Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55693 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1q_2q_3$ + $ M_1q_1q_3$ 0.8641 1.0551 0.819 [X:[], M:[0.6799], q:[0.7264, 0.7264, 0.5936], qb:[0.5883, 0.5883, 0.5883], phi:[0.5471]] [X:[], M:[[-7, -1, -1, -1]], q:[[1, 1, 1, 1], [1, 1, 1, 1], [6, 0, 0, 0]], qb:[[0, 6, 0, 0], [0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-2, -2, -2, -2]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_1\tilde{q}_1$, $ q_1q_3$, $ M_1^2$, $ q_1q_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_3^2$, $ M_1\phi_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_1$, $ M_1q_1\tilde{q}_1$, $ M_1q_1\tilde{q}_2$ . -10 t^2.04 + t^3.28 + 3*t^3.53 + 3*t^3.55 + 6*t^3.94 + t^3.96 + t^4.08 + t^4.36 + 6*t^5.17 + 3*t^5.19 + t^5.2 + t^5.32 + 3*t^5.57 + 3*t^5.59 + 3*t^5.98 - 10*t^6. - 3*t^6.02 + t^6.12 - t^6.4 - 6*t^6.41 + t^6.57 + 3*t^6.81 + 3*t^6.83 + 6*t^7.06 + 8*t^7.08 + 6*t^7.09 + 6*t^7.21 + 3*t^7.23 + t^7.36 + 16*t^7.47 + 15*t^7.49 + 3*t^7.51 + 3*t^7.61 - 9*t^7.64 - 3*t^7.66 + 15*t^7.89 + 3*t^7.9 + 3*t^8.02 - 10*t^8.04 - 3*t^8.06 + t^8.16 - t^8.32 + 3*t^8.45 + 9*t^8.47 + t^8.49 + t^8.61 + 15*t^8.7 + 16*t^8.72 + 9*t^8.73 + 3*t^8.75 + 3*t^8.85 + 3*t^8.87 - t^4.64/y - t^6.68/y + t^7.36/y - t^7.92/y + t^8.32/y + (3*t^8.57)/y + (3*t^8.59)/y + t^8.6/y - t^8.72/y + (6*t^8.98)/y - t^4.64*y - t^6.68*y + t^7.36*y - t^7.92*y + t^8.32*y + 3*t^8.57*y + 3*t^8.59*y + t^8.6*y - t^8.72*y + 6*t^8.98*y t^2.04/(g1^7*g2*g3*g4) + t^3.28/(g1^4*g2^4*g3^4*g4^4) + g2^6*g3^6*t^3.53 + g2^6*g4^6*t^3.53 + g3^6*g4^6*t^3.53 + g1^6*g2^6*t^3.55 + g1^6*g3^6*t^3.55 + g1^6*g4^6*t^3.55 + 2*g1*g2^7*g3*g4*t^3.94 + 2*g1*g2*g3^7*g4*t^3.94 + 2*g1*g2*g3*g4^7*t^3.94 + g1^7*g2*g3*g4*t^3.96 + t^4.08/(g1^14*g2^2*g3^2*g4^2) + g1^2*g2^2*g3^2*g4^2*t^4.36 + (g2^10*t^5.17)/(g1^2*g3^2*g4^2) + (g2^4*g3^4*t^5.17)/(g1^2*g4^2) + (g3^10*t^5.17)/(g1^2*g2^2*g4^2) + (g2^4*g4^4*t^5.17)/(g1^2*g3^2) + (g3^4*g4^4*t^5.17)/(g1^2*g2^2) + (g4^10*t^5.17)/(g1^2*g2^2*g3^2) + (g1^4*g2^4*t^5.19)/(g3^2*g4^2) + (g1^4*g3^4*t^5.19)/(g2^2*g4^2) + (g1^4*g4^4*t^5.19)/(g2^2*g3^2) + (g1^10*t^5.2)/(g2^2*g3^2*g4^2) + t^5.32/(g1^11*g2^5*g3^5*g4^5) + (g2^5*g3^5*t^5.57)/(g1^7*g4) + (g2^5*g4^5*t^5.57)/(g1^7*g3) + (g3^5*g4^5*t^5.57)/(g1^7*g2) + (g2^5*t^5.59)/(g1*g3*g4) + (g3^5*t^5.59)/(g1*g2*g4) + (g4^5*t^5.59)/(g1*g2*g3) + (g2^6*t^5.98)/g1^6 + (g3^6*t^5.98)/g1^6 + (g4^6*t^5.98)/g1^6 - 4*t^6. - (g2^6*t^6.)/g3^6 - (g3^6*t^6.)/g2^6 - (g2^6*t^6.)/g4^6 - (g3^6*t^6.)/g4^6 - (g4^6*t^6.)/g2^6 - (g4^6*t^6.)/g3^6 - (g1^6*t^6.02)/g2^6 - (g1^6*t^6.02)/g3^6 - (g1^6*t^6.02)/g4^6 + t^6.12/(g1^21*g2^3*g3^3*g4^3) - (g2*g3*g4*t^6.4)/g1^5 - (2*g1*g2*g3*t^6.41)/g4^5 - (2*g1*g2*g4*t^6.41)/g3^5 - (2*g1*g3*g4*t^6.41)/g2^5 + t^6.57/(g1^8*g2^8*g3^8*g4^8) + (g2^2*g3^2*t^6.81)/(g1^4*g4^4) + (g2^2*g4^2*t^6.81)/(g1^4*g3^4) + (g3^2*g4^2*t^6.81)/(g1^4*g2^4) + (g1^2*g2^2*t^6.83)/(g3^4*g4^4) + (g1^2*g3^2*t^6.83)/(g2^4*g4^4) + (g1^2*g4^2*t^6.83)/(g2^4*g3^4) + g2^12*g3^12*t^7.06 + g2^12*g3^6*g4^6*t^7.06 + g2^6*g3^12*g4^6*t^7.06 + g2^12*g4^12*t^7.06 + g2^6*g3^6*g4^12*t^7.06 + g3^12*g4^12*t^7.06 + g1^6*g2^12*g3^6*t^7.08 + g1^6*g2^6*g3^12*t^7.08 + g1^6*g2^12*g4^6*t^7.08 + 2*g1^6*g2^6*g3^6*g4^6*t^7.08 + g1^6*g3^12*g4^6*t^7.08 + g1^6*g2^6*g4^12*t^7.08 + g1^6*g3^6*g4^12*t^7.08 + g1^12*g2^12*t^7.09 + g1^12*g2^6*g3^6*t^7.09 + g1^12*g3^12*t^7.09 + g1^12*g2^6*g4^6*t^7.09 + g1^12*g3^6*g4^6*t^7.09 + g1^12*g4^12*t^7.09 + (g2^9*t^7.21)/(g1^9*g3^3*g4^3) + (g2^3*g3^3*t^7.21)/(g1^9*g4^3) + (g3^9*t^7.21)/(g1^9*g2^3*g4^3) + (g2^3*g4^3*t^7.21)/(g1^9*g3^3) + (g3^3*g4^3*t^7.21)/(g1^9*g2^3) + (g4^9*t^7.21)/(g1^9*g2^3*g3^3) + (g2^3*t^7.23)/(g1^3*g3^3*g4^3) + (g3^3*t^7.23)/(g1^3*g2^3*g4^3) + (g4^3*t^7.23)/(g1^3*g2^3*g3^3) + t^7.36/(g1^18*g2^6*g3^6*g4^6) + 2*g1*g2^13*g3^7*g4*t^7.47 + 2*g1*g2^7*g3^13*g4*t^7.47 + 2*g1*g2^13*g3*g4^7*t^7.47 + 4*g1*g2^7*g3^7*g4^7*t^7.47 + 2*g1*g2*g3^13*g4^7*t^7.47 + 2*g1*g2^7*g3*g4^13*t^7.47 + 2*g1*g2*g3^7*g4^13*t^7.47 + 2*g1^7*g2^13*g3*g4*t^7.49 + 3*g1^7*g2^7*g3^7*g4*t^7.49 + 2*g1^7*g2*g3^13*g4*t^7.49 + 3*g1^7*g2^7*g3*g4^7*t^7.49 + 3*g1^7*g2*g3^7*g4^7*t^7.49 + 2*g1^7*g2*g3*g4^13*t^7.49 + g1^13*g2^7*g3*g4*t^7.51 + g1^13*g2*g3^7*g4*t^7.51 + g1^13*g2*g3*g4^7*t^7.51 + (g2^4*g3^4*t^7.61)/(g1^14*g4^2) + (g2^4*g4^4*t^7.61)/(g1^14*g3^2) + (g3^4*g4^4*t^7.61)/(g1^14*g2^2) - (g2^4*t^7.64)/(g1^2*g3^2*g4^8) - (g3^4*t^7.64)/(g1^2*g2^2*g4^8) - (g2^4*t^7.64)/(g1^2*g3^8*g4^2) - (3*t^7.64)/(g1^2*g2^2*g3^2*g4^2) - (g3^4*t^7.64)/(g1^2*g2^8*g4^2) - (g4^4*t^7.64)/(g1^2*g2^2*g3^8) - (g4^4*t^7.64)/(g1^2*g2^8*g3^2) - (g1^4*t^7.66)/(g2^2*g3^2*g4^8) - (g1^4*t^7.66)/(g2^2*g3^8*g4^2) - (g1^4*t^7.66)/(g2^8*g3^2*g4^2) + 2*g1^2*g2^14*g3^2*g4^2*t^7.89 + 3*g1^2*g2^8*g3^8*g4^2*t^7.89 + 2*g1^2*g2^2*g3^14*g4^2*t^7.89 + 3*g1^2*g2^8*g3^2*g4^8*t^7.89 + 3*g1^2*g2^2*g3^8*g4^8*t^7.89 + 2*g1^2*g2^2*g3^2*g4^14*t^7.89 + g1^8*g2^8*g3^2*g4^2*t^7.9 + g1^8*g2^2*g3^8*g4^2*t^7.9 + g1^8*g2^2*g3^2*g4^8*t^7.9 + (g2^5*t^8.02)/(g1^13*g3*g4) + (g3^5*t^8.02)/(g1^13*g2*g4) + (g4^5*t^8.02)/(g1^13*g2*g3) - (g2^5*t^8.04)/(g1^7*g3*g4^7) - (g3^5*t^8.04)/(g1^7*g2*g4^7) - (g2^5*t^8.04)/(g1^7*g3^7*g4) - (4*t^8.04)/(g1^7*g2*g3*g4) - (g3^5*t^8.04)/(g1^7*g2^7*g4) - (g4^5*t^8.04)/(g1^7*g2*g3^7) - (g4^5*t^8.04)/(g1^7*g2^7*g3) - t^8.06/(g1*g2*g3*g4^7) - t^8.06/(g1*g2*g3^7*g4) - t^8.06/(g1*g2^7*g3*g4) + t^8.16/(g1^28*g2^4*g3^4*g4^4) - g1^9*g2^3*g3^3*g4^3*t^8.32 + (g2^6*t^8.45)/(g1^6*g3^6*g4^6) + (g3^6*t^8.45)/(g1^6*g2^6*g4^6) + (g4^6*t^8.45)/(g1^6*g2^6*g3^6) + t^8.47/g2^12 + t^8.47/g3^12 + (2*t^8.47)/(g2^6*g3^6) + t^8.47/g4^12 + (2*t^8.47)/(g2^6*g4^6) + (2*t^8.47)/(g3^6*g4^6) + (g1^6*t^8.49)/(g2^6*g3^6*g4^6) + t^8.61/(g1^15*g2^9*g3^9*g4^9) + (g2^16*g3^4*t^8.7)/(g1^2*g4^2) + (g2^10*g3^10*t^8.7)/(g1^2*g4^2) + (g2^4*g3^16*t^8.7)/(g1^2*g4^2) + (g2^16*g4^4*t^8.7)/(g1^2*g3^2) + (2*g2^10*g3^4*g4^4*t^8.7)/g1^2 + (2*g2^4*g3^10*g4^4*t^8.7)/g1^2 + (g3^16*g4^4*t^8.7)/(g1^2*g2^2) + (g2^10*g4^10*t^8.7)/(g1^2*g3^2) + (2*g2^4*g3^4*g4^10*t^8.7)/g1^2 + (g3^10*g4^10*t^8.7)/(g1^2*g2^2) + (g2^4*g4^16*t^8.7)/(g1^2*g3^2) + (g3^4*g4^16*t^8.7)/(g1^2*g2^2) + (g1^4*g2^16*t^8.72)/(g3^2*g4^2) + (2*g1^4*g2^10*g3^4*t^8.72)/g4^2 + (2*g1^4*g2^4*g3^10*t^8.72)/g4^2 + (g1^4*g3^16*t^8.72)/(g2^2*g4^2) + (2*g1^4*g2^10*g4^4*t^8.72)/g3^2 + g1^4*g2^4*g3^4*g4^4*t^8.72 + (2*g1^4*g3^10*g4^4*t^8.72)/g2^2 + (2*g1^4*g2^4*g4^10*t^8.72)/g3^2 + (2*g1^4*g3^4*g4^10*t^8.72)/g2^2 + (g1^4*g4^16*t^8.72)/(g2^2*g3^2) + (g1^10*g2^10*t^8.73)/(g3^2*g4^2) + (2*g1^10*g2^4*g3^4*t^8.73)/g4^2 + (g1^10*g3^10*t^8.73)/(g2^2*g4^2) + (2*g1^10*g2^4*g4^4*t^8.73)/g3^2 + (2*g1^10*g3^4*g4^4*t^8.73)/g2^2 + (g1^10*g4^10*t^8.73)/(g2^2*g3^2) + (g1^16*g2^4*t^8.75)/(g3^2*g4^2) + (g1^16*g3^4*t^8.75)/(g2^2*g4^2) + (g1^16*g4^4*t^8.75)/(g2^2*g3^2) + (g2*g3*t^8.85)/(g1^11*g4^5) + (g2*g4*t^8.85)/(g1^11*g3^5) + (g3*g4*t^8.85)/(g1^11*g2^5) + (g2*t^8.87)/(g1^5*g3^5*g4^5) + (g3*t^8.87)/(g1^5*g2^5*g4^5) + (g4*t^8.87)/(g1^5*g2^5*g3^5) - t^4.64/(g1^2*g2^2*g3^2*g4^2*y) - t^6.68/(g1^9*g2^3*g3^3*g4^3*y) + (g1^2*g2^2*g3^2*g4^2*t^7.36)/y - t^7.92/(g1^6*g2^6*g3^6*g4^6*y) + t^8.32/(g1^11*g2^5*g3^5*g4^5*y) + (g2^5*g3^5*t^8.57)/(g1^7*g4*y) + (g2^5*g4^5*t^8.57)/(g1^7*g3*y) + (g3^5*g4^5*t^8.57)/(g1^7*g2*y) + (g2^5*t^8.59)/(g1*g3*g4*y) + (g3^5*t^8.59)/(g1*g2*g4*y) + (g4^5*t^8.59)/(g1*g2*g3*y) + (g1^5*t^8.6)/(g2*g3*g4*y) - t^8.72/(g1^16*g2^4*g3^4*g4^4*y) + (2*g2^6*t^8.98)/(g1^6*y) + (2*g3^6*t^8.98)/(g1^6*y) + (2*g4^6*t^8.98)/(g1^6*y) - (t^4.64*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.68*y)/(g1^9*g2^3*g3^3*g4^3) + g1^2*g2^2*g3^2*g4^2*t^7.36*y - (t^7.92*y)/(g1^6*g2^6*g3^6*g4^6) + (t^8.32*y)/(g1^11*g2^5*g3^5*g4^5) + (g2^5*g3^5*t^8.57*y)/(g1^7*g4) + (g2^5*g4^5*t^8.57*y)/(g1^7*g3) + (g3^5*g4^5*t^8.57*y)/(g1^7*g2) + (g2^5*t^8.59*y)/(g1*g3*g4) + (g3^5*t^8.59*y)/(g1*g2*g4) + (g4^5*t^8.59*y)/(g1*g2*g3) + (g1^5*t^8.6*y)/(g2*g3*g4) - (t^8.72*y)/(g1^16*g2^4*g3^4*g4^4) + (2*g2^6*t^8.98*y)/g1^6 + (2*g3^6*t^8.98*y)/g1^6 + (2*g4^6*t^8.98*y)/g1^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55455 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1q_2q_3$ 0.8641 1.0553 0.8188 [X:[], M:[0.6776], q:[0.723, 0.7296, 0.5928], qb:[0.5884, 0.5884, 0.5884], phi:[0.5474]] t^2.03 + t^3.28 + 3*t^3.53 + 3*t^3.54 + 3*t^3.93 + 4*t^3.95 + t^4.07 + t^4.36 + 6*t^5.17 + 3*t^5.19 + t^5.2 + t^5.32 + 3*t^5.56 + 3*t^5.58 + 3*t^5.97 + t^5.98 - 11*t^6. - t^4.64/y - t^4.64*y detail