Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55600 SU2adj1nf3 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ 0.8641 1.0549 0.8192 [M:[0.6821], q:[0.7266, 0.7266, 0.5914], qb:[0.5914, 0.5883, 0.5883], phi:[0.5469]] [M:[[-2, -2, -1, -1]], q:[[2, -1, 1, 1], [-1, 2, 1, 1], [3, 0, 0, 0]], qb:[[0, 3, 0, 0], [0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -2, -2]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{1}q_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}q_{3}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{3}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{1}q_{3}\tilde{q}_{1}$ ${}$ -6 t^2.046 + t^3.281 + t^3.53 + 4*t^3.539 + t^3.548 + 4*t^3.945 + 3*t^3.954 + t^4.092 + t^4.359 + 3*t^5.17 + 4*t^5.18 + 3*t^5.189 + t^5.328 + t^5.576 + 4*t^5.585 + t^5.594 - 6*t^6. - 4*t^6.009 + t^6.139 - 3*t^6.406 - 4*t^6.415 + t^6.563 + t^6.811 + 4*t^6.82 + t^6.83 + t^7.06 + 4*t^7.069 + 10*t^7.078 + 4*t^7.087 + t^7.096 + 3*t^7.217 + 4*t^7.226 + 2*t^7.235 + t^7.374 + 4*t^7.474 + 15*t^7.484 + 12*t^7.493 + 3*t^7.502 + t^7.622 - 6*t^7.641 - 4*t^7.65 + 7*t^7.889 + 8*t^7.898 + 3*t^7.908 - 6*t^8.046 - 4*t^8.055 + t^8.185 - t^8.313 + 3*t^8.452 + 4*t^8.461 + 6*t^8.47 + t^8.609 + 3*t^8.7 + 12*t^8.71 + 13*t^8.719 + 12*t^8.728 + 3*t^8.737 + t^8.857 + 4*t^8.867 + t^8.876 - t^4.641/y - t^6.687/y + t^7.359/y - t^7.922/y + t^8.328/y + t^8.576/y + (4*t^8.585)/y + (2*t^8.594)/y - t^8.733/y + (4*t^8.991)/y - t^4.641*y - t^6.687*y + t^7.359*y - t^7.922*y + t^8.328*y + t^8.576*y + 4*t^8.585*y + 2*t^8.594*y - t^8.733*y + 4*t^8.991*y t^2.046/(g1^2*g2^2*g3*g4) + t^3.281/(g1^2*g2^2*g3^4*g4^4) + g3^6*g4^6*t^3.53 + g1^3*g3^6*t^3.539 + g2^3*g3^6*t^3.539 + g1^3*g4^6*t^3.539 + g2^3*g4^6*t^3.539 + g1^3*g2^3*t^3.548 + (g1^2*g3^7*g4*t^3.945)/g2 + (g2^2*g3^7*g4*t^3.945)/g1 + (g1^2*g3*g4^7*t^3.945)/g2 + (g2^2*g3*g4^7*t^3.945)/g1 + (g1^5*g3*g4*t^3.954)/g2 + g1^2*g2^2*g3*g4*t^3.954 + (g2^5*g3*g4*t^3.954)/g1 + t^4.092/(g1^4*g2^4*g3^2*g4^2) + g1*g2*g3^2*g4^2*t^4.359 + (g3^10*t^5.17)/(g1*g2*g4^2) + (g3^4*g4^4*t^5.17)/(g1*g2) + (g4^10*t^5.17)/(g1*g2*g3^2) + (g1^2*g3^4*t^5.18)/(g2*g4^2) + (g2^2*g3^4*t^5.18)/(g1*g4^2) + (g1^2*g4^4*t^5.18)/(g2*g3^2) + (g2^2*g4^4*t^5.18)/(g1*g3^2) + (g1^5*t^5.189)/(g2*g3^2*g4^2) + (g1^2*g2^2*t^5.189)/(g3^2*g4^2) + (g2^5*t^5.189)/(g1*g3^2*g4^2) + t^5.328/(g1^4*g2^4*g3^5*g4^5) + (g3^5*g4^5*t^5.576)/(g1^2*g2^2) + (g1*g3^5*t^5.585)/(g2^2*g4) + (g2*g3^5*t^5.585)/(g1^2*g4) + (g1*g4^5*t^5.585)/(g2^2*g3) + (g2*g4^5*t^5.585)/(g1^2*g3) + (g1*g2*t^5.594)/(g3*g4) - 4*t^6. - (g3^6*t^6.)