Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55678 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ | 0.8484 | 1.0335 | 0.8208 | [M:[0.6937], q:[0.7263, 0.7425, 0.5638], qb:[0.7344, 0.554, 0.554], phi:[0.5312]] | [M:[[-1, -5, 1, 1]], q:[[-1, 2, 0, 0], [1, 0, 0, 0], [0, 5, -1, -1]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[0, -2, 0, 0]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{1}q_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{3}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}q_{3}\tilde{q}_{2}$, ${ }M_{1}q_{3}\tilde{q}_{3}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{1}q_{1}q_{3}$ | ${}$ | -6 | t^2.081 + t^3.187 + t^3.324 + 2*t^3.354 + 2*t^3.841 + 2*t^3.865 + t^3.87 + 2*t^3.89 + t^3.895 + t^4.162 + t^4.382 + t^4.406 + t^4.431 + 3*t^4.918 + 2*t^4.947 + t^4.977 + t^5.268 + t^5.405 + 2*t^5.435 + 2*t^5.922 + 2*t^5.946 + t^5.951 - 6*t^6. - t^6.024 - 2*t^6.029 + t^6.243 + t^6.375 + t^6.463 + t^6.512 - 2*t^6.517 - t^6.536 - 2*t^6.565 + t^6.649 + 2*t^6.678 + 3*t^6.707 + 3*t^6.999 + 2*t^7.028 + t^7.058 - t^7.106 + 2*t^7.165 + 2*t^7.19 + 4*t^7.195 + 2*t^7.214 + 4*t^7.219 + 2*t^7.224 + 3*t^7.243 + 2*t^7.248 + t^7.349 + t^7.486 + 2*t^7.516 - 2*t^7.564 - 4*t^7.594 - 2*t^7.623 + 3*t^7.682 + 4*t^7.706 + 2*t^7.711 + 4*t^7.731 + 4*t^7.736 + t^7.741 + 4*t^7.755 + 2*t^7.76 + t^7.765 + 3*t^7.779 + 2*t^7.784 + 2*t^8.003 + 2*t^8.027 + t^8.032 - 6*t^8.081 + 2*t^8.105 - 2*t^8.11 + 2*t^8.135 + t^8.164 + 2*t^8.223 + 3*t^8.242 + 2*t^8.247 + t^8.252 + 8*t^8.272 + t^8.277 + 2*t^8.296 + 4*t^8.301 + 2*t^8.32 + t^8.324 + 2*t^8.33 + t^8.456 + t^8.544 + t^8.593 - 2*t^8.598 + 3*t^8.676 + t^8.73 + 6*t^8.759 + 4*t^8.783 + 6*t^8.788 + 4*t^8.808 + 3*t^8.813 + 2*t^8.818 + 2*t^8.842 + t^8.847 + t^8.871 - t^4.594/y - t^6.675/y + t^7.406/y - t^7.781/y + t^8.268/y + t^8.405/y + (2*t^8.435)/y + t^8.513/y - t^8.756/y + (2*t^8.922)/y + (2*t^8.946)/y + t^8.951/y + (2*t^8.971)/y + t^8.976/y - t^4.594*y - t^6.675*y + t^7.406*y - t^7.781*y + t^8.268*y + t^8.405*y + 2*t^8.435*y + t^8.513*y - t^8.756*y + 2*t^8.922*y + 2*t^8.946*y + t^8.951*y + 2*t^8.971*y + t^8.976*y | (g3*g4*t^2.081)/(g1*g2^5) + t^3.187/g2^4 + g3*g4*t^3.324 + (g2^5*t^3.354)/g3 + (g2^5*t^3.354)/g4 + (g2^2*g3*t^3.841)/g1 + (g2^2*g4*t^3.841)/g1 + g2*g3*t^3.865 + g2*g4*t^3.865 + (g2^7*t^3.87)/(g1*g3*g4) + g1*g3*t^3.89 + g1*g4*t^3.89 + (g2^6*t^3.895)/(g3*g4) + (g3^2*g4^2*t^4.162)/(g1^2*g2^10) + (g2^3*t^4.382)/g1 + g2^2*t^4.406 + g1*g2*t^4.431 + (g3^2*t^4.918)/g2^2 + (g3*g4*t^4.918)/g2^2 + (g4^2*t^4.918)/g2^2 + (g2^3*t^4.947)/g3 + (g2^3*t^4.947)/g4 + (g2^8*t^4.977)/(g3^2*g4^2) + (g3*g4*t^5.268)/(g1*g2^9) + (g3^2*g4^2*t^5.405)/(g1*g2^5) + (g3*t^5.435)/g1 + (g4*t^5.435)/g1 + (g3^2*g4*t^5.922)/(g1^2*g2^3) + (g3*g4^2*t^5.922)/(g1^2*g2^3) + (g3^2*g4*t^5.946)/(g1*g2^4) + (g3*g4^2*t^5.946)/(g1*g2^4) + (g2^2*t^5.951)/g1^2 - 4*t^6. - (g3*t^6.)/g4 - (g4*t^6.)/g3 - (g1*t^6.024)/g2 - (g2^5*t^6.029)/(g3*g4^2) - (g2^5*t^6.029)/(g3^2*g4) + (g3^3*g4^3*t^6.243)/(g1^3*g2^15) + t^6.375/g2^8 + (g3*g4*t^6.463)/(g1^2*g2^2) + (g3*g4*t^6.512)/g2^4 - (g2^2*t^6.517)/(g1*g3) - (g2^2*t^6.517)/(g1*g4) - (g1*g3*g4*t^6.536)/g2^5 - (g1*t^6.565)/g3 - (g1*t^6.565)/g4 + g3^2*g4^2*t^6.649 + g2^5*g3*t^6.678 + g2^5*g4*t^6.678 + (g2^10*t^6.707)/g3^2 + (g2^10*t^6.707)/g4^2 + (g2^10*t^6.707)/(g3*g4) + (g3^3*g4*t^6.999)/(g1*g2^7) + (g3^2*g4^2*t^6.999)/(g1*g2^7) + (g3*g4^3*t^6.999)/(g1*g2^7) + (g3*t^7.028)/(g1*g2^2) + (g4*t^7.028)/(g1*g2^2) + (g2^3*t^7.058)/(g1*g3*g4) - (g1*g2*t^7.106)/(g3*g4) + (g2^2*g3^2*g4*t^7.165)/g1 + (g2^2*g3*g4^2*t^7.165)/g1 + g2*g3^2*g4*t^7.19 + g2*g3*g4^2*t^7.19 + (2*g2^7*t^7.195)/g1 + (g2^7*g3*t^7.195)/(g1*g4) + (g2^7*g4*t^7.195)/(g1*g3) + g1*g3^2*g4*t^7.214 + g1*g3*g4^2*t^7.214 + 2*g2^6*t^7.219 + (g2^6*g3*t^7.219)/g4 + (g2^6*g4*t^7.219)/g3 + (g2^12*t^7.224)/(g1*g3*g4^2) + (g2^12*t^7.224)/(g1*g3^2*g4) + g1*g2^5*t^7.243 + (g1*g2^5*g3*t^7.243)/g4 + (g1*g2^5*g4*t^7.243)/g3 + (g2^11*t^7.248)/(g3*g4^2) + (g2^11*t^7.248)/(g3^2*g4) + (g3^2*g4^2*t^7.349)/(g1^2*g2^14) + (g3^3*g4^3*t^7.486)/(g1^2*g2^10) + (g3^2*g4*t^7.516)/(g1^2*g2^5) + (g3*g4^2*t^7.516)/(g1^2*g2^5) - (g3^2*g4*t^7.564)/g2^7 - (g3*g4^2*t^7.564)/g2^7 - (2*t^7.594)/g2^2 - (g3*t^7.594)/(g2^2*g4) - (g4*t^7.594)/(g2^2*g3) - (g2^3*t^7.623)/(g3*g4^2) - (g2^3*t^7.623)/(g3^2*g4) + (g2^4*g3^2*t^7.682)/g1^2 + (g2^4*g3*g4*t^7.682)/g1^2 + (g2^4*g4^2*t^7.682)/g1^2 + (g2^3*g3^2*t^7.706)/g1 + (2*g2^3*g3*g4*t^7.706)/g1 + (g2^3*g4^2*t^7.706)/g1 + (g2^9*t^7.711)/(g1^2*g3) + (g2^9*t^7.711)/(g1^2*g4) + g2^2*g3^2*t^7.731 + 2*g2^2*g3*g4*t^7.731 + g2^2*g4^2*t^7.731 + (2*g2^8*t^7.736)/(g1*g3) + (2*g2^8*t^7.736)/(g1*g4) + (g2^14*t^7.741)/(g1^2*g3^2*g4^2) + g1*g2*g3^2*t^7.755 + 2*g1*g2*g3*g4*t^7.755 + g1*g2*g4^2*t^7.755 + (g2^7*t^7.76)/g3 + (g2^7*t^7.76)/g4 + (g2^13*t^7.765)/(g1*g3^2*g4^2) + g1^2*g3^2*t^7.779 + g1^2*g3*g4*t^7.779 + g1^2*g4^2*t^7.779 + (g1*g2^6*t^7.784)/g3 + (g1*g2^6*t^7.784)/g4 + (g3^3*g4^2*t^8.003)/(g1^3*g2^8) + (g3^2*g4^3*t^8.003)/(g1^3*g2^8) + (g3^3*g4^2*t^8.027)/(g1^2*g2^9) + (g3^2*g4^3*t^8.027)/(g1^2*g2^9) + (g3*g4*t^8.032)/(g1^3*g2^3) - (g3^2*t^8.081)/(g1*g2^5) - (4*g3*g4*t^8.081)/(g1*g2^5) - (g4^2*t^8.081)/(g1*g2^5) + (g3^2*t^8.105)/g2^6 + (g4^2*t^8.105)/g2^6 - t^8.11/(g1*g3) - t^8.11/(g1*g4) + t^8.135/(g2*g3) + t^8.135/(g2*g4) + (g2^4*t^8.164)/(g3^2*g4^2) + (g2^5*g3*t^8.223)/g1^2 + (g2^5*g4*t^8.223)/g1^2 + (g3^3*g4*t^8.242)/g2^2 + (g3^2*g4^2*t^8.242)/g2^2 + (g3*g4^3*t^8.242)/g2^2 + (g2^4*g3*t^8.247)/g1 + (g2^4*g4*t^8.247)/g1 + (g2^10*t^8.252)/(g1^2*g3*g4) + 3*g2^3*g3*t^8.272 + (g2^3*g3^2*t^8.272)/g4 + 3*g2^3*g4*t^8.272 + (g2^3*g4^2*t^8.272)/g3 + (g2^9*t^8.277)/(g1*g3*g4) + g1*g2^2*g3*t^8.296 + g1*g2^2*g4*t^8.296 + (g2^8*t^8.301)/g3^2 + (g2^8*t^8.301)/g4^2 + (2*g2^8*t^8.301)/(g3*g4) + g1^2*g2*g3*t^8.32 + g1^2*g2*g4*t^8.32 + (g3^4*g4^4*t^8.324)/(g1^4*g2^20) + (g2^13*t^8.33)/(g3^2*g4^3) + (g2^13*t^8.33)/(g3^3*g4^2) + (g3*g4*t^8.456)/(g1*g2^13) + (g3^2*g4^2*t^8.544)/(g1^3*g2^7) + (g3^2*g4^2*t^8.593)/(g1*g2^9) - (g3*t^8.598)/(g1^2*g2^3) - (g4*t^8.598)/(g1^2*g2^3) + t^8.676/g3^2 + t^8.676/g4^2 + t^8.676/(g3*g4) + (g3^3*g4^3*t^8.73)/(g1*g2^5) + (g3^3*t^8.759)/g1 + (2*g3^2*g4*t^8.759)/g1 + (2*g3*g4^2*t^8.759)/g1 + (g4^3*t^8.759)/g1 + (g3^3*t^8.783)/g2 + (g3^2*g4*t^8.783)/g2 + (g3*g4^2*t^8.783)/g2 + (g4^3*t^8.783)/g2 + (2*g2^5*t^8.788)/g1 + (2*g2^5*g3*t^8.788)/(g1*g4) + (2*g2^5*g4*t^8.788)/(g1*g3) + (g1*g3^3*t^8.808)/g2^2 + (g1*g3^2*g4*t^8.808)/g2^2 + (g1*g3*g4^2*t^8.808)/g2^2 + (g1*g4^3*t^8.808)/g2^2 + g2^4*t^8.813 + (g2^4*g3*t^8.813)/g4 + (g2^4*g4*t^8.813)/g3 + (g2^10*t^8.818)/(g1*g3*g4^2) + (g2^10*t^8.818)/(g1*g3^2*g4) + (g2^9*t^8.842)/(g3*g4^2) + (g2^9*t^8.842)/(g3^2*g4) + (g2^15*t^8.847)/(g1*g3^3*g4^3) + (g2^14*t^8.871)/(g3^3*g4^3) - t^4.594/(g2^2*y) - (g3*g4*t^6.675)/(g1*g2^7*y) + (g2^2*t^7.406)/y - t^7.781/(g2^6*y) + (g3*g4*t^8.268)/(g1*g2^9*y) + (g3^2*g4^2*t^8.405)/(g1*g2^5*y) + (g3*t^8.435)/(g1*y) + (g4*t^8.435)/(g1*y) + (g1*g2^3*t^8.513)/(g3*g4*y) - (g3^2*g4^2*t^8.756)/(g1^2*g2^12*y) + (g3^2*g4*t^8.922)/(g1^2*g2^3*y) + (g3*g4^2*t^8.922)/(g1^2*g2^3*y) + (g3^2*g4*t^8.946)/(g1*g2^4*y) + (g3*g4^2*t^8.946)/(g1*g2^4*y) + (g2^2*t^8.951)/(g1^2*y) + (g3^2*g4*t^8.971)/(g2^5*y) + (g3*g4^2*t^8.971)/(g2^5*y) + (g2*t^8.976)/(g1*y) - (t^4.594*y)/g2^2 - (g3*g4*t^6.675*y)/(g1*g2^7) + g2^2*t^7.406*y - (t^7.781*y)/g2^6 + (g3*g4*t^8.268*y)/(g1*g2^9) + (g3^2*g4^2*t^8.405*y)/(g1*g2^5) + (g3*t^8.435*y)/g1 + (g4*t^8.435*y)/g1 + (g1*g2^3*t^8.513*y)/(g3*g4) - (g3^2*g4^2*t^8.756*y)/(g1^2*g2^12) + (g3^2*g4*t^8.922*y)/(g1^2*g2^3) + (g3*g4^2*t^8.922*y)/(g1^2*g2^3) + (g3^2*g4*t^8.946*y)/(g1*g2^4) + (g3*g4^2*t^8.946*y)/(g1*g2^4) + (g2^2*t^8.951*y)/g1^2 + (g3^2*g4*t^8.971*y)/g2^5 + (g3*g4^2*t^8.971*y)/g2^5 + (g2*t^8.976*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55747 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ | 0.8687 | 1.0711 | 0.8111 | [M:[0.6988, 0.6988], q:[0.7365, 0.7365, 0.5647], qb:[0.7365, 0.5647, 0.5532], phi:[0.527]] | 2*t^2.096 + t^3.162 + 2*t^3.354 + t^3.388 + 3*t^3.869 + 4*t^3.904 + 3*t^4.193 + 3*t^4.419 + t^4.9 + 2*t^4.935 + 3*t^4.969 + 2*t^5.258 + 4*t^5.45 + 2*t^5.485 + 4*t^5.965 - t^4.581/y - t^4.581*y | detail | |
55740 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}q_{3}\tilde{q}_{3}$ | 0.8612 | 1.0536 | 0.8174 | [M:[0.6696, 0.8272], q:[0.7415, 0.7434, 0.587], qb:[0.7424, 0.5394, 0.5858], phi:[0.5151]] | t^2.009 + t^2.482 + t^3.091 + t^3.376 + t^3.379 + t^3.843 + t^3.845 + t^3.848 + t^3.982 + 2*t^3.985 + 2*t^3.988 + t^4.018 + t^4.452 + t^4.455 + t^4.457 + t^4.49 + t^4.782 + t^4.921 + t^4.924 + t^4.963 + t^5.06 + t^5.064 + t^5.067 + t^5.1 + t^5.384 + t^5.388 + t^5.572 + t^5.851 + t^5.854 + t^5.857 + t^5.991 + 2*t^5.994 - 4*t^6. - t^4.545/y - t^4.545*y | detail | |
55725 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}$ | 0.6752 | 0.8043 | 0.8394 | [M:[0.8444], q:[1.1911, 0.4268, 0.7288], qb:[0.8089, 0.658, 0.658], phi:[0.3821]] | t^2.293 + t^2.533 + 2*t^3.254 + t^3.707 + t^3.948 + 2*t^4.16 + 2*t^4.401 + t^4.585 + t^4.613 + t^4.826 + t^5.066 + 2*t^5.094 + t^5.519 + 2*t^5.547 - 5*t^6. - t^4.146/y - t^4.146*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55455 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ | 0.8641 | 1.0553 | 0.8188 | [M:[0.6776], q:[0.723, 0.7296, 0.5928], qb:[0.5884, 0.5884, 0.5884], phi:[0.5474]] | t^2.033 + t^3.284 + 3*t^3.53 + 3*t^3.543 + 3*t^3.934 + t^3.947 + 3*t^3.954 + t^4.066 + t^4.358 + 6*t^5.172 + 3*t^5.186 + t^5.199 + t^5.317 + 3*t^5.563 + 3*t^5.576 + 3*t^5.967 + t^5.98 - 11*t^6. - t^4.642/y - t^4.642*y | detail |