Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55687 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1q_2q_3$ + $ M_2q_1\tilde{q}_1$ 0.8849 1.0955 0.8078 [X:[], M:[0.6795, 0.6795], q:[0.7272, 0.7272, 0.5933], qb:[0.5933, 0.5882, 0.5882], phi:[0.5457]] [X:[], M:[[-1, -3, 0, 0, 0], [1, -1, -4, -1, -1]], q:[[-1, 1, 1, 1, 1], [1, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[0, -1, -1, -1, -1]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_1q_3$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ q_1q_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1q_3\tilde{q}_1$, $ M_2q_3\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_1q_1\tilde{q}_2$ $M_1q_1q_3$, $ M_2q_2\tilde{q}_1$ -5 2*t^2.04 + t^3.27 + t^3.53 + 4*t^3.54 + t^3.56 + 4*t^3.95 + 2*t^3.96 + 3*t^4.08 + t^4.36 + 3*t^5.17 + 4*t^5.18 + 3*t^5.2 + 2*t^5.31 + 2*t^5.57 + 8*t^5.58 + 2*t^5.6 + 4*t^5.98 - 5*t^6. - 4*t^6.02 + 4*t^6.12 - 2*t^6.4 - 4*t^6.42 + t^6.55 + t^6.8 + 4*t^6.82 + t^6.83 + t^7.06 + 4*t^7.07 + 10*t^7.09 + 4*t^7.1 + t^7.12 + 6*t^7.2 + 8*t^7.22 + 4*t^7.24 + 3*t^7.35 + 4*t^7.48 + 14*t^7.49 + 8*t^7.51 + 2*t^7.52 + 3*t^7.61 + 8*t^7.62 - 4*t^7.64 - 4*t^7.65 + 7*t^7.89 + 4*t^7.91 + 4*t^8.02 - 12*t^8.04 - 8*t^8.05 + 5*t^8.15 - 2*t^8.32 + t^8.44 + 6*t^8.47 + 2*t^8.59 + 3*t^8.7 + 12*t^8.71 + 13*t^8.73 + 12*t^8.74 + 3*t^8.76 + 2*t^8.84 + 8*t^8.86 + 2*t^8.87 - t^4.64/y - (2*t^6.68)/y + t^7.08/y + t^7.36/y - t^7.91/y + (2*t^8.31)/y + (2*t^8.57)/y + (8*t^8.58)/y + (4*t^8.6)/y - (3*t^8.71)/y + (8*t^8.98)/y - t^4.64*y - 2*t^6.68*y + t^7.08*y + t^7.36*y - t^7.91*y + 2*t^8.31*y + 2*t^8.57*y + 8*t^8.58*y + 4*t^8.6*y - 3*t^8.71*y + 8*t^8.98*y t^2.04/(g1*g2^3) + (g1*t^2.04)/(g2*g3^4*g4*g5) + t^3.27/(g2^2*g3^2*g4^2*g5^2) + g4^3*g5^3*t^3.53 + g2^3*g4^3*t^3.54 + g3^3*g4^3*t^3.54 + g2^3*g5^3*t^3.54 + g3^3*g5^3*t^3.54 + g2^3*g3^3*t^3.56 + g1*g4^3*t^3.95 + (g2*g3*g4^4*g5*t^3.95)/g1 + g1*g5^3*t^3.95 + (g2*g3*g4*g5^4*t^3.95)/g1 + g1*g3^3*t^3.96 + (g2^4*g3*g4*g5*t^3.96)/g1 + t^4.08/(g1^2*g2^6) + (g1^2*t^4.08)/(g2^2*g3^8*g4^2*g5^2) + t^4.08/(g2^4*g3^4*g4*g5) + g2*g3*g4*g5*t^4.36 + (g4^5*t^5.17)/(g2*g3*g5) + (g4^2*g5^2*t^5.17)/(g2*g3) + (g5^5*t^5.17)/(g2*g3*g4) + (g2^2*g4^2*t^5.18)/(g3*g5) + (g3^2*g4^2*t^5.18)/(g2*g5) + (g2^2*g5^2*t^5.18)/(g3*g4) + (g3^2*g5^2*t^5.18)/(g2*g4) + (g2^5*t^5.2)/(g3*g4*g5) + (g2^2*g3^2*t^5.2)/(g4*g5) + (g3^5*t^5.2)/(g2*g4*g5) + (g1*t^5.31)/(g2^3*g3^6*g4^3*g5^3) + t^5.31/(g1*g2^5*g3^2*g4^2*g5^2) + (g1*g4^2*g5^2*t^5.57)/(g2*g3^4) + (g4^3*g5^3*t^5.57)/(g1*g2^3) + (g4^3*t^5.58)/g1 + (g3^3*g4^3*t^5.58)/(g1*g2^3) + (g1*g2^2*g4^2*t^5.58)/(g3^4*g5) + (g1*g4^2*t^5.58)/(g2*g3*g5) + (g1*g2^2*g5^2*t^5.58)/(g3^4*g4) + (g1*g5^2*t^5.58)/(g2*g3*g4) + (g5^3*t^5.58)/g1 + (g3^3*g5^3*t^5.58)/(g1*g2^3) + (g3^3*t^5.6)/g1 + (g1*g2^2*t^5.6)/(g3*g4*g5) + (g1^2*g4^2*t^5.98)/(g2*g3^4*g5) + (g3*g4^4*g5*t^5.98)/(g1^2*g2^2) + (g1^2*g5^2*t^5.98)/(g2*g3^4*g4) + (g3*g4*g5^4*t^5.98)/(g1^2*g2^2) - 5*t^6. - (g4^3*t^6.)/g5^3 + (g1^2*t^6.)/(g2*g3*g4*g5) + (g2*g3*g4*g5*t^6.)/g1^2 - (g5^3*t^6.)/g4^3 - (g2^3*t^6.02)/g4^3 - (g3^3*t^6.02)/g4^3 - (g2^3*t^6.02)/g5^3 - (g3^3*t^6.02)/g5^3 + t^6.12/(g1^3*g2^9) + (g1^3*t^6.12)/(g2^3*g3^12*g4^3*g5^3) + (g1*t^6.12)/(g2^5*g3^8*g4^2*g5^2) + t^6.12/(g1*g2^7*g3^4*g4*g5) - (g1*t^6.4)/g2^3 - (g2*g4*g5*t^6.4)/(g1*g3^2) - (g1*t^6.42)/g4^3 - (g1*t^6.42)/g5^3 - (g2*g3*g4*t^6.42)/(g1*g5^2) - (g2*g3*g5*t^6.42)/(g1*g4^2) + t^6.55/(g2^4*g3^4*g4^4*g5^4) + (g4*g5*t^6.8)/(g2^2*g3^2) + (g2*g4*t^6.82)/(g3^2*g5^2) + (g3*g4*t^6.82)/(g2^2*g5^2) + (g2*g5*t^6.82)/(g3^2*g4^2) + (g3*g5*t^6.82)/(g2^2*g4^2) + (g2*g3*t^6.83)/(g4^2*g5^2) + g4^6*g5^6*t^7.06 + g2^3*g4^6*g5^3*t^7.07 + g3^3*g4^6*g5^3*t^7.07 + g2^3*g4^3*g5^6*t^7.07 + g3^3*g4^3*g5^6*t^7.07 + g2^6*g4^6*t^7.09 + g2^3*g3^3*g4^6*t^7.09 + g3^6*g4^6*t^7.09 + g2^6*g4^3*g5^3*t^7.09 + 2*g2^3*g3^3*g4^3*g5^3*t^7.09 + g3^6*g4^3*g5^3*t^7.09 + g2^6*g5^6*t^7.09 + g2^3*g3^3*g5^6*t^7.09 + g3^6*g5^6*t^7.09 + g2^6*g3^3*g4^3*t^7.1 + g2^3*g3^6*g4^3*t^7.1 + g2^6*g3^3*g5^3*t^7.1 + g2^3*g3^6*g5^3*t^7.1 + g2^6*g3^6*t^7.12 + (g1*g4^4*t^7.2)/(g2^2*g3^5*g5^2) + (g4^5*t^7.2)/(g1*g2^4*g3*g5) + (g1*g4*g5*t^7.2)/(g2^2*g3^5) + (g4^2*g5^2*t^7.2)/(g1*g2^4*g3) + (g1*g5^4*t^7.2)/(g2^2*g3^5*g4^2) + (g5^5*t^7.2)/(g1*g2^4*g3*g4) + (g1*g2*g4*t^7.22)/(g3^5*g5^2) + (g1*g4*t^7.22)/(g2^2*g3^2*g5^2) + (g4^2*t^7.22)/(g1*g2*g3*g5) + (g3^2*g4^2*t^7.22)/(g1*g2^4*g5) + (g1*g2*g5*t^7.22)/(g3^5*g4^2) + (g1*g5*t^7.22)/(g2^2*g3^2*g4^2) + (g5^2*t^7.22)/(g1*g2*g3*g4) + (g3^2*g5^2*t^7.22)/(g1*g2^4*g4) + (g1*g2^4*t^7.24)/(g3^5*g4^2*g5^2) + (g1*g3*t^7.24)/(g2^2*g4^2*g5^2) + (g2^2*t^7.24)/(g1*g3*g4*g5) + (g3^5*t^7.24)/(g1*g2^4*g4*g5) + (g1^2*t^7.35)/(g2^4*g3^10*g4^4*g5^4) + t^7.35/(g2^6*g3^6*g4^3*g5^3) + t^7.35/(g1^2*g2^8*g3^2*g4^2*g5^2) + g1*g4^6*g5^3*t^7.48 + (g2*g3*g4^7*g5^4*t^7.48)/g1 + g1*g4^3*g5^6*t^7.48 + (g2*g3*g4^4*g5^7*t^7.48)/g1 + g1*g2^3*g4^6*t^7.49 + g1*g3^3*g4^6*t^7.49 + (g2^4*g3*g4^7*g5*t^7.49)/g1 + (g2*g3^4*g4^7*g5*t^7.49)/g1 + g1*g2^3*g4^3*g5^3*t^7.49 + 2*g1*g3^3*g4^3*g5^3*t^7.49 + (2*g2^4*g3*g4^4*g5^4*t^7.49)/g1 + (g2*g3^4*g4^4*g5^4*t^7.49)/g1 + g1*g2^3*g5^6*t^7.49 + g1*g3^3*g5^6*t^7.49 + (g2^4*g3*g4*g5^7*t^7.49)/g1 + (g2*g3^4*g4*g5^7*t^7.49)/g1 + g1*g2^3*g3^3*g4^3*t^7.51 + g1*g3^6*g4^3*t^7.51 + (g2^7*g3*g4^4*g5*t^7.51)/g1 + (g2^4*g3^4*g4^4*g5*t^7.51)/g1 + g1*g2^3*g3^3*g5^3*t^7.51 + g1*g3^6*g5^3*t^7.51 + (g2^7*g3*g4*g5^4*t^7.51)/g1 + (g2^4*g3^4*g4*g5^4*t^7.51)/g1 + g1*g2^3*g3^6*t^7.52 + (g2^7*g3^4*g4*g5*t^7.52)/g1 + (g1^2*g4*g5*t^7.61)/(g2^2*g3^8) + (g4^2*g5^2*t^7.61)/(g2^4*g3^4) + (g4^3*g5^3*t^7.61)/(g1^2*g2^6) + (g4^3*t^7.62)/(g1^2*g2^3) + (g3^3*g4^3*t^7.62)/(g1^2*g2^6) + (g1^2*g2*g4*t^7.62)/(g3^8*g5^2) + (g1^2*g4*t^7.62)/(g2^2*g3^5*g5^2) + (g1^2*g2*g5*t^7.62)/(g3^8*g4^2) + (g1^2*g5*t^7.62)/(g2^2*g3^5*g4^2) + (g5^3*t^7.62)/(g1^2*g2^3) + (g3^3*g5^3*t^7.62)/(g1^2*g2^6) + (g3^3*t^7.64)/(g1^2*g2^3) - (g4^2*t^7.64)/(g2*g3*g5^4) + (g1^2*g2*t^7.64)/(g3^5*g4^2*g5^2) - (g2^2*t^7.64)/(g3^4*g4*g5) - (2*t^7.64)/(g2*g3*g4*g5) - (g3^2*t^7.64)/(g2^4*g4*g5) - (g5^2*t^7.64)/(g2*g3*g4^4) - (g2^2*t^7.65)/(g3*g4*g5^4) - (g3^2*t^7.65)/(g2*g4*g5^4) - (g2^2*t^7.65)/(g3*g4^4*g5) - (g3^2*t^7.65)/(g2*g4^4*g5) + g1^2*g4^6*t^7.89 + (g2^2*g3^2*g4^8*g5^2*t^7.89)/g1^2 + g1^2*g4^3*g5^3*t^7.89 + g2*g3*g4^4*g5^4*t^7.89 + (g2^2*g3^2*g4^5*g5^5*t^7.89)/g1^2 + g1^2*g5^6*t^7.89 + (g2^2*g3^2*g4^2*g5^8*t^7.89)/g1^2 + g1^2*g3^3*g4^3*t^7.91 + (g2^5*g3^2*g4^5*g5^2*t^7.91)/g1^2 + g1^2*g3^3*g5^3*t^7.91 + (g2^5*g3^2*g4^2*g5^5*t^7.91)/g1^2 + g1^2*g3^6*t^7.92 - g2^7*g3*g4*g5*t^7.92 - g2*g3^7*g4*g5*t^7.92 + (g2^8*g3^2*g4^2*g5^2*t^7.92)/g1^2 + (g1^3*g4*t^8.02)/(g2^2*g3^8*g5^2) + (g1^3*g5*t^8.02)/(g2^2*g3^8*g4^2) + (g3*g4^4*g5*t^8.02)/(g1^3*g2^5) + (g3*g4*g5^4*t^8.02)/(g1^3*g2^5) - (5*t^8.04)/(g1*g2^3) - (g1*g4^2*t^8.04)/(g2*g3^4*g5^4) - (g4^3*t^8.04)/(g1*g2^3*g5^3) + (g1^3*t^8.04)/(g2^2*g3^5*g4^2*g5^2) - (5*g1*t^8.04)/(g2*g3^4*g4*g5) + (g3*g4*g5*t^8.04)/(g1^3*g2^2) - (g1*g5^2*t^8.04)/(g2*g3^4*g4^4) - (g5^3*t^8.04)/(g1*g2^3*g4^3) - t^8.05/(g1*g4^3) - (g3^3*t^8.05)/(g1*g2^3*g4^3) - (g1*g2^2*t^8.05)/(g3^4*g4*g5^4) - (g1*t^8.05)/(g2*g3*g4*g5^4) - t^8.05/(g1*g5^3) - (g3^3*t^8.05)/(g1*g2^3*g5^3) - (g1*g2^2*t^8.05)/(g3^4*g4^4*g5) - (g1*t^8.05)/(g2*g3*g4^4*g5) + t^8.15/(g1^4*g2^12) + (g1^4*t^8.15)/(g2^4*g3^16*g4^4*g5^4) + (g1^2*t^8.15)/(g2^6*g3^12*g4^3*g5^3) + t^8.15/(g2^8*g3^8*g4^2*g5^2) + t^8.15/(g1^2*g2^10*g3^4*g4*g5) - g1*g2^4*g3*g4*g5*t^8.32 - (g2^2*g3^5*g4^2*g5^2*t^8.32)/g1 + t^8.44/(g2^3*g3^3) + (g4^3*t^8.44)/(g2^3*g3^3*g5^3) - (g1^2*t^8.44)/(g2^4*g3^4*g4*g5) - (g4*g5*t^8.44)/(g1^2*g2^2*g3^2) + (g5^3*t^8.44)/(g2^3*g3^3*g4^3) + t^8.46/(g2^3*g4^3) + t^8.46/(g3^3*g4^3) - (g1^2*t^8.46)/(g2*g3^4*g4*g5^4) + t^8.46/(g2^3*g5^3) + t^8.46/(g3^3*g5^3) - (g3*g4*t^8.46)/(g1^2*g2^2*g5^2) - (g1^2*t^8.46)/(g2*g3^4*g4^4*g5) - (g3*g5*t^8.46)/(g1^2*g2^2*g4^2) + t^8.47/g4^6 + t^8.47/g5^6 + (2*t^8.47)/(g4^3*g5^3) + (g2^3*t^8.47)/(g3^3*g4^3*g5^3) + (g3^3*t^8.47)/(g2^3*g4^3*g5^3) + (g1*t^8.59)/(g2^5*g3^8*g4^5*g5^5) + t^8.59/(g1*g2^7*g3^4*g4^4*g5^4) + (g4^8*g5^2*t^8.7)/(g2*g3) + (g4^5*g5^5*t^8.7)/(g2*g3) + (g4^2*g5^8*t^8.7)/(g2*g3) + (g2^2*g4^8*t^8.71)/(g3*g5) + (g3^2*g4^8*t^8.71)/(g2*g5) + (2*g2^2*g4^5*g5^2*t^8.71)/g3 + (2*g3^2*g4^5*g5^2*t^8.71)/g2 + (2*g2^2*g4^2*g5^5*t^8.71)/g3 + (2*g3^2*g4^2*g5^5*t^8.71)/g2 + (g2^2*g5^8*t^8.71)/(g3*g4) + (g3^2*g5^8*t^8.71)/(g2*g4) + (g2^5*g4^5*t^8.73)/(g3*g5) + (2*g2^2*g3^2*g4^5*t^8.73)/g5 + (g3^5*g4^5*t^8.73)/(g2*g5) - g1^2*g2*g3*g4*g5*t^8.73 + (2*g2^5*g4^2*g5^2*t^8.73)/g3 + 3*g2^2*g3^2*g4^2*g5^2*t^8.73 + (2*g3^5*g4^2*g5^2*t^8.73)/g2 - (g2^3*g3^3*g4^3*g5^3*t^8.73)/g1^2 + (g2^5*g5^5*t^8.73)/(g3*g4) + (2*g2^2*g3^2*g5^5*t^8.73)/g4 + (g3^5*g5^5*t^8.73)/(g2*g4) + (g2^8*g4^2*t^8.74)/(g3*g5) + (2*g2^5*g3^2*g4^2*t^8.74)/g5 + (2*g2^2*g3^5*g4^2*t^8.74)/g5 + (g3^8*g4^2*t^8.74)/(g2*g5) + (g2^8*g5^2*t^8.74)/(g3*g4) + (2*g2^5*g3^2*g5^2*t^8.74)/g4 + (2*g2^2*g3^5*g5^2*t^8.74)/g4 + (g3^8*g5^2*t^8.74)/(g2*g4) + (g2^8*g3^2*t^8.76)/(g4*g5) + (g2^5*g3^5*t^8.76)/(g4*g5) + (g2^2*g3^8*t^8.76)/(g4*g5) + (g1*t^8.84)/(g2^3*g3^6) + (g4*g5*t^8.84)/(g1*g2^5*g3^2) + (g1*t^8.86)/(g3^6*g4^3) + (g1*t^8.86)/(g2^3*g3^3*g4^3) + (g1*t^8.86)/(g3^6*g5^3) + (g1*t^8.86)/(g2^3*g3^3*g5^3) + (g4*t^8.86)/(g1*g2^2*g3^2*g5^2) + (g3*g4*t^8.86)/(g1*g2^5*g5^2) + (g5*t^8.86)/(g1*g2^2*g3^2*g4^2) + (g3*g5*t^8.86)/(g1*g2^5*g4^2) + (g1*t^8.87)/(g3^3*g4^3*g5^3) + (g3*t^8.87)/(g1*g2^2*g4^2*g5^2) - t^4.64/(g2*g3*g4*g5*y) - (g1*t^6.68)/(g2^2*g3^5*g4^2*g5^2*y) - t^6.68/(g1*g2^4*g3*g4*g5*y) + t^7.08/(g2^4*g3^4*g4*g5*y) + (g2*g3*g4*g5*t^7.36)/y - t^7.91/(g2^3*g3^3*g4^3*g5^3*y) + (g1*t^8.31)/(g2^3*g3^6*g4^3*g5^3*y) + t^8.31/(g1*g2^5*g3^2*g4^2*g5^2*y) + (g1*g4^2*g5^2*t^8.57)/(g2*g3^4*y) + (g4^3*g5^3*t^8.57)/(g1*g2^3*y) + (g4^3*t^8.58)/(g1*y) + (g3^3*g4^3*t^8.58)/(g1*g2^3*y) + (g1*g2^2*g4^2*t^8.58)/(g3^4*g5*y) + (g1*g4^2*t^8.58)/(g2*g3*g5*y) + (g1*g2^2*g5^2*t^8.58)/(g3^4*g4*y) + (g1*g5^2*t^8.58)/(g2*g3*g4*y) + (g5^3*t^8.58)/(g1*y) + (g3^3*g5^3*t^8.58)/(g1*g2^3*y) + (2*g3^3*t^8.6)/(g1*y) + (2*g1*g2^2*t^8.6)/(g3*g4*g5*y) - (g1^2*t^8.71)/(g2^3*g3^9*g4^3*g5^3*y) - t^8.71/(g2^5*g3^5*g4^2*g5^2*y) - t^8.71/(g1^2*g2^7*g3*g4*g5*y) + (g4^3*t^8.98)/(g2^3*y) + (g4^3*t^8.98)/(g3^3*y) + (g1^2*g4^2*t^8.98)/(g2*g3^4*g5*y) + (g3*g4^4*g5*t^8.98)/(g1^2*g2^2*y) + (g1^2*g5^2*t^8.98)/(g2*g3^4*g4*y) + (g5^3*t^8.98)/(g2^3*y) + (g5^3*t^8.98)/(g3^3*y) + (g3*g4*g5^4*t^8.98)/(g1^2*g2^2*y) - (t^4.64*y)/(g2*g3*g4*g5) - (g1*t^6.68*y)/(g2^2*g3^5*g4^2*g5^2) - (t^6.68*y)/(g1*g2^4*g3*g4*g5) + (t^7.08*y)/(g2^4*g3^4*g4*g5) + g2*g3*g4*g5*t^7.36*y - (t^7.91*y)/(g2^3*g3^3*g4^3*g5^3) + (g1*t^8.31*y)/(g2^3*g3^6*g4^3*g5^3) + (t^8.31*y)/(g1*g2^5*g3^2*g4^2*g5^2) + (g1*g4^2*g5^2*t^8.57*y)/(g2*g3^4) + (g4^3*g5^3*t^8.57*y)/(g1*g2^3) + (g4^3*t^8.58*y)/g1 + (g3^3*g4^3*t^8.58*y)/(g1*g2^3) + (g1*g2^2*g4^2*t^8.58*y)/(g3^4*g5) + (g1*g4^2*t^8.58*y)/(g2*g3*g5) + (g1*g2^2*g5^2*t^8.58*y)/(g3^4*g4) + (g1*g5^2*t^8.58*y)/(g2*g3*g4) + (g5^3*t^8.58*y)/g1 + (g3^3*g5^3*t^8.58*y)/(g1*g2^3) + (2*g3^3*t^8.6*y)/g1 + (2*g1*g2^2*t^8.6*y)/(g3*g4*g5) - (g1^2*t^8.71*y)/(g2^3*g3^9*g4^3*g5^3) - (t^8.71*y)/(g2^5*g3^5*g4^2*g5^2) - (t^8.71*y)/(g1^2*g2^7*g3*g4*g5) + (g4^3*t^8.98*y)/g2^3 + (g4^3*t^8.98*y)/g3^3 + (g1^2*g4^2*t^8.98*y)/(g2*g3^4*g5) + (g3*g4^4*g5*t^8.98*y)/(g1^2*g2^2) + (g1^2*g5^2*t^8.98*y)/(g2*g3^4*g4) + (g5^3*t^8.98*y)/g2^3 + (g5^3*t^8.98*y)/g3^3 + (g3*g4*g5^4*t^8.98*y)/(g1^2*g2^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55778 $\phi_1q_1q_2$ + $ M_1q_2q_3$ + $ M_2q_1\tilde{q}_1$ + $ M_2\tilde{q}_2\tilde{q}_3$ 0.8796 1.0842 0.8112 [X:[], M:[0.6694, 0.7382], q:[0.7105, 0.7531, 0.5775], qb:[0.5513, 0.6309, 0.6309], phi:[0.5364]] t^2.01 + t^2.21 + t^3.22 + t^3.39 + 2*t^3.55 + 2*t^3.63 + t^3.79 + t^3.86 + t^3.91 + 3*t^4.02 + 2*t^4.15 + t^4.22 + t^4.39 + t^4.43 + t^4.92 + t^5. + t^5.07 + 2*t^5.16 + 3*t^5.23 + 4*t^5.39 + t^5.43 + 2*t^5.56 + t^5.6 + 2*t^5.63 + t^5.79 + t^5.87 - 6*t^6. - t^4.61/y - t^4.61*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55455 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1q_2q_3$ 0.8641 1.0553 0.8188 [X:[], M:[0.6776], q:[0.723, 0.7296, 0.5928], qb:[0.5884, 0.5884, 0.5884], phi:[0.5474]] t^2.03 + t^3.28 + 3*t^3.53 + 3*t^3.54 + 3*t^3.93 + 4*t^3.95 + t^4.07 + t^4.36 + 6*t^5.17 + 3*t^5.19 + t^5.2 + t^5.32 + 3*t^5.56 + 3*t^5.58 + 3*t^5.97 + t^5.98 - 11*t^6. - t^4.64/y - t^4.64*y detail