Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55600 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ M_1q_2q_3$ + $ M_1q_1\tilde{q}_1$ | 0.8641 | 1.0549 | 0.8192 | [X:[], M:[0.6821], q:[0.7266, 0.7266, 0.5914], qb:[0.5914, 0.5883, 0.5883], phi:[0.5469]] | [X:[], M:[[-2, -2, -1, -1]], q:[[2, -1, 1, 1], [-1, 2, 1, 1], [3, 0, 0, 0]], qb:[[0, 3, 0, 0], [0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -2, -2]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_1\tilde{q}_2$, $ q_1q_3$, $ q_1\tilde{q}_1$, $ M_1^2$, $ q_1q_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ M_1\phi_1^2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_1$, $ M_1q_3\tilde{q}_2$ | . | -6 | t^2.05 + t^3.28 + t^3.53 + 4*t^3.54 + t^3.55 + 4*t^3.94 + 3*t^3.95 + t^4.09 + t^4.36 + 3*t^5.17 + 4*t^5.18 + 3*t^5.19 + t^5.33 + t^5.58 + 5*t^5.59 - 6*t^6. - 4*t^6.01 + t^6.14 - 7*t^6.41 + t^6.56 + t^6.81 + 4*t^6.82 + t^6.83 + t^7.06 + 4*t^7.07 + 10*t^7.08 + 4*t^7.09 + t^7.1 + 3*t^7.22 + 4*t^7.23 + 2*t^7.24 + t^7.37 + 4*t^7.47 + 15*t^7.48 + 12*t^7.49 + 3*t^7.5 + t^7.62 - 6*t^7.64 - 4*t^7.65 + 7*t^7.89 + 8*t^7.9 + 3*t^7.91 - 6*t^8.05 - 4*t^8.06 + t^8.18 - t^8.31 + 3*t^8.45 + 4*t^8.46 + 6*t^8.47 + t^8.61 + 3*t^8.7 + 12*t^8.71 + 13*t^8.72 + 12*t^8.73 + 3*t^8.74 + t^8.86 + 4*t^8.87 + t^8.88 - t^4.64/y - t^6.69/y + t^7.36/y - t^7.92/y + t^8.33/y + t^8.58/y + (6*t^8.59)/y - t^8.73/y + (4*t^8.99)/y - t^4.64*y - t^6.69*y + t^7.36*y - t^7.92*y + t^8.33*y + t^8.58*y + 6*t^8.59*y - t^8.73*y + 4*t^8.99*y | t^2.05/(g1^2*g2^2*g3*g4) + t^3.28/(g1^2*g2^2*g3^4*g4^4) + g3^6*g4^6*t^3.53 + g1^3*g3^6*t^3.54 + g2^3*g3^6*t^3.54 + g1^3*g4^6*t^3.54 + g2^3*g4^6*t^3.54 + g1^3*g2^3*t^3.55 + (g1^2*g3^7*g4*t^3.94)/g2 + (g2^2*g3^7*g4*t^3.94)/g1 + (g1^2*g3*g4^7*t^3.94)/g2 + (g2^2*g3*g4^7*t^3.94)/g1 + (g1^5*g3*g4*t^3.95)/g2 + g1^2*g2^2*g3*g4*t^3.95 + (g2^5*g3*g4*t^3.95)/g1 + t^4.09/(g1^4*g2^4*g3^2*g4^2) + g1*g2*g3^2*g4^2*t^4.36 + (g3^10*t^5.17)/(g1*g2*g4^2) + (g3^4*g4^4*t^5.17)/(g1*g2) + (g4^10*t^5.17)/(g1*g2*g3^2) + (g1^2*g3^4*t^5.18)/(g2*g4^2) + (g2^2*g3^4*t^5.18)/(g1*g4^2) + (g1^2*g4^4*t^5.18)/(g2*g3^2) + (g2^2*g4^4*t^5.18)/(g1*g3^2) + (g1^5*t^5.19)/(g2*g3^2*g4^2) + (g1^2*g2^2*t^5.19)/(g3^2*g4^2) + (g2^5*t^5.19)/(g1*g3^2*g4^2) + t^5.33/(g1^4*g2^4*g3^5*g4^5) + (g3^5*g4^5*t^5.58)/(g1^2*g2^2) + (g1*g2*t^5.59)/(g3*g4) + (g1*g3^5*t^5.59)/(g2^2*g4) + (g2*g3^5*t^5.59)/(g1^2*g4) + (g1*g4^5*t^5.59)/(g2^2*g3) + (g2*g4^5*t^5.59)/(g1^2*g3) - 4*t^6. - (g3^6*t^6.)