/g4^6 - (g4^6*t^6.)/g3^6 - (g1^3*t^6.009)/g3^6 - (g2^3*t^6.009)/g3^6 - (g1^3*t^6.009)/g4^6 - (g2^3*t^6.009)/g4^6 + t^6.139/(g1^6*g2^6*g3^3*g4^3) - (g1^2*g3*g4*t^6.406)/g2^4 - (g3*g4*t^6.406)/(g1*g2) - (g2^2*g3*g4*t^6.406)/g1^4 - (g1^2*g3*t^6.415)/(g2*g4^5) - (g2^2*g3*t^6.415)/(g1*g4^5) - (g1^2*g4*t^6.415)/(g2*g3^5) - (g2^2*g4*t^6.415)/(g1*g3^5) + t^6.563/(g1^4*g2^4*g3^8*g4^8) + (g3^2*g4^2*t^6.811)/(g1^2*g2^2) + (g1*g3^2*t^6.82)/(g2^2*g4^4) + (g2*g3^2*t^6.82)/(g1^2*g4^4) + (g1*g4^2*t^6.82)/(g2^2*g3^4) + (g2*g4^2*t^6.82)/(g1^2*g3^4) + (g1*g2*t^6.83)/(g3^4*g4^4) + g3^12*g4^12*t^7.06 + g1^3*g3^12*g4^6*t^7.069 + g2^3*g3^12*g4^6*t^7.069 + g1^3*g3^6*g4^12*t^7.069 + g2^3*g3^6*g4^12*t^7.069 + g1^6*g3^12*t^7.078 + g1^3*g2^3*g3^12*t^7.078 + g2^6*g3^12*t^7.078 + g1^6*g3^6*g4^6*t^7.078 + 2*g1^3*g2^3*g3^6*g4^6*t^7.078 + g2^6*g3^6*g4^6*t^7.078 + g1^6*g4^12*t^7.078 + g1^3*g2^3*g4^12*t^7.078 + g2^6*g4^12*t^7.078 + g1^6*g2^3*g3^6*t^7.087 + g1^3*g2^6*g3^6*t^7.087 + g1^6*g2^3*g4^6*t^7.087 + g1^3*g2^6*g4^6*t^7.087 + g1^6*g2^6*t^7.096 + (g3^9*t^7.217)/(g1^3*g2^3*g4^3) + (g3^3*g4^3*t^7.217)/(g1^3*g2^3) + (g4^9*t^7.217)/(g1^3*g2^3*g3^3) + (g3^3*t^7.226)/(g1^3*g4^3) + (g3^3*t^7.226)/(g2^3*g4^3) + (g4^3*t^7.226)/(g1^3*g3^3) + (g4^3*t^7.226)/(g2^3*g3^3) + (g1^3*t^7.235)/(g2^3*g3^3*g4^3) + (g2^3*t^7.235)/(g1^3*g3^3*g4^3) + t^7.374/(g1^6*g2^6*g3^6*g4^6) + (g1^2*g3^13*g4^7*t^7.474)/g2 + (g2^2*g3^13*g4^7*t^7.474)/g1 + (g1^2*g3^7*g4^13*t^7.474)/g2 + (g2^2*g3^7*g4^13*t^7.474)/g1 + (g1^5*g3^13*g4*t^7.484)/g2 + 2*g1^2*g2^2*g3^13*g4*t^7.484 + (g2^5*g3^13*g4*t^7.484)/g1 + (2*g1^5*g3^7*g4^7*t^7.484)/g2 + 3*g1^2*g2^2*g3^7*g4^7*t^7.484 + (2*g2^5*g3^7*g4^7*t^7.484)/g1 + (g1^5*g3*g4^13*t^7.484)/g2 + 2*g1^2*g2^2*g3*g4^13*t^7.484 + (g2^5*g3*g4^13*t^7.484)/g1 + (g1^8*g3^7*g4*t^7.493)/g2 + 2*g1^5*g2^2*g3^7*g4*t^7.493 + 2*g1^2*g2^5*g3^7*g4*t^7.493 + (g2^8*g3^7*g4*t^7.493)/g1 + (g1^8*g3*g4^7*t^7.493)/g2 + 2*g1^5*g2^2*g3*g4^7*t^7.493 + 2*g1^2*g2^5*g3*g4^7*t^7.493 + (g2^8*g3*g4^7*t^7.493)/g1 + g1^8*g2^2*g3*g4*t^7.502 + g1^5*g2^5*g3*g4*t^7.502 + g1^2*g2^8*g3*g4*t^7.502 + (g3^4*g4^4*t^7.622)/(g1^4*g2^4) - (g3^4*t^7.641)/(g1*g2*g4^8) - (g1^2*t^7.641)/(g2^4*g3^2*g4^2) - (2*t^7.641)/(g1*g2*g3^2*g4^2) - (g2^2*t^7.641)/(g1^4*g3^2*g4^2) - (g4^4*t^7.641)/(g1*g2*g3^8) - (g1^2*t^7.65)/(g2*g3^2*g4^8) - (g2^2*t^7.65)/(g1*g3^2*g4^8) - (g1^2*t^7.65)/(g2*g3^8*g4^2) - (g2^2*t^7.65)/(g1*g3^8*g4^2) + (g1^4*g3^14*g4^2*t^7.889)/g2^2 + (g2^4*g3^14*g4^2*t^7.889)/g1^2 + (g1^4*g3^8*g4^8*t^7.889)/g2^2 + g1*g2*g3^8*g4^8*t^7.889 + (g2^4*g3^8*g4^8*t^7.889)/g1^2 + (g1^4*g3^2*g4^14*t^7.889)/g2^2 + (g2^4*g3^2*g4^14*t^7.889)/g1^2 + (g1^7*g3^8*g4^2*t^7.898)/g2^2 + g1^4*g2*g3^8*g4^2*t^7.898 + g1*g2^4*g3^8*g4^2*t^7.898 + (g2^7*g3^8*g4^2*t^7.898)/g1^2 + (g1^7*g3^2*g4^8*t^7.898)/g2^2 + g1^4*g2*g3^2*g4^8*t^7.898 + g1*g2^4*g3^2*g4^8*t^7.898 + (g2^7*g3^2*g4^8*t^7.898)/g1^2 + (g1^10*g3^2*g4^2*t^7.908)/g2^2 + g1^4*g2^4*g3^2*g4^2*t^7.908 + (g2^10*g3^2*g4^2*t^7.908)/g1^2 - (g3^5*t^8.046)/(g1^2*g2^2*g4^7) - (4*t^8.046)/(g1^2*g2^2*g3*g4) - (g4^5*t^8.046)/(g1^2*g2^2*g3^7) - (g1*t^8.055)/(g2^2*g3*g4^7) - (g2*t^8.055)/(g1^2*g3*g4^7) - (g1*t^8.055)/(g2^2*g3^7*g4) - (g2*t^8.055)/(g1^2*g3^7*g4) + t^8.185/(g1^8*g2^8*g3^4*g4^4) - g1^3*g2^3*g3^3*g4^3*t^8.313 + t^8.452/(g1^3*g2^3) + (g3^6*t^8.452)/(g1^3*g2^3*g4^6) + (g4^6*t^8.452)/(g1^3*g2^3*g3^6) + t^8.461/(g1^3*g3^6) + t^8.461/(g2^3*g3^6) + t^8.461/(g1^3*g4^6) + t^8.461/(g2^3*g4^6) + t^8.47/g3^12 + t^8.47/g4^12 + (2*t^8.47)/(g3^6*g4^6) + (g1^3*t^8.47)/(g2^3*g3^6*g4^6) + (g2^3*t^8.47)/(g1^3*g3^6*g4^6) + t^8.609/(g1^6*g2^6*g3^9*g4^9) + (g3^16*g4^4*t^8.7)/(g1*g2) + (g3^10*g4^10*t^8.7)/(g1*g2) + (g3^4*g4^16*t^8.7)/(g1*g2) + (g1^2*g3^16*t^8.71)/(g2*g4^2) + (g2^2*g3^16*t^8.71)/(g1*g4^2) + (2*g1^2*g3^10*g4^4*t^8.71)/g2 + (2*g2^2*g3^10*g4^4*t^8.71)/g1 + (2*g1^2*g3^4*g4^10*t^8.71)/g2 + (2*g2^2*g3^4*g4^10*t^8.71)/g1 + (g1^2*g4^16*t^8.71)/(g2*g3^2) + (g2^2*g4^16*t^8.71)/(g1*g3^2) + (g1^5*g3^10*t^8.719)/(g2*g4^2) + (2*g1^2*g2^2*g3^10*t^8.719)/g4^2 + (g2^5*g3^10*t^8.719)/(g1*g4^2) + (g1^5*g3^4*g4^4*t^8.719)/g2 + 3*g1^2*g2^2*g3^4*g4^4*t^8.719 + (g2^5*g3^4*g4^4*t^8.719)/g1 + (g1^5*g4^10*t^8.719)/(g2*g3^2) + (2*g1^2*g2^2*g4^10*t^8.719)/g3^2 + (g2^5*g4^10*t^8.719)/(g1*g3^2) + (g1^8*g3^4*t^8.728)/(g2*g4^2) + (2*g1^5*g2^2*g3^4*t^8.728)/g4^2 + (2*g1^2*g2^5*g3^4*t^8.728)/g4^2 + (g2^8*g3^4*t^8.728)/(g1*g4^2) + (g1^8*g4^4*t^8.728)/(g2*g3^2) + (2*g1^5*g2^2*g4^4*t^8.728)/g3^2 + (2*g1^2*g2^5*g4^4*t^8.728)/g3^2 + (g2^8*g4^4*t^8.728)/(g1*g3^2) + (g1^8*g2^2*t^8.737)/(g3^2*g4^2) + (g1^5*g2^5*t^8.737)/(g3^2*g4^2) + (g1^2*g2^8*t^8.737)/(g3^2*g4^2) + (g3*g4*t^8.857)/(g1^4*g2^4) + (g3*t^8.867)/(g1*g2^4*g4^5) + (g3*t^8.867)/(g1^4*g2*g4^5) + (g4*t^8.867)/(g1*g2^4*g3^5) + (g4*t^8.867)/(g1^4*g2*g3^5) + t^8.876/(g1*g2*g3^5*g4^5) - t^4.641/(g1*g2*g3^2*g4^2*y) - t^6.687/(g1^3*g2^3*g3^3*g4^3*y) + (g1*g2*g3^2*g4^2*t^7.359)/y - t^7.922/(g1^3*g2^3*g3^6*g4^6*y) + t^8.328/(g1^4*g2^4*g3^5*g4^5*y) + (g3^5*g4^5*t^8.576)/(g1^2*g2^2*y) + (g1*g3^5*t^8.585)/(g2^2*g4*y) + (g2*g3^5*t^8.585)/(g1^2*g4*y) + (g1*g4^5*t^8.585)/(g2^2*g3*y) + (g2*g4^5*t^8.585)/(g1^2*g3*y) + (2*g1*g2*t^8.594)/(g3*g4*y) - t^8.733/(g1^5*g2^5*g3^4*g4^4*y) + (g3^6*t^8.991)/(g1^3*y) + (g3^6*t^8.991)/(g2^3*y) + (g4^6*t^8.991)/(g1^3*y) + (g4^6*t^8.991)/(g2^3*y) - (t^4.641*y)/(g1*g2*g3^2*g4^2) - (t^6.687*y)/(g1^3*g2^3*g3^3*g4^3) + g1*g2*g3^2*g4^2*t^7.359*y - (t^7.922*y)/(g1^3*g2^3*g3^6*g4^6) + (t^8.328*y)/(g1^4*g2^4*g3^5*g4^5) + (g3^5*g4^5*t^8.576*y)/(g1^2*g2^2) + (g1*g3^5*t^8.585*y)/(g2^2*g4) + (g2*g3^5*t^8.585*y)/(g1^2*g4) + (g1*g4^5*t^8.585*y)/(g2^2*g3) + (g2*g4^5*t^8.585*y)/(g1^2*g3) + (2*g1*g2*t^8.594*y)/(g3*g4) - (t^8.733*y)/(g1^5*g2^5*g3^4*g4^4) + (g3^6*t^8.991*y)/g1^3 + (g3^6*t^8.991*y)/g2^3 + (g4^6*t^8.991*y)/g1^3 + (g4^6*t^8.991*y)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55709 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$ 0.8159 0.9874 0.8264 [M:[0.7471], q:[0.751, 0.751, 0.5019], qb:[0.5019, 0.751, 0.751], phi:[0.4981]] t^2.241 + t^2.989 + t^3.011 + 7*t^3.759 + t^4.483 + 9*t^4.506 + t^5.23 + t^5.253 + t^5.977 - 2*t^6. - t^4.494/y - t^4.494*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55455 SU2adj1nf3 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{2}q_{3}$ 0.8641 1.0553 0.8188 [M:[0.6776], q:[0.723, 0.7296, 0.5928], qb:[0.5884, 0.5884, 0.5884], phi:[0.5474]] t^2.033 + t^3.284 + 3*t^3.53 + 3*t^3.543 + 3*t^3.934 + t^3.947 + 3*t^3.954 + t^4.066 + t^4.358 + 6*t^5.172 + 3*t^5.186 + t^5.199 + t^5.317 + 3*t^5.563 + 3*t^5.576 + 3*t^5.967 + t^5.98 - 11*t^6. - t^4.642/y - t^4.642*y detail