Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55687 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ | 0.8849 | 1.0955 | 0.8078 | [M:[0.6795, 0.6795], q:[0.7272, 0.7272, 0.5933], qb:[0.5933, 0.5882, 0.5882], phi:[0.5457]] | [M:[[-1, -3, 0, 0, 0], [1, -1, -4, -1, -1]], q:[[-1, 1, 1, 1, 1], [1, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[0, -1, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{3}$, ${ }M_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}q_{3}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{3}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{3}\tilde{q}_{3}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{1}q_{3}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{1}q_{3}\tilde{q}_{1}$, ${ }M_{2}q_{3}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{3}$, ${ }M_{1}q_{1}\tilde{q}_{3}$ | ${}M_{1}q_{1}q_{3}$, ${ }M_{2}q_{2}\tilde{q}_{1}$ | -5 | 2*t^2.039 + t^3.274 + t^3.529 + 4*t^3.545 + t^3.56 + 4*t^3.946 + 2*t^3.961 + 3*t^4.077 + t^4.363 + 3*t^5.166 + 4*t^5.182 + 3*t^5.197 + 2*t^5.313 + 2*t^5.568 + 8*t^5.583 + 2*t^5.598 + 4*t^5.985 - 5*t^6. - 4*t^6.015 + 4*t^6.116 - 2*t^6.402 - 4*t^6.417 + t^6.548 + t^6.803 + 4*t^6.818 + t^6.834 + t^7.058 + 4*t^7.074 + 10*t^7.089 + 4*t^7.104 + t^7.12 + 6*t^7.205 + 8*t^7.22 + 4*t^7.235 + 3*t^7.351 + 4*t^7.475 + 14*t^7.491 + 8*t^7.506 + 2*t^7.521 + 3*t^7.606 + 8*t^7.622 - 4*t^7.637 - 4*t^7.652 + 7*t^7.892 + 4*t^7.908 + 4*t^8.023 - 12*t^8.039 - 8*t^8.054 + 5*t^8.154 - 2*t^8.324 + t^8.44 + 6*t^8.471 + 2*t^8.587 + 3*t^8.695 + 12*t^8.711 + 13*t^8.726 + 12*t^8.741 + 3*t^8.757 + 2*t^8.842 + 8*t^8.857 + 2*t^8.872 - t^4.637/y - (2*t^6.676)/y + t^7.077/y + t^7.363/y - t^7.911/y + (2*t^8.313)/y + (2*t^8.568)/y + (8*t^8.583)/y + (4*t^8.598)/y - (3*t^8.714)/y + (8*t^8.985)/y - t^4.637*y - 2*t^6.676*y + t^7.077*y + t^7.363*y - t^7.911*y + 2*t^8.313*y + 2*t^8.568*y + 8*t^8.583*y + 4*t^8.598*y - 3*t^8.714*y + 8*t^8.985*y | t^2.039/(g1*g2^3) + (g1*t^2.039)/(g2*g3^4*g4*g5) + t^3.274/(g2^2*g3^2*g4^2*g5^2) + g4^3*g5^3*t^3.529 + g2^3*g4^3*t^3.545 + g3^3*g4^3*t^3.545 + g2^3*g5^3*t^3.545 + g3^3*g5^3*t^3.545 + g2^3*g3^3*t^3.56 + g1*g4^3*t^3.946 + (g2*g3*g4^4*g5*t^3.946)/g1 + g1*g5^3*t^3.946 + (g2*g3*g4*g5^4*t^3.946)/g1 + g1*g3^3*t^3.961 + (g2^4*g3*g4*g5*t^3.961)/g1 + t^4.077/(g1^2*g2^6) + (g1^2*t^4.077)/(g2^2*g3^8*g4^2*g5^2) + t^4.077/(g2^4*g3^4*g4*g5) + g2*g3*g4*g5*t^4.363 + (g4^5*t^5.166)/(g2*g3*g5) + (g4^2*g5^2*t^5.166)/(g2*g3) + (g5^5*t^5.166)/(g2*g3*g4) + (g2^2*g4^2*t^5.182)/(g3*g5) + (g3^2*g4^2*t^5.182)/(g2*g5) + (g2^2*g5^2*t^5.182)/(g3*g4) + (g3^2*g5^2*t^5.182)/(g2*g4) + (g2^5*t^5.197)/(g3*g4*g5) + (g2^2*g3^2*t^5.197)/(g4*g5) + (g3^5*t^5.197)/(g2*g4*g5) + (g1*t^5.313)/(g2^3*g3^6*g4^3*g5^3) + t^5.313/(g1*g2^5*g3^2*g4^2*g5^2) + (g1*g4^2*g5^2*t^5.568)/(g2*g3^4) + (g4^3*g5^3*t^5.568)/(g1*g2^3) + (g4^3*t^5.583)/g1 + (g3^3*g4^3*t^5.583)/(g1*g2^3) + (g1*g2^2*g4^2*t^5.583)/(g3^4*g5) + (g1*g4^2*t^5.583)/(g2*g3*g5) + (g1*g2^2*g5^2*t^5.583)/(g3^4*g4) + (g1*g5^2*t^5.583)/(g2*g3*g4) + (g5^3*t^5.583)/g1 + (g3^3*g5^3*t^5.583)/(g1*g2^3) + (g3^3*t^5.598)/g1 + (g1*g2^2*t^5.598)/(g3*g4*g5) + (g1^2*g4^2*t^5.985)/(g2*g3^4*g5) + (g3*g4^4*g5*t^5.985)/(g1^2*g2^2) + (g1^2*g5^2*t^5.985)/(g2*g3^4*g4) + (g3*g4*g5^4*t^5.985)/(g1^2*g2^2) - 5*t^6. - (g4^3*t^6.)/g5^3 + (g1^2*t^6.)/(g2*g3*g4*g5) + (g2*g3*g4*g5*t^6.)/g1^2 - (g5^3*t^6.)/g4^3 - (g2^3*t^6.015)/g4^3 - (g3^3*t^6.015)/g4^3 - (g2^3*t^6.015)/g5^3 - (g3^3*t^6.015)/g5^3 + t^6.116/(g1^3*g2^9) + (g1^3*t^6.116)/(g2^3*g3^12*g4^3*g5^3) + (g1*t^6.116)/(g2^5*g3^8*g4^2*g5^2) + t^6.116/(g1*g2^7*g3^4*g4*g5) - (g1*t^6.402)/g2^3 - (g2*g4*g5*t^6.402)/(g1*g3^2) - (g1*t^6.417)/g4^3 - (g1*t^6.417)/g5^3 - (g2*g3*g4*t^6.417)/(g1*g5^2) - (g2*g3*g5*t^6.417)/(g1*g4^2) + t^6.548/(g2^4*g3^4*g4^4*g5^4) + (g4*g5*t^6.803)/(g2^2*g3^2) + (g2*g4*t^6.818)/(g3^2*g5^2) + (g3*g4*t^6.818)/(g2^2*g5^2) + (g2*g5*t^6.818)/(g3^2*g4^2) + (g3*g5*t^6.818)/(g2^2*g4^2) + (g2*g3*t^6.834)/(g4^2*g5^2) + g4^6*g5^6*t^7.058 + g2^3*g4^6*g5^3*t^7.074 + g3^3*g4^6*g5^3*t^7.074 + g2^3*g4^3*g5^6*t^7.074 + g3^3*g4^3*g5^6*t^7.074 + g2^6*g4^6*t^7.089 + g2^3*g3^3*g4^6*t^7.089 + g3^6*g4^6*t^7.089 + g2^6*g4^3*g5^3*t^7.089 + 2*g2^3*g3^3*g4^3*g5^3*t^7.089 + g3^6*g4^3*g5^3*t^7.089 + g2^6*g5^6*t^7.089 + g2^3*g3^3*g5^6*t^7.089 + g3^6*g5^6*t^7.089 + g2^6*g3^3*g4^3*t^7.104 + g2^3*g3^6*g4^3*t^7.104 + g2^6*g3^3*g5^3*t^7.104 + g2^3*g3^6*g5^3*t^7.104 + g2^6*g3^6*t^7.12 + (g1*g4^4*t^7.205)/(g2^2*g3^5*g5^2) + (g4^5*t^7.205)/(g1*g2^4*g3*g5) + (g1*g4*g5*t^7.205)/(g2^2*g3^5) + (g4^2*g5^2*t^7.205)/(g1*g2^4*g3) + (g1*g5^4*t^7.205)/(g2^2*g3^5*g4^2) + (g5^5*t^7.205)/(g1*g2^4*g3*g4) + (g1*g2*g4*t^7.22)/(g3^5*g5^2) + (g1*g4*t^7.22)/(g2^2*g3^2*g5^2) + (g4^2*t^7.22)/(g1*g2*g3*g5) + (g3^2*g4^2*t^7.22)/(g1*g2^4*g5) + (g1*g2*g5*t^7.22)/(g3^5*g4^2) + (g1*g5*t^7.22)/(g2^2*g3^2*g4^2) + (g5^2*t^7.22)/(g1*g2*g3*g4) + (g3^2*g5^2*t^7.22)/(g1*g2^4*g4) + (g1*g2^4*t^7.235)/(g3^5*g4^2*g5^2) + (g1*g3*t^7.235)/(g2^2*g4^2*g5^2) + (g2^2*t^7.235)/(g1*g3*g4*g5) + (g3^5*t^7.235)/(g1*g2^4*g4*g5) + (g1^2*t^7.351)/(g2^4*g3^10*g4^4*g5^4) + t^7.351/(g2^6*g3^6*g4^3*g5^3) + t^7.351/(g1^2*g2^8*g3^2*g4^2*g5^2) + g1*g4^6*g5^3*t^7.475 + (g2*g3*g4^7*g5^4*t^7.475)/g1 + g1*g4^3*g5^6*t^7.475 + (g2*g3*g4^4*g5^7*t^7.475)/g1 + g1*g2^3*g4^6*t^7.491 + g1*g3^3*g4^6*t^7.491 + (g2^4*g3*g4^7*g5*t^7.491)/g1 + (g2*g3^4*g4^7*g5*t^7.491)/g1 + g1*g2^3*g4^3*g5^3*t^7.491 + 2*g1*g3^3*g4^3*g5^3*t^7.491 + (2*g2^4*g3*g4^4*g5^4*t^7.491)/g1 + (g2*g3^4*g4^4*g5^4*t^7.491)/g1 + g1*g2^3*g5^6*t^7.491 + g1*g3^3*g5^6*t^7.491 + (g2^4*g3*g4*g5^7*t^7.491)/g1 + (g2*g3^4*g4*g5^7*t^7.491)/g1 + g1*g2^3*g3^3*g4^3*t^7.506 + g1*g3^6*g4^3*t^7.506 + (g2^7*g3*g4^4*g5*t^7.506)/g1 + (g2^4*g3^4*g4^4*g5*t^7.506)/g1 + g1*g2^3*g3^3*g5^3*t^7.506 + g1*g3^6*g5^3*t^7.506 + (g2^7*g3*g4*g5^4*t^7.506)/g1 + (g2^4*g3^4*g4*g5^4*t^7.506)/g1 + g1*g2^3*g3^6*t^7.521 + (g2^7*g3^4*g4*g5*t^7.521)/g1 + (g1^2*g4*g5*t^7.606)/(g2^2*g3^8) + (g4^2*g5^2*t^7.606)/(g2^4*g3^4) + (g4^3*g5^3*t^7.606)/(g1^2*g2^6) + (g4^3*t^7.622)/(g1^2*g2^3) + (g3^3*g4^3*t^7.622)/(g1^2*g2^6) + (g1^2*g2*g4*t^7.622)/(g3^8*g5^2) + (g1^2*g4*t^7.622)/(g2^2*g3^5*g5^2) + (g1^2*g2*g5*t^7.622)/(g3^8*g4^2) + (g1^2*g5*t^7.622)/(g2^2*g3^5*g4^2) + (g5^3*t^7.622)/(g1^2*g2^3) + (g3^3*g5^3*t^7.622)/(g1^2*g2^6) + (g3^3*t^7.637)/(g1^2*g2^3) - (g4^2*t^7.637)/(g2*g3*g5^4) + (g1^2*g2*t^7.637)/(g3^5*g4^2*g5^2) - (g2^2*t^7.637)/(g3^4*g4*g5) - (2*t^7.637)/(g2*g3*g4*g5) - (g3^2*t^7.637)/(g2^4*g4*g5) - (g5^2*t^7.637)/(g2*g3*g4^4) - (g2^2*t^7.652)/(g3*g4*g5^4) - (g3^2*t^7.652)/(g2*g4*g5^4) - (g2^2*t^7.652)/(g3*g4^4*g5) - (g3^2*t^7.652)/(g2*g4^4*g5) + g1^2*g4^6*t^7.892 + (g2^2*g3^2*g4^8*g5^2*t^7.892)/g1^2 + g1^2*g4^3*g5^3*t^7.892 + g2*g3*g4^4*g5^4*t^7.892 + (g2^2*g3^2*g4^5*g5^5*t^7.892)/g1^2 + g1^2*g5^6*t^7.892 + (g2^2*g3^2*g4^2*g5^8*t^7.892)/g1^2 + g1^2*g3^3*g4^3*t^7.908 + (g2^5*g3^2*g4^5*g5^2*t^7.908)/g1^2 + g1^2*g3^3*g5^3*t^7.908 + (g2^5*g3^2*g4^2*g5^5*t^7.908)/g1^2 + g1^2*g3^6*t^7.923 - g2^7*g3*g4*g5*t^7.923 - g2*g3^7*g4*g5*t^7.923 + (g2^8*g3^2*g4^2*g5^2*t^7.923)/g1^2 + (g1^3*g4*t^8.023)/(g2^2*g3^8*g5^2) + (g1^3*g5*t^8.023)/(g2^2*g3^8*g4^2) + (g3*g4^4*g5*t^8.023)/(g1^3*g2^5) + (g3*g4*g5^4*t^8.023)/(g1^3*g2^5) - (5*t^8.039)/(g1*g2^3) - (g1*g4^2*t^8.039)/(g2*g3^4*g5^4) - (g4^3*t^8.039)/(g1*g2^3*g5^3) + (g1^3*t^8.039)/(g2^2*g3^5*g4^2*g5^2) - (5*g1*t^8.039)/(g2*g3^4*g4*g5) + (g3*g4*g5*t^8.039)/(g1^3*g2^2) - (g1*g5^2*t^8.039)/(g2*g3^4*g4^4) - (g5^3*t^8.039)/(g1*g2^3*g4^3) - t^8.054/(g1*g4^3) - (g3^3*t^8.054)/(g1*g2^3*g4^3) - (g1*g2^2*t^8.054)/(g3^4*g4*g5^4) - (g1*t^8.054)/(g2*g3*g4*g5^4) - t^8.054/(g1*g5^3) - (g3^3*t^8.054)/(g1*g2^3*g5^3) - (g1*g2^2*t^8.054)/(g3^4*g4^4*g5) - (g1*t^8.054)/(g2*g3*g4^4*g5) + t^8.154/(g1^4*g2^12) + (g1^4*t^8.154)/(g2^4*g3^16*g4^4*g5^4) + (g1^2*t^8.154)/(g2^6*g3^12*g4^3*g5^3) + t^8.154/(g2^8*g3^8*g4^2*g5^2) + t^8.154/(g1^2*g2^10*g3^4*g4*g5) - g1*g2^4*g3*g4*g5*t^8.324 - (g2^2*g3^5*g4^2*g5^2*t^8.324)/g1 + t^8.44/(g2^3*g3^3) + (g4^3*t^8.44)/(g2^3*g3^3*g5^3) - (g1^2*t^8.44)/(g2^4*g3^4*g4*g5) - (g4*g5*t^8.44)/(g1^2*g2^2*g3^2) + (g5^3*t^8.44)/(g2^3*g3^3*g4^3) + t^8.455/(g2^3*g4^3) + t^8.455/(g3^3*g4^3) - (g1^2*t^8.455)/(g2*g3^4*g4*g5^4) + t^8.455/(g2^3*g5^3) + t^8.455/(g3^3*g5^3) - (g3*g4*t^8.455)/(g1^2*g2^2*g5^2) - (g1^2*t^8.455)/(g2*g3^4*g4^4*g5) - (g3*g5*t^8.455)/(g1^2*g2^2*g4^2) + t^8.471/g4^6 + t^8.471/g5^6 + (2*t^8.471)/(g4^3*g5^3) + (g2^3*t^8.471)/(g3^3*g4^3*g5^3) + (g3^3*t^8.471)/(g2^3*g4^3*g5^3) + (g1*t^8.587)/(g2^5*g3^8*g4^5*g5^5) + t^8.587/(g1*g2^7*g3^4*g4^4*g5^4) + (g4^8*g5^2*t^8.695)/(g2*g3) + (g4^5*g5^5*t^8.695)/(g2*g3) + (g4^2*g5^8*t^8.695)/(g2*g3) + (g2^2*g4^8*t^8.711)/(g3*g5) + (g3^2*g4^8*t^8.711)/(g2*g5) + (2*g2^2*g4^5*g5^2*t^8.711)/g3 + (2*g3^2*g4^5*g5^2*t^8.711)/g2 + (2*g2^2*g4^2*g5^5*t^8.711)/g3 + (2*g3^2*g4^2*g5^5*t^8.711)/g2 + (g2^2*g5^8*t^8.711)/(g3*g4) + (g3^2*g5^8*t^8.711)/(g2*g4) + (g2^5*g4^5*t^8.726)/(g3*g5) + (2*g2^2*g3^2*g4^5*t^8.726)/g5 + (g3^5*g4^5*t^8.726)/(g2*g5) - g1^2*g2*g3*g4*g5*t^8.726 + (2*g2^5*g4^2*g5^2*t^8.726)/g3 + 3*g2^2*g3^2*g4^2*g5^2*t^8.726 + (2*g3^5*g4^2*g5^2*t^8.726)/g2 - (g2^3*g3^3*g4^3*g5^3*t^8.726)/g1^2 + (g2^5*g5^5*t^8.726)/(g3*g4) + (2*g2^2*g3^2*g5^5*t^8.726)/g4 + (g3^5*g5^5*t^8.726)/(g2*g4) + (g2^8*g4^2*t^8.741)/(g3*g5) + (2*g2^5*g3^2*g4^2*t^8.741)/g5 + (2*g2^2*g3^5*g4^2*t^8.741)/g5 + (g3^8*g4^2*t^8.741)/(g2*g5) + (g2^8*g5^2*t^8.741)/(g3*g4) + (2*g2^5*g3^2*g5^2*t^8.741)/g4 + (2*g2^2*g3^5*g5^2*t^8.741)/g4 + (g3^8*g5^2*t^8.741)/(g2*g4) + (g2^8*g3^2*t^8.757)/(g4*g5) + (g2^5*g3^5*t^8.757)/(g4*g5) + (g2^2*g3^8*t^8.757)/(g4*g5) + (g1*t^8.842)/(g2^3*g3^6) + (g4*g5*t^8.842)/(g1*g2^5*g3^2) + (g1*t^8.857)/(g3^6*g4^3) + (g1*t^8.857)/(g2^3*g3^3*g4^3) + (g1*t^8.857)/(g3^6*g5^3) + (g1*t^8.857)/(g2^3*g3^3*g5^3) + (g4*t^8.857)/(g1*g2^2*g3^2*g5^2) + (g3*g4*t^8.857)/(g1*g2^5*g5^2) + (g5*t^8.857)/(g1*g2^2*g3^2*g4^2) + (g3*g5*t^8.857)/(g1*g2^5*g4^2) + (g1*t^8.872)/(g3^3*g4^3*g5^3) + (g3*t^8.872)/(g1*g2^2*g4^2*g5^2) - t^4.637/(g2*g3*g4*g5*y) - (g1*t^6.676)/(g2^2*g3^5*g4^2*g5^2*y) - t^6.676/(g1*g2^4*g3*g4*g5*y) + t^7.077/(g2^4*g3^4*g4*g5*y) + (g2*g3*g4*g5*t^7.363)/y - t^7.911/(g2^3*g3^3*g4^3*g5^3*y) + (g1*t^8.313)/(g2^3*g3^6*g4^3*g5^3*y) + t^8.313/(g1*g2^5*g3^2*g4^2*g5^2*y) + (g1*g4^2*g5^2*t^8.568)/(g2*g3^4*y) + (g4^3*g5^3*t^8.568)/(g1*g2^3*y) + (g4^3*t^8.583)/(g1*y) + (g3^3*g4^3*t^8.583)/(g1*g2^3*y) + (g1*g2^2*g4^2*t^8.583)/(g3^4*g5*y) + (g1*g4^2*t^8.583)/(g2*g3*g5*y) + (g1*g2^2*g5^2*t^8.583)/(g3^4*g4*y) + (g1*g5^2*t^8.583)/(g2*g3*g4*y) + (g5^3*t^8.583)/(g1*y) + (g3^3*g5^3*t^8.583)/(g1*g2^3*y) + (2*g3^3*t^8.598)/(g1*y) + (2*g1*g2^2*t^8.598)/(g3*g4*g5*y) - (g1^2*t^8.714)/(g2^3*g3^9*g4^3*g5^3*y) - t^8.714/(g2^5*g3^5*g4^2*g5^2*y) - t^8.714/(g1^2*g2^7*g3*g4*g5*y) + (g4^3*t^8.985)/(g2^3*y) + (g4^3*t^8.985)/(g3^3*y) + (g1^2*g4^2*t^8.985)/(g2*g3^4*g5*y) + (g3*g4^4*g5*t^8.985)/(g1^2*g2^2*y) + (g1^2*g5^2*t^8.985)/(g2*g3^4*g4*y) + (g5^3*t^8.985)/(g2^3*y) + (g5^3*t^8.985)/(g3^3*y) + (g3*g4*g5^4*t^8.985)/(g1^2*g2^2*y) - (t^4.637*y)/(g2*g3*g4*g5) - (g1*t^6.676*y)/(g2^2*g3^5*g4^2*g5^2) - (t^6.676*y)/(g1*g2^4*g3*g4*g5) + (t^7.077*y)/(g2^4*g3^4*g4*g5) + g2*g3*g4*g5*t^7.363*y - (t^7.911*y)/(g2^3*g3^3*g4^3*g5^3) + (g1*t^8.313*y)/(g2^3*g3^6*g4^3*g5^3) + (t^8.313*y)/(g1*g2^5*g3^2*g4^2*g5^2) + (g1*g4^2*g5^2*t^8.568*y)/(g2*g3^4) + (g4^3*g5^3*t^8.568*y)/(g1*g2^3) + (g4^3*t^8.583*y)/g1 + (g3^3*g4^3*t^8.583*y)/(g1*g2^3) + (g1*g2^2*g4^2*t^8.583*y)/(g3^4*g5) + (g1*g4^2*t^8.583*y)/(g2*g3*g5) + (g1*g2^2*g5^2*t^8.583*y)/(g3^4*g4) + (g1*g5^2*t^8.583*y)/(g2*g3*g4) + (g5^3*t^8.583*y)/g1 + (g3^3*g5^3*t^8.583*y)/(g1*g2^3) + (2*g3^3*t^8.598*y)/g1 + (2*g1*g2^2*t^8.598*y)/(g3*g4*g5) - (g1^2*t^8.714*y)/(g2^3*g3^9*g4^3*g5^3) - (t^8.714*y)/(g2^5*g3^5*g4^2*g5^2) - (t^8.714*y)/(g1^2*g2^7*g3*g4*g5) + (g4^3*t^8.985*y)/g2^3 + (g4^3*t^8.985*y)/g3^3 + (g1^2*g4^2*t^8.985*y)/(g2*g3^4*g5) + (g3*g4^4*g5*t^8.985*y)/(g1^2*g2^2) + (g1^2*g5^2*t^8.985*y)/(g2*g3^4*g4) + (g5^3*t^8.985*y)/g2^3 + (g5^3*t^8.985*y)/g3^3 + (g3*g4*g5^4*t^8.985*y)/(g1^2*g2^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55778 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$ | 0.8796 | 1.0842 | 0.8112 | [M:[0.6694, 0.7382], q:[0.7105, 0.7531, 0.5775], qb:[0.5513, 0.6309, 0.6309], phi:[0.5364]] | t^2.008 + t^2.214 + t^3.219 + t^3.387 + 2*t^3.547 + 2*t^3.625 + t^3.786 + t^3.864 + t^3.913 + t^4.017 + 2*t^4.024 + 2*t^4.152 + t^4.223 + t^4.391 + t^4.429 + t^4.917 + t^4.996 + t^5.074 + 2*t^5.156 + t^5.227 + 2*t^5.235 + 4*t^5.395 + t^5.433 + 2*t^5.555 + t^5.601 + 2*t^5.634 + t^5.794 + t^5.872 - 6*t^6. - t^4.609/y - t^4.609*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55455 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ | 0.8641 | 1.0553 | 0.8188 | [M:[0.6776], q:[0.723, 0.7296, 0.5928], qb:[0.5884, 0.5884, 0.5884], phi:[0.5474]] | t^2.033 + t^3.284 + 3*t^3.53 + 3*t^3.543 + 3*t^3.934 + t^3.947 + 3*t^3.954 + t^4.066 + t^4.358 + 6*t^5.172 + 3*t^5.186 + t^5.199 + t^5.317 + 3*t^5.563 + 3*t^5.576 + 3*t^5.967 + t^5.98 - 11*t^6. - t^4.642/y - t^4.642*y | detail |