/g4^6 - (g4^6*t^6.)/g3^6 - (g1^3*t^6.01)/g3^6 - (g2^3*t^6.01)/g3^6 - (g1^3*t^6.01)/g4^6 - (g2^3*t^6.01)/g4^6 + t^6.14/(g1^6*g2^6*g3^3*g4^3) - (g1^2*g3*t^6.41)/(g2*g4^5) - (g2^2*g3*t^6.41)/(g1*g4^5) - (g1^2*g4*t^6.41)/(g2*g3^5) - (g2^2*g4*t^6.41)/(g1*g3^5) - (g1^2*g3*g4*t^6.41)/g2^4 - (g3*g4*t^6.41)/(g1*g2) - (g2^2*g3*g4*t^6.41)/g1^4 + t^6.56/(g1^4*g2^4*g3^8*g4^8) + (g3^2*g4^2*t^6.81)/(g1^2*g2^2) + (g1*g3^2*t^6.82)/(g2^2*g4^4) + (g2*g3^2*t^6.82)/(g1^2*g4^4) + (g1*g4^2*t^6.82)/(g2^2*g3^4) + (g2*g4^2*t^6.82)/(g1^2*g3^4) + (g1*g2*t^6.83)/(g3^4*g4^4) + g3^12*g4^12*t^7.06 + g1^3*g3^12*g4^6*t^7.07 + g2^3*g3^12*g4^6*t^7.07 + g1^3*g3^6*g4^12*t^7.07 + g2^3*g3^6*g4^12*t^7.07 + g1^6*g3^12*t^7.08 + g1^3*g2^3*g3^12*t^7.08 + g2^6*g3^12*t^7.08 + g1^6*g3^6*g4^6*t^7.08 + 2*g1^3*g2^3*g3^6*g4^6*t^7.08 + g2^6*g3^6*g4^6*t^7.08 + g1^6*g4^12*t^7.08 + g1^3*g2^3*g4^12*t^7.08 + g2^6*g4^12*t^7.08 + g1^6*g2^3*g3^6*t^7.09 + g1^3*g2^6*g3^6*t^7.09 + g1^6*g2^3*g4^6*t^7.09 + g1^3*g2^6*g4^6*t^7.09 + g1^6*g2^6*t^7.1 + (g3^9*t^7.22)/(g1^3*g2^3*g4^3) + (g3^3*g4^3*t^7.22)/(g1^3*g2^3) + (g4^9*t^7.22)/(g1^3*g2^3*g3^3) + (g3^3*t^7.23)/(g1^3*g4^3) + (g3^3*t^7.23)/(g2^3*g4^3) + (g4^3*t^7.23)/(g1^3*g3^3) + (g4^3*t^7.23)/(g2^3*g3^3) + (g1^3*t^7.24)/(g2^3*g3^3*g4^3) + (g2^3*t^7.24)/(g1^3*g3^3*g4^3) + t^7.37/(g1^6*g2^6*g3^6*g4^6) + (g1^2*g3^13*g4^7*t^7.47)/g2 + (g2^2*g3^13*g4^7*t^7.47)/g1 + (g1^2*g3^7*g4^13*t^7.47)/g2 + (g2^2*g3^7*g4^13*t^7.47)/g1 + (g1^5*g3^13*g4*t^7.48)/g2 + 2*g1^2*g2^2*g3^13*g4*t^7.48 + (g2^5*g3^13*g4*t^7.48)/g1 + (2*g1^5*g3^7*g4^7*t^7.48)/g2 + 3*g1^2*g2^2*g3^7*g4^7*t^7.48 + (2*g2^5*g3^7*g4^7*t^7.48)/g1 + (g1^5*g3*g4^13*t^7.48)/g2 + 2*g1^2*g2^2*g3*g4^13*t^7.48 + (g2^5*g3*g4^13*t^7.48)/g1 + (g1^8*g3^7*g4*t^7.49)/g2 + 2*g1^5*g2^2*g3^7*g4*t^7.49 + 2*g1^2*g2^5*g3^7*g4*t^7.49 + (g2^8*g3^7*g4*t^7.49)/g1 + (g1^8*g3*g4^7*t^7.49)/g2 + 2*g1^5*g2^2*g3*g4^7*t^7.49 + 2*g1^2*g2^5*g3*g4^7*t^7.49 + (g2^8*g3*g4^7*t^7.49)/g1 + g1^8*g2^2*g3*g4*t^7.5 + g1^5*g2^5*g3*g4*t^7.5 + g1^2*g2^8*g3*g4*t^7.5 + (g3^4*g4^4*t^7.62)/(g1^4*g2^4) - (g3^4*t^7.64)/(g1*g2*g4^8) - (g1^2*t^7.64)/(g2^4*g3^2*g4^2) - (2*t^7.64)/(g1*g2*g3^2*g4^2) - (g2^2*t^7.64)/(g1^4*g3^2*g4^2) - (g4^4*t^7.64)/(g1*g2*g3^8) - (g1^2*t^7.65)/(g2*g3^2*g4^8) - (g2^2*t^7.65)/(g1*g3^2*g4^8) - (g1^2*t^7.65)/(g2*g3^8*g4^2) - (g2^2*t^7.65)/(g1*g3^8*g4^2) + (g1^4*g3^14*g4^2*t^7.89)/g2^2 + (g2^4*g3^14*g4^2*t^7.89)/g1^2 + (g1^4*g3^8*g4^8*t^7.89)/g2^2 + g1*g2*g3^8*g4^8*t^7.89 + (g2^4*g3^8*g4^8*t^7.89)/g1^2 + (g1^4*g3^2*g4^14*t^7.89)/g2^2 + (g2^4*g3^2*g4^14*t^7.89)/g1^2 + (g1^7*g3^8*g4^2*t^7.9)/g2^2 + g1^4*g2*g3^8*g4^2*t^7.9 + g1*g2^4*g3^8*g4^2*t^7.9 + (g2^7*g3^8*g4^2*t^7.9)/g1^2 + (g1^7*g3^2*g4^8*t^7.9)/g2^2 + g1^4*g2*g3^2*g4^8*t^7.9 + g1*g2^4*g3^2*g4^8*t^7.9 + (g2^7*g3^2*g4^8*t^7.9)/g1^2 + (g1^10*g3^2*g4^2*t^7.91)/g2^2 + g1^4*g2^4*g3^2*g4^2*t^7.91 + (g2^10*g3^2*g4^2*t^7.91)/g1^2 - (g3^5*t^8.05)/(g1^2*g2^2*g4^7) - (4*t^8.05)/(g1^2*g2^2*g3*g4) - (g4^5*t^8.05)/(g1^2*g2^2*g3^7) - (g1*t^8.06)/(g2^2*g3*g4^7) - (g2*t^8.06)/(g1^2*g3*g4^7) - (g1*t^8.06)/(g2^2*g3^7*g4) - (g2*t^8.06)/(g1^2*g3^7*g4) + t^8.18/(g1^8*g2^8*g3^4*g4^4) - g1^3*g2^3*g3^3*g4^3*t^8.31 + t^8.45/(g1^3*g2^3) + (g3^6*t^8.45)/(g1^3*g2^3*g4^6) + (g4^6*t^8.45)/(g1^3*g2^3*g3^6) + t^8.46/(g1^3*g3^6) + t^8.46/(g2^3*g3^6) + t^8.46/(g1^3*g4^6) + t^8.46/(g2^3*g4^6) + t^8.47/g3^12 + t^8.47/g4^12 + (2*t^8.47)/(g3^6*g4^6) + (g1^3*t^8.47)/(g2^3*g3^6*g4^6) + (g2^3*t^8.47)/(g1^3*g3^6*g4^6) + t^8.61/(g1^6*g2^6*g3^9*g4^9) + (g3^16*g4^4*t^8.7)/(g1*g2) + (g3^10*g4^10*t^8.7)/(g1*g2) + (g3^4*g4^16*t^8.7)/(g1*g2) + (g1^2*g3^16*t^8.71)/(g2*g4^2) + (g2^2*g3^16*t^8.71)/(g1*g4^2) + (2*g1^2*g3^10*g4^4*t^8.71)/g2 + (2*g2^2*g3^10*g4^4*t^8.71)/g1 + (2*g1^2*g3^4*g4^10*t^8.71)/g2 + (2*g2^2*g3^4*g4^10*t^8.71)/g1 + (g1^2*g4^16*t^8.71)/(g2*g3^2) + (g2^2*g4^16*t^8.71)/(g1*g3^2) + (g1^5*g3^10*t^8.72)/(g2*g4^2) + (2*g1^2*g2^2*g3^10*t^8.72)/g4^2 + (g2^5*g3^10*t^8.72)/(g1*g4^2) + (g1^5*g3^4*g4^4*t^8.72)/g2 + 3*g1^2*g2^2*g3^4*g4^4*t^8.72 + (g2^5*g3^4*g4^4*t^8.72)/g1 + (g1^5*g4^10*t^8.72)/(g2*g3^2) + (2*g1^2*g2^2*g4^10*t^8.72)/g3^2 + (g2^5*g4^10*t^8.72)/(g1*g3^2) + (g1^8*g3^4*t^8.73)/(g2*g4^2) + (2*g1^5*g2^2*g3^4*t^8.73)/g4^2 + (2*g1^2*g2^5*g3^4*t^8.73)/g4^2 + (g2^8*g3^4*t^8.73)/(g1*g4^2) + (g1^8*g4^4*t^8.73)/(g2*g3^2) + (2*g1^5*g2^2*g4^4*t^8.73)/g3^2 + (2*g1^2*g2^5*g4^4*t^8.73)/g3^2 + (g2^8*g4^4*t^8.73)/(g1*g3^2) + (g1^8*g2^2*t^8.74)/(g3^2*g4^2) + (g1^5*g2^5*t^8.74)/(g3^2*g4^2) + (g1^2*g2^8*t^8.74)/(g3^2*g4^2) + (g3*g4*t^8.86)/(g1^4*g2^4) + (g3*t^8.87)/(g1*g2^4*g4^5) + (g3*t^8.87)/(g1^4*g2*g4^5) + (g4*t^8.87)/(g1*g2^4*g3^5) + (g4*t^8.87)/(g1^4*g2*g3^5) + t^8.88/(g1*g2*g3^5*g4^5) - t^4.64/(g1*g2*g3^2*g4^2*y) - t^6.69/(g1^3*g2^3*g3^3*g4^3*y) + (g1*g2*g3^2*g4^2*t^7.36)/y - t^7.92/(g1^3*g2^3*g3^6*g4^6*y) + t^8.33/(g1^4*g2^4*g3^5*g4^5*y) + (g3^5*g4^5*t^8.58)/(g1^2*g2^2*y) + (2*g1*g2*t^8.59)/(g3*g4*y) + (g1*g3^5*t^8.59)/(g2^2*g4*y) + (g2*g3^5*t^8.59)/(g1^2*g4*y) + (g1*g4^5*t^8.59)/(g2^2*g3*y) + (g2*g4^5*t^8.59)/(g1^2*g3*y) - t^8.73/(g1^5*g2^5*g3^4*g4^4*y) + (g3^6*t^8.99)/(g1^3*y) + (g3^6*t^8.99)/(g2^3*y) + (g4^6*t^8.99)/(g1^3*y) + (g4^6*t^8.99)/(g2^3*y) - (t^4.64*y)/(g1*g2*g3^2*g4^2) - (t^6.69*y)/(g1^3*g2^3*g3^3*g4^3) + g1*g2*g3^2*g4^2*t^7.36*y - (t^7.92*y)/(g1^3*g2^3*g3^6*g4^6) + (t^8.33*y)/(g1^4*g2^4*g3^5*g4^5) + (g3^5*g4^5*t^8.58*y)/(g1^2*g2^2) + (2*g1*g2*t^8.59*y)/(g3*g4) + (g1*g3^5*t^8.59*y)/(g2^2*g4) + (g2*g3^5*t^8.59*y)/(g1^2*g4) + (g1*g4^5*t^8.59*y)/(g2^2*g3) + (g2*g4^5*t^8.59*y)/(g1^2*g3) - (t^8.73*y)/(g1^5*g2^5*g3^4*g4^4) + (g3^6*t^8.99*y)/g1^3 + (g3^6*t^8.99*y)/g2^3 + (g4^6*t^8.99*y)/g1^3 + (g4^6*t^8.99*y)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55709 | $\phi_1q_1q_2$ + $ M_1q_2q_3$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1\tilde{q}_2\tilde{q}_3$ | 0.8159 | 0.9874 | 0.8264 | [X:[], M:[0.7471], q:[0.751, 0.751, 0.5019], qb:[0.5019, 0.751, 0.751], phi:[0.4981]] | t^2.24 + t^2.99 + t^3.01 + 7*t^3.76 + t^4.48 + 9*t^4.51 + t^5.23 + t^5.25 + t^5.98 - 2*t^6. - t^4.49/y - t^4.49*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55455 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ M_1q_2q_3$ | 0.8641 | 1.0553 | 0.8188 | [X:[], M:[0.6776], q:[0.723, 0.7296, 0.5928], qb:[0.5884, 0.5884, 0.5884], phi:[0.5474]] | t^2.03 + t^3.28 + 3*t^3.53 + 3*t^3.54 + 3*t^3.93 + 4*t^3.95 + t^4.07 + t^4.36 + 6*t^5.17 + 3*t^5.19 + t^5.2 + t^5.32 + 3*t^5.56 + 3*t^5.58 + 3*t^5.97 + t^5.98 - 11*t^6. - t^4.64/y - t^4.64*y | detail |