - (g4^2*t^7.64)/(g2*g3^4*g5) - (g5^2*t^7.64)/(g2*g3*g4^4) - (g5^2*t^7.64)/(g2*g3^4*g4) - (g2^2*t^7.66)/(g3*g4*g5^4) - (g2^2*t^7.66)/(g3*g4^4*g5) - (g2^2*t^7.66)/(g3^4*g4*g5) + (g2^2*g3^8*g4^2*g5^2*t^7.87)/g1^2 + (g2^2*g3^5*g4^5*g5^2*t^7.87)/g1^2 + (g2^2*g3^2*g4^8*g5^2*t^7.87)/g1^2 + (g2^2*g3^5*g4^2*g5^5*t^7.87)/g1^2 + (g2^2*g3^2*g4^5*g5^5*t^7.87)/g1^2 + (g2^2*g3^2*g4^2*g5^8*t^7.87)/g1^2 + (g2^5*g3^5*g4^2*g5^2*t^7.88)/g1^2 + (g2^5*g3^2*g4^5*g5^2*t^7.88)/g1^2 + (g2^5*g3^2*g4^2*g5^5*t^7.88)/g1^2 + g2*g3^4*g4^4*g5*t^7.89 + (g2^8*g3^2*g4^2*g5^2*t^7.89)/g1^2 + g2*g3^4*g4*g5^4*t^7.89 + g2*g3*g4^4*g5^4*t^7.89 + g1^2*g3^6*t^7.91 + g1^2*g3^3*g4^3*t^7.91 + g1^2*g4^6*t^7.91 - g2^7*g3*g4*g5*t^7.91 + g1^2*g3^3*g5^3*t^7.91 + g1^2*g4^3*g5^3*t^7.91 + g1^2*g5^6*t^7.91 + (g3^4*g4*g5*t^8.)/(g1^3*g2^5) + (g3*g4^4*g5*t^8.)/(g1^3*g2^5) + (g3*g4*g5^4*t^8.)/(g1^3*g2^5) + (g3*g4*g5*t^8.01)/(g1^3*g2^2) - (5*t^8.03)/(g1*g2^3) - (g3^3*t^8.03)/(g1*g2^3*g4^3) - (g4^3*t^8.03)/(g1*g2^3*g3^3) - (g3^3*t^8.03)/(g1*g2^3*g5^3) - (g4^3*t^8.03)/(g1*g2^3*g5^3) - (g5^3*t^8.03)/(g1*g2^3*g3^3) - (g5^3*t^8.03)/(g1*g2^3*g4^3) - t^8.05/(g1*g3^3) - t^8.05/(g1*g4^3) - t^8.05/(g1*g5^3) + t^8.13/(g1^4*g2^12) - g1*g2^4*g3*g4*g5*t^8.32 - (g3*g4*t^8.44)/(g1^2*g2^2*g5^2) - (g3*g5*t^8.44)/(g1^2*g2^2*g4^2) - (g4*g5*t^8.44)/(g1^2*g2^2*g3^2) + t^8.46/(g2^3*g3^3) + t^8.46/(g2^3*g4^3) + t^8.46/(g2^3*g5^3) + (g3^3*t^8.46)/(g2^3*g4^3*g5^3) + (g4^3*t^8.46)/(g2^3*g3^3*g5^3) + (g5^3*t^8.46)/(g2^3*g3^3*g4^3) + t^8.47/g3^6 + t^8.47/g4^6 + (2*t^8.47)/(g3^3*g4^3) + t^8.47/g5^6 + (2*t^8.47)/(g3^3*g5^3) + (2*t^8.47)/(g4^3*g5^3) + (g2^3*t^8.48)/(g3^3*g4^3*g5^3) + t^8.6/(g1*g2^7*g3^4*g4^4*g5^4) + (g3^8*g4^2*t^8.7)/(g2*g5) + (g3^5*g4^5*t^8.7)/(g2*g5) + (g3^2*g4^8*t^8.7)/(g2*g5) + (g3^8*g5^2*t^8.7)/(g2*g4) + (2*g3^5*g4^2*g5^2*t^8.7)/g2 + (2*g3^2*g4^5*g5^2*t^8.7)/g2 + (g4^8*g5^2*t^8.7)/(g2*g3) - (g2^3*g3^3*g4^3*g5^3*t^8.7)/g1^2 + (g3^5*g5^5*t^8.7)/(g2*g4) + (2*g3^2*g4^2*g5^5*t^8.7)/g2 + (g4^5*g5^5*t^8.7)/(g2*g3) + (g3^2*g5^8*t^8.7)/(g2*g4) + (g4^2*g5^8*t^8.7)/(g2*g3) + (g2^2*g3^8*t^8.72)/(g4*g5) + (2*g2^2*g3^5*g4^2*t^8.72)/g5 + (2*g2^2*g3^2*g4^5*t^8.72)/g5 + (g2^2*g4^8*t^8.72)/(g3*g5) + (2*g2^2*g3^5*g5^2*t^8.72)/g4 + 3*g2^2*g3^2*g4^2*g5^2*t^8.72 + (2*g2^2*g4^5*g5^2*t^8.72)/g3 + (2*g2^2*g3^2*g5^5*t^8.72)/g4 + (2*g2^2*g4^2*g5^5*t^8.72)/g3 + (g2^2*g5^8*t^8.72)/(g3*g4) + (g2^5*g3^5*t^8.73)/(g4*g5) + (2*g2^5*g3^2*g4^2*t^8.73)/g5 + (g2^5*g4^5*t^8.73)/(g3*g5) + (2*g2^5*g3^2*g5^2*t^8.73)/g4 + (2*g2^5*g4^2*g5^2*t^8.73)/g3 + (g2^5*g5^5*t^8.73)/(g3*g4) + (g2^8*g3^2*t^8.74)/(g4*g5) + (g2^8*g4^2*t^8.74)/(g3*g5) - g1^2*g2*g3*g4*g5*t^8.74 + (g2^8*g5^2*t^8.74)/(g3*g4) + (g3*g4*t^8.85)/(g1*g2^5*g5^2) + (g3*g5*t^8.85)/(g1*g2^5*g4^2) + (g4*g5*t^8.85)/(g1*g2^5*g3^2) + (g3*t^8.86)/(g1*g2^2*g4^2*g5^2) + (g4*t^8.86)/(g1*g2^2*g3^2*g5^2) + (g5*t^8.86)/(g1*g2^2*g3^2*g4^2) - t^4.64/(g2*g3*g4*g5*y) - t^6.68/(g1*g2^4*g3*g4*g5*y) + (g2*g3*g4*g5*t^7.36)/y - t^7.93/(g2^3*g3^3*g4^3*g5^3*y) + t^8.32/(g1*g2^5*g3^2*g4^2*g5^2*y) + (g3^3*g4^3*t^8.56)/(g1*g2^3*y) + (g3^3*g5^3*t^8.56)/(g1*g2^3*y) + (g4^3*g5^3*t^8.56)/(g1*g2^3*y) + (g3^3*t^8.58)/(g1*y) + (g4^3*t^8.58)/(g1*y) + (g5^3*t^8.58)/(g1*y) + (g1*g2^2*t^8.61)/(g3*g4*g5*y) - t^8.71/(g1^2*g2^7*g3*g4*g5*y) + (g3^4*g4*g5*t^8.97)/(g1^2*g2^2*y) + (g3*g4^4*g5*t^8.97)/(g1^2*g2^2*y) + (g3*g4*g5^4*t^8.97)/(g1^2*g2^2*y) + (g2*g3*g4*g5*t^8.98)/(g1^2*y) + (g3^3*t^8.99)/(g2^3*y) + (g4^3*t^8.99)/(g2^3*y) + (g5^3*t^8.99)/(g2^3*y) - (t^4.64*y)/(g2*g3*g4*g5) - (t^6.68*y)/(g1*g2^4*g3*g4*g5) + g2*g3*g4*g5*t^7.36*y - (t^7.93*y)/(g2^3*g3^3*g4^3*g5^3) + (t^8.32*y)/(g1*g2^5*g3^2*g4^2*g5^2) + (g3^3*g4^3*t^8.56*y)/(g1*g2^3) + (g3^3*g5^3*t^8.56*y)/(g1*g2^3) + (g4^3*g5^3*t^8.56*y)/(g1*g2^3) + (g3^3*t^8.58*y)/g1 + (g4^3*t^8.58*y)/g1 + (g5^3*t^8.58*y)/g1 + (g1*g2^2*t^8.61*y)/(g3*g4*g5) - (t^8.71*y)/(g1^2*g2^7*g3*g4*g5) + (g3^4*g4*g5*t^8.97*y)/(g1^2*g2^2) + (g3*g4^4*g5*t^8.97*y)/(g1^2*g2^2) + (g3*g4*g5^4*t^8.97*y)/(g1^2*g2^2) + (g2*g3*g4*g5*t^8.98*y)/g1^2 + (g3^3*t^8.99*y)/g2^3 + (g4^3*t^8.99*y)/g2^3 + (g5^3*t^8.99*y)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55693 $\phi_1q_1q_2$ + $ M_1q_2q_3$ + $ M_1q_1q_3$ 0.8641 1.0551 0.819 [X:[], M:[0.6799], q:[0.7264, 0.7264, 0.5936], qb:[0.5883, 0.5883, 0.5883], phi:[0.5471]] t^2.04 + t^3.28 + 3*t^3.53 + 3*t^3.55 + 6*t^3.94 + t^3.96 + t^4.08 + t^4.36 + 6*t^5.17 + 3*t^5.19 + t^5.2 + t^5.32 + 3*t^5.57 + 3*t^5.59 + 3*t^5.98 - 10*t^6. - t^4.64/y - t^4.64*y detail
55600 $\phi_1q_1q_2$ + $ M_1q_2q_3$ + $ M_1q_1\tilde{q}_1$ 0.8641 1.0549 0.8192 [X:[], M:[0.6821], q:[0.7266, 0.7266, 0.5914], qb:[0.5914, 0.5883, 0.5883], phi:[0.5469]] t^2.05 + t^3.28 + t^3.53 + 4*t^3.54 + t^3.55 + 4*t^3.94 + 3*t^3.95 + t^4.09 + t^4.36 + 3*t^5.17 + 4*t^5.18 + 3*t^5.19 + t^5.33 + t^5.58 + 5*t^5.59 - 6*t^6. - t^4.64/y - t^4.64*y detail
55687 $\phi_1q_1q_2$ + $ M_1q_2q_3$ + $ M_2q_1\tilde{q}_1$ 0.8849 1.0955 0.8078 [X:[], M:[0.6795, 0.6795], q:[0.7272, 0.7272, 0.5933], qb:[0.5933, 0.5882, 0.5882], phi:[0.5457]] 2*t^2.04 + t^3.27 + t^3.53 + 4*t^3.54 + t^3.56 + 4*t^3.95 + 2*t^3.96 + 3*t^4.08 + t^4.36 + 3*t^5.17 + 4*t^5.18 + 3*t^5.2 + 2*t^5.31 + 2*t^5.57 + 8*t^5.58 + 2*t^5.6 + 4*t^5.98 - 5*t^6. - t^4.64/y - t^4.64*y detail
55678 $\phi_1q_1q_2$ + $ M_1q_2q_3$ + $ \phi_1\tilde{q}_1^2$ 0.8484 1.0335 0.8208 [X:[], M:[0.6937], q:[0.7263, 0.7425, 0.5638], qb:[0.7344, 0.554, 0.554], phi:[0.5312]] t^2.08 + t^3.19 + t^3.32 + 2*t^3.35 + 2*t^3.84 + 3*t^3.87 + 3*t^3.89 + t^4.16 + t^4.38 + t^4.41 + t^4.43 + 3*t^4.92 + 2*t^4.95 + t^4.98 + t^5.27 + t^5.41 + 2*t^5.43 + 2*t^5.92 + 3*t^5.95 - 6*t^6. - t^4.59/y - t^4.59*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55430 SU2adj1nf3 $\phi_1q_1q_2$ 0.8434 1.0148 0.831 [X:[], M:[], q:[0.7257, 0.7257, 0.5885], qb:[0.5885, 0.5885, 0.5885], phi:[0.5487]] t^3.29 + 6*t^3.53 + 8*t^3.94 + t^4.35 + 10*t^5.18 - 17*t^6. - t^4.65/y - t^4.65*y detail