Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47915 SU3adj1nf2 $M_1\phi_1^3$ + $ M_2q_1\tilde{q}_1$ 1.476 1.6893 0.8737 [X:[], M:[0.9872, 0.9765], q:[0.5118, 0.4754], qb:[0.5118, 0.4754], phi:[0.3376]] [X:[], M:[[3, 3, 3, 3], [-6, 0, -6, 0]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1^2$, $ q_2\tilde{q}_2$, $ M_2$, $ q_2\tilde{q}_1$, $ M_1$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1^4$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ M_2\phi_1^2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1\phi_1^2$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1q_1q_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1q_1^2q_2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_2q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_2^2$, $ M_1M_2$, $ \phi_1^3q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ M_1q_2\tilde{q}_1$, $ M_1^2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ M_1q_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$ $\phi_1^3q_2\tilde{q}_1$, $ \phi_1^3q_1\tilde{q}_2$ -2 t^2.03 + t^2.85 + t^2.93 + 3*t^2.96 + t^3.87 + 2*t^3.97 + t^4.05 + t^4.08 + 2*t^4.88 + t^4.96 + 5*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.7 + t^5.78 + 3*t^5.81 + t^5.86 + 2*t^5.89 + 6*t^5.92 - 2*t^6. + t^6.08 - t^6.11 + 2*t^6.41 + 2*t^6.52 + t^6.72 + t^6.79 + 5*t^6.83 + 2*t^6.9 + 7*t^6.94 + t^6.98 + 3*t^7.01 + 3*t^7.04 - t^7.12 + 2*t^7.32 + 2*t^7.43 + 2*t^7.54 + 2*t^7.64 + 3*t^7.73 + 2*t^7.81 + 9*t^7.84 + t^7.88 + 2*t^7.92 + 14*t^7.95 - 3*t^8.03 + 4*t^8.06 + t^8.1 - 3*t^8.13 + t^8.17 + 2*t^8.25 + 8*t^8.36 - 2*t^8.44 + 6*t^8.47 - 4*t^8.55 + t^8.56 + t^8.63 - 2*t^8.66 + 3*t^8.67 + t^8.71 + 3*t^8.74 + 6*t^8.78 + t^8.79 + 2*t^8.82 + 4*t^8.85 + 10*t^8.88 - t^8.93 - 4*t^8.96 - t^4.01/y - t^5.03/y - t^6.04/y - t^6.87/y - t^6.94/y - (3*t^6.97)/y - t^7.05/y + t^7.99/y - t^8.06/y + t^8.78/y + (3*t^8.81)/y + (2*t^8.89)/y + (3*t^8.92)/y - t^8.97/y - t^4.01*y - t^5.03*y - t^6.04*y - t^6.87*y - t^6.94*y - 3*t^6.97*y - t^7.05*y + t^7.99*y - t^8.06*y + t^8.78*y + 3*t^8.81*y + 2*t^8.89*y + 3*t^8.92*y - t^8.97*y t^2.03/(g1^2*g2^2*g3^2*g4^2) + g2^6*g4^6*t^2.85 + t^2.93/(g1^6*g3^6) + g2^6*g3^6*t^2.96 + g1^3*g2^3*g3^3*g4^3*t^2.96 + g1^6*g4^6*t^2.96 + (g2^5*g4^5*t^3.87)/(g1*g3) + (g2^5*g3^5*t^3.97)/(g1*g4) + (g1^5*g4^5*t^3.97)/(g2*g3) + t^4.05/(g1^4*g2^4*g3^4*g4^4) + (g1^5*g3^5*t^4.08)/(g2*g4) + (2*g2^4*g4^4*t^4.88)/(g1^2*g3^2) + t^4.96/(g1^8*g2^2*g3^8*g4^2) + (2*g2^4*g3^4*t^4.99)/(g1^2*g4^2) + g1*g2*g3*g4*t^4.99 + (2*g1^4*g4^4*t^4.99)/(g2^2*g3^2) + (g1^4*g3^4*t^5.1)/(g2^2*g4^2) + (g1^5*g2^11*t^5.4)/(g3*g4) + (g3^5*g4^11*t^5.4)/(g1*g2) + (g1^11*g2^5*t^5.51)/(g3*g4) + (g3^11*g4^5*t^5.51)/(g1*g2) + g2^12*g4^12*t^5.7 + (g2^6*g4^6*t^5.78)/(g1^6*g3^6) + g2^12*g3^6*g4^6*t^5.81 + g1^3*g2^9*g3^3*g4^9*t^5.81 + g1^6*g2^6*g4^12*t^5.81 + t^5.86/(g1^12*g3^12) + (2*g2^3*g4^3*t^5.89)/(g1^3*g3^3) + g2^12*g3^12*t^5.92 + g1^3*g2^9*g3^9*g4^3*t^5.92 + 2*g1^6*g2^6*g3^6*g4^6*t^5.92 + g1^9*g2^3*g3^3*g4^9*t^5.92 + g1^12*g4^12*t^5.92 - 4*t^6. + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (g1^3*g4^3*t^6.)