Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55430 | SU2adj1nf3 | $\phi_1q_1q_2$ | 0.8434 | 1.0148 | 0.831 | [X:[], M:[], q:[0.7257, 0.7257, 0.5885], qb:[0.5885, 0.5885, 0.5885], phi:[0.5487]] | [X:[], M:[], q:[[-1, 1, 1, 1, 1], [1, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[0, -1, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$\phi_1^2$, $ q_3\tilde{q}_1$, $ q_2q_3$, $ q_1q_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$ | . | -17 | t^3.29 + 6*t^3.53 + 8*t^3.94 + t^4.35 + 10*t^5.18 - 17*t^6. - 8*t^6.41 + t^6.58 + 6*t^6.82 + 20*t^7.06 + 40*t^7.47 - 15*t^7.65 + 26*t^7.88 + 20*t^8.47 + 43*t^8.71 - t^4.65/y + t^7.35/y - t^7.94/y - t^4.65*y + t^7.35*y - t^7.94*y | t^3.29/(g2^2*g3^2*g4^2*g5^2) + g2^3*g3^3*t^3.53 + g2^3*g4^3*t^3.53 + g3^3*g4^3*t^3.53 + g2^3*g5^3*t^3.53 + g3^3*g5^3*t^3.53 + g4^3*g5^3*t^3.53 + g1*g2^3*t^3.94 + g1*g3^3*t^3.94 + g1*g4^3*t^3.94 + (g2^4*g3*g4*g5*t^3.94)/g1 + (g2*g3^4*g4*g5*t^3.94)/g1 + (g2*g3*g4^4*g5*t^3.94)/g1 + g1*g5^3*t^3.94 + (g2*g3*g4*g5^4*t^3.94)/g1 + g2*g3*g4*g5*t^4.35 + (g2^5*t^5.18)/(g3*g4*g5) + (g2^2*g3^2*t^5.18)/(g4*g5) + (g3^5*t^5.18)/(g2*g4*g5) + (g2^2*g4^2*t^5.18)/(g3*g5) + (g3^2*g4^2*t^5.18)/(g2*g5) + (g4^5*t^5.18)/(g2*g3*g5) + (g2^2*g5^2*t^5.18)/(g3*g4) + (g3^2*g5^2*t^5.18)/(g2*g4) + (g4^2*g5^2*t^5.18)/(g2*g3) + (g5^5*t^5.18)/(g2*g3*g4) - 5*t^6. - (g2^3*t^6.)/g3^3 - (g3^3*t^6.)/g2^3 - (g2^3*t^6.)/g4^3 - (g3^3*t^6.)/g4^3 - (g4^3*t^6.)/g2^3 - (g4^3*t^6.)/g3^3 - (g2^3*t^6.)/g5^3 - (g3^3*t^6.)/g5^3 - (g4^3*t^6.)/g5^3 - (g5^3*t^6.)/g2^3 - (g5^3*t^6.)/g3^3 - (g5^3*t^6.)/g4^3 - (g1*t^6.41)/g2^3 - (g1*t^6.41)/g3^3 - (g1*t^6.41)/g4^3 - (g1*t^6.41)/g5^3 - (g2*g3*g4*t^6.41)/(g1*g5^2) - (g2*g3*g5*t^6.41)/(g1*g4^2) - (g2*g4*g5*t^6.41)/(g1*g3^2) - (g3*g4*g5*t^6.41)/(g1*g2^2) + t^6.58/(g2^4*g3^4*g4^4*g5^4) + (g2*g3*t^6.82)/(g4^2*g5^2) + (g2*g4*t^6.82)/(g3^2*g5^2) + (g3*g4*t^6.82)/(g2^2*g5^2) + (g2*g5*t^6.82)/(g3^2*g4^2) + (g3*g5*t^6.82)/(g2^2*g4^2) + (g4*g5*t^6.82)/(g2^2*g3^2) + g2^6*g3^6*t^7.06 + g2^6*g3^3*g4^3*t^7.06 + g2^3*g3^6*g4^3*t^7.06 + g2^6*g4^6*t^7.06 + g2^3*g3^3*g4^6*t^7.06 + g3^6*g4^6*t^7.06 + g2^6*g3^3*g5^3*t^7.06 + g2^3*g3^6*g5^3*t^7.06 + g2^6*g4^3*g5^3*t^7.06 + 2*g2^3*g3^3*g4^3*g5^3*t^7.06 + g3^6*g4^3*g5^3*t^7.06 + g2^3*g4^6*g5^3*t^7.06 + g3^3*g4^6*g5^3*t^7.06 + g2^6*g5^6*t^7.06 + g2^3*g3^3*g5^6*t^7.06 + g3^6*g5^6*t^7.06 + g2^3*g4^3*g5^6*t^7.06 + g3^3*g4^3*g5^6*t^7.06 + g4^6*g5^6*t^7.06 + g1*g2^6*g3^3*t^7.47 + g1*g2^3*g3^6*t^7.47 + g1*g2^6*g4^3*t^7.47 + 2*g1*g2^3*g3^3*g4^3*t^7.47 + g1*g3^6*g4^3*t^7.47 + g1*g2^3*g4^6*t^7.47 + g1*g3^3*g4^6*t^7.47 + (g2^7*g3^4*g4*g5*t^7.47)/g1 + (g2^4*g3^7*g4*g5*t^7.47)/g1 + (g2^7*g3*g4^4*g5*t^7.47)/g1 + (2*g2^4*g3^4*g4^4*g5*t^7.47)/g1 + (g2*g3^7*g4^4*g5*t^7.47)/g1 + (g2^4*g3*g4^7*g5*t^7.47)/g1 + (g2*g3^4*g4^7*g5*t^7.47)/g1 + g1*g2^6*g5^3*t^7.47 + 2*g1*g2^3*g3^3*g5^3*t^7.47 + g1*g3^6*g5^3*t^7.47 + 2*g1*g2^3*g4^3*g5^3*t^7.47 + 2*g1*g3^3*g4^3*g5^3*t^7.47 + g1*g4^6*g5^3*t^7.47 + (g2^7*g3*g4*g5^4*t^7.47)/g1 + (2*g2^4*g3^4*g4*g5^4*t^7.47)/g1 + (g2*g3^7*g4*g5^4*t^7.47)/g1 + (2*g2^4*g3*g4^4*g5^4*t^7.47)/g1 + (2*g2*g3^4*g4^4*g5^4*t^7.47)/g1 + (g2*g3*g4^7*g5^4*t^7.47)/g1 + g1*g2^3*g5^6*t^7.47 + g1*g3^3*g5^6*t^7.47 + g1*g4^3*g5^6*t^7.47 + (g2^4*g3*g4*g5^7*t^7.47)/g1 + (g2*g3^4*g4*g5^7*t^7.47)/g1 + (g2*g3*g4^4*g5^7*t^7.47)/g1 - (g2^2*t^7.65)/(g3*g4*g5^4) - (g3^2*t^7.65)/(g2*g4*g5^4) - (g4^2*t^7.65)/(g2*g3*g5^4) - (g2^2*t^7.65)/(g3*g4^4*g5) - (g3^2*t^7.65)/(g2*g4^4*g5) - (g2^2*t^7.65)/(g3^4*g4*g5) - (3*t^7.65)/(g2*g3*g4*g5) - (g3^2*t^7.65)/(g2^4*g4*g5) - (g4^2*t^7.65)/(g2*g3^4*g5) - (g4^2*t^7.65)/(g2^4*g3*g5) - (g5^2*t^7.65)/(g2*g3*g4^4) - (g5^2*t^7.65)/(g2*g3^4*g4) - (g5^2*t^7.65)/(g2^4*g3*g4) + g1^2*g2^6*t^7.88 + g1^2*g2^3*g3^3*t^7.88 + g1^2*g3^6*t^7.88 + g1^2*g2^3*g4^3*t^7.88 + g1^2*g3^3*g4^3*t^7.88 + g1^2*g4^6*t^7.88 + g2^4*g3^4*g4*g5*t^7.88 + g2^4*g3*g4^4*g5*t^7.88 + g2*g3^4*g4^4*g5*t^7.88 + (g2^8*g3^2*g4^2*g5^2*t^7.88)/g1^2 + (g2^5*g3^5*g4^2*g5^2*t^7.88)/g1^2 + (g2^2*g3^8*g4^2*g5^2*t^7.88)/g1^2 + (g2^5*g3^2*g4^5*g5^2*t^7.88)/g1^2 + (g2^2*g3^5*g4^5*g5^2*t^7.88)/g1^2 + (g2^2*g3^2*g4^8*g5^2*t^7.88)/g1^2 + g1^2*g2^3*g5^3*t^7.88 + g1^2*g3^3*g5^3*t^7.88 + g1^2*g4^3*g5^3*t^7.88 + g2^4*g3*g4*g5^4*t^7.88 + g2*g3^4*g4*g5^4*t^7.88 + g2*g3*g4^4*g5^4*t^7.88 + (g2^5*g3^2*g4^2*g5^5*t^7.88)/g1^2 + (g2^2*g3^5*g4^2*g5^5*t^7.88)/g1^2 + (g2^2*g3^2*g4^5*g5^5*t^7.88)/g1^2 + g1^2*g5^6*t^7.88 + (g2^2*g3^2*g4^2*g5^8*t^7.88)/g1^2 + t^8.47/g2^6 + t^8.47/g3^6 + (2*t^8.47)/(g2^3*g3^3) + t^8.47/g4^6 + (2*t^8.47)/(g2^3*g4^3) + (2*t^8.47)/(g3^3*g4^3) + t^8.47/g5^6 + (2*t^8.47)/(g2^3*g5^3) + (2*t^8.47)/(g3^3*g5^3) + (2*t^8.47)/(g4^3*g5^3) + (g2^3*t^8.47)/(g3^3*g4^3*g5^3) + (g3^3*t^8.47)/(g2^3*g4^3*g5^3) + (g4^3*t^8.47)/(g2^3*g3^3*g5^3) + (g5^3*t^8.47)/(g2^3*g3^3*g4^3) + (g2^8*g3^2*t^8.71)/(g4*g5) + (g2^5*g3^5*t^8.71)/(g4*g5) + (g2^2*g3^8*t^8.71)/(g4*g5) + (g2^8*g4^2*t^8.71)/(g3*g5) + (2*g2^5*g3^2*g4^2*t^8.71)/g5 + (2*g2^2*g3^5*g4^2*t^8.71)/g5 + (g3^8*g4^2*t^8.71)/(g2*g5) + (g2^5*g4^5*t^8.71)/(g3*g5) + (2*g2^2*g3^2*g4^5*t^8.71)/g5 + (g3^5*g4^5*t^8.71)/(g2*g5) + (g2^2*g4^8*t^8.71)/(g3*g5) + (g3^2*g4^8*t^8.71)/(g2*g5) - g1^2*g2*g3*g4*g5*t^8.71 + (g2^8*g5^2*t^8.71)/(g3*g4) + (2*g2^5*g3^2*g5^2*t^8.71)/g4 + (2*g2^2*g3^5*g5^2*t^8.71)/g4 + (g3^8*g5^2*t^8.71)/(g2*g4) + (2*g2^5*g4^2*g5^2*t^8.71)/g3 + 3*g2^2*g3^2*g4^2*g5^2*t^8.71 + (2*g3^5*g4^2*g5^2*t^8.71)/g2 + (2*g2^2*g4^5*g5^2*t^8.71)/g3 + (2*g3^2*g4^5*g5^2*t^8.71)/g2 + (g4^8*g5^2*t^8.71)/(g2*g3) - (g2^3*g3^3*g4^3*g5^3*t^8.71)/g1^2 + (g2^5*g5^5*t^8.71)/(g3*g4) + (2*g2^2*g3^2*g5^5*t^8.71)/g4 + (g3^5*g5^5*t^8.71)/(g2*g4) + (2*g2^2*g4^2*g5^5*t^8.71)/g3 + (2*g3^2*g4^2*g5^5*t^8.71)/g2 + (g4^5*g5^5*t^8.71)/(g2*g3) + (g2^2*g5^8*t^8.71)/(g3*g4) + (g3^2*g5^8*t^8.71)/(g2*g4) + (g4^2*g5^8*t^8.71)/(g2*g3) - t^4.65/(g2*g3*g4*g5*y) + (g2*g3*g4*g5*t^7.35)/y - t^7.94/(g2^3*g3^3*g4^3*g5^3*y) - (t^4.65*y)/(g2*g3*g4*g5) + g2*g3*g4*g5*t^7.35*y - (t^7.94*y)/(g2^3*g3^3*g4^3*g5^3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55447 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ | 0.8544 | 1.0432 | 0.8191 | [X:[], M:[0.8516], q:[0.7129, 0.7129, 0.5693], qb:[0.5693, 0.5693, 0.5693], phi:[0.5742]] | t^2.55 + 6*t^3.42 + 8*t^3.85 + t^4.28 + t^5.11 + 10*t^5.14 + 6*t^5.97 - 17*t^6. - t^4.72/y - t^4.72*y | detail | |
55455 | $\phi_1q_1q_2$ + $ M_1q_2q_3$ | 0.8641 | 1.0553 | 0.8188 | [X:[], M:[0.6776], q:[0.723, 0.7296, 0.5928], qb:[0.5884, 0.5884, 0.5884], phi:[0.5474]] | t^2.03 + t^3.28 + 3*t^3.53 + 3*t^3.54 + 3*t^3.93 + 4*t^3.95 + t^4.07 + t^4.36 + 6*t^5.17 + 3*t^5.19 + t^5.2 + t^5.32 + 3*t^5.56 + 3*t^5.58 + 3*t^5.97 + t^5.98 - 11*t^6. - t^4.64/y - t^4.64*y | detail | |
55445 | $\phi_1q_1q_2$ + $ \phi_1q_3\tilde{q}_1$ | 0.797 | 0.9555 | 0.8342 | [X:[], M:[], q:[0.7465, 0.7465, 0.7465], qb:[0.7465, 0.4931, 0.4931], phi:[0.5069]] | t^2.96 + t^3.04 + 8*t^3.72 + 9*t^4.48 + t^5.92 - 9*t^6. - t^4.52/y - t^4.52*y | detail | |
55446 | $\phi_1q_1q_2$ + $ \phi_1q_3^2$ | 0.8279 | 0.9949 | 0.8321 | [X:[], M:[], q:[0.7328, 0.7328, 0.7328], qb:[0.5547, 0.5547, 0.5547], phi:[0.5344]] | t^3.21 + 3*t^3.33 + 9*t^3.86 + 3*t^4.4 + 6*t^4.93 - 12*t^6. - t^4.6/y - t^4.6*y | detail | |
55448 | $\phi_1q_1q_2$ + $ q_2q_3$ | 0.7103 | 0.8462 | 0.8394 | [X:[], M:[], q:[0.5651, 1.0, 1.0], qb:[0.5651, 0.5651, 0.5651], phi:[0.4349]] | t^2.61 + 6*t^3.39 + 10*t^4.7 + t^5.22 - 10*t^6. - t^4.3/y - t^4.3*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55428 | SU2adj1nf3 | . | 0.8588 | 1.0348 | 0.8299 | [X:[], M:[], q:[0.6245, 0.6245, 0.6245], qb:[0.6245, 0.6245, 0.6245], phi:[0.5632]] | t^3.38 + 15*t^3.75 + 21*t^5.44 - 36*t^6. - t^4.69/y - t^4.69*y | detail |