/(g2^3*g3^3) + t^6.08/(g1^6*g2^6*g3^6*g4^6) - (g1^6*t^6.11)/g2^6 - (g3^6*t^6.11)/g4^6 + (g1^3*g3^3*t^6.11)/(g2^3*g4^3) + (g1^4*g2^10*t^6.41)/(g3^2*g4^2) + (g3^4*g4^10*t^6.41)/(g1^2*g2^2) + (g1^10*g2^4*t^6.52)/(g3^2*g4^2) + (g3^10*g4^4*t^6.52)/(g1^2*g2^2) + (g2^11*g4^11*t^6.72)/(g1*g3) + (g2^5*g4^5*t^6.79)/(g1^7*g3^7) + (2*g2^11*g3^5*g4^5*t^6.83)/g1 + g1^2*g2^8*g3^2*g4^8*t^6.83 + (2*g1^5*g2^5*g4^11*t^6.83)/g3 + (2*g2^2*g4^2*t^6.9)/(g1^4*g3^4) + (g2^11*g3^11*t^6.94)/(g1*g4) + g1^2*g2^8*g3^8*g4^2*t^6.94 + 3*g1^5*g2^5*g3^5*g4^5*t^6.94 + g1^8*g2^2*g3^2*g4^8*t^6.94 + (g1^11*g4^11*t^6.94)/(g2*g3) + t^6.98/(g1^10*g2^4*g3^10*g4^4) + (2*g2^2*g3^2*t^7.01)/(g1^4*g4^4) - t^7.01/(g1*g2*g3*g4) + (2*g1^2*g4^2*t^7.01)/(g2^4*g3^4) + (g1^5*g2^5*g3^11*t^7.04)/g4 + g1^8*g2^2*g3^8*g4^2*t^7.04 + (g1^11*g3^5*g4^5*t^7.04)/g2 - (g3^5*t^7.12)/(g1*g2*g4^7) + (g1^2*g3^2*t^7.12)/(g2^4*g4^4) - (g1^5*t^7.12)/(g2^7*g3*g4) + (g2^15*t^7.32)/(g1^3*g3^3*g4^3) + (g4^15*t^7.32)/(g1^3*g2^3*g3^3) - (g1^6*g2^6*t^7.43)/g3^6 + (2*g1^3*g2^9*t^7.43)/(g3^3*g4^3) - (g3^6*g4^6*t^7.43)/g1^6 + (2*g3^3*g4^9*t^7.43)/(g1^3*g2^3) - (g1^6*g2^6*t^7.54)/g4^6 + (2*g1^9*g2^3*t^7.54)/(g3^3*g4^3) + (2*g3^9*g4^3*t^7.54)/(g1^3*g2^3) - (g3^6*g4^6*t^7.54)/g2^6 + (g1^15*t^7.64)/(g2^3*g3^3*g4^3) + (g3^15*t^7.64)/(g1^3*g2^3*g4^3) + (3*g2^10*g4^10*t^7.73)/(g1^2*g3^2) + (2*g2^4*g4^4*t^7.81)/(g1^8*g3^8) + (4*g2^10*g3^4*g4^4*t^7.84)/g1^2 + g1*g2^7*g3*g4^7*t^7.84 + (4*g1^4*g2^4*g4^10*t^7.84)/g3^2 + t^7.88/(g1^14*g2^2*g3^14*g4^2) + (2*g2*g4*t^7.92)/(g1^5*g3^5) + (3*g2^10*g3^10*t^7.95)/(g1^2*g4^2) + g1*g2^7*g3^7*g4*t^7.95 + 6*g1^4*g2^4*g3^4*g4^4*t^7.95 + g1^7*g2*g3*g4^7*t^7.95 + (3*g1^10*g4^10*t^7.95)/(g2^2*g3^2) + (g2*g3*t^8.03)/(g1^5*g4^5) - (5*t^8.03)/(g1^2*g2^2*g3^2*g4^2) + (g1*g4*t^8.03)/(g2^5*g3^5) + (2*g1^4*g2^4*g3^10*t^8.06)/g4^2 + (2*g1^10*g3^4*g4^4*t^8.06)/g2^2 + t^8.1/(g1^8*g2^8*g3^8*g4^8) - (2*g3^4*t^8.13)/(g1^2*g2^2*g4^8) + (g1*g3*t^8.13)/(g2^5*g4^5) - (2*g1^4*t^8.13)/(g2^8*g3^2*g4^2) + (g1^10*g3^10*t^8.17)/(g2^2*g4^2) + (g1^5*g2^17*g4^5*t^8.25)/g3 + (g2^5*g3^5*g4^17*t^8.25)/g1 + (g1^5*g2^17*g3^5*t^8.36)/g4 + g1^8*g2^14*g3^2*g4^2*t^8.36 + (2*g1^11*g2^11*g4^5*t^8.36)/g3 + (2*g2^5*g3^11*g4^11*t^8.36)/g1 + g1^2*g2^2*g3^8*g4^14*t^8.36 + (g1^5*g3^5*g4^17*t^8.36)/g2 - (g2^11*t^8.44)/(g1*g3*g4^7) + (g1^2*g2^8*t^8.44)/(g3^4*g4^4) - (g1^5*g2^5*t^8.44)/(g3^7*g4) - (g3^5*g4^5*t^8.44)/(g1^7*g2) + (g3^2*g4^8*t^8.44)/(g1^4*g2^4) - (g4^11*t^8.44)/(g1*g2^7*g3) + (g1^11*g2^11*g3^5*t^8.47)/g4 + g1^14*g2^8*g3^2*g4^2*t^8.47 + (g1^17*g2^5*g4^5*t^8.47)/g3 + (g2^5*g3^17*g4^5*t^8.47)/g1 + g1^2*g2^2*g3^14*g4^8*t^8.47 + (g1^5*g3^11*g4^11*t^8.47)/g2 - (2*g1^5*g2^5*t^8.55)/(g3*g4^7) + (g1^8*g2^2*t^8.55)/(g3^4*g4^4) - (g1^11*t^8.55)/(g2*g3^7*g4) - (g3^11*t^8.55)/(g1^7*g2*g4) + (g3^8*g4^2*t^8.55)/(g1^4*g2^4) - (2*g3^5*g4^5*t^8.55)/(g1*g2^7) + g2^18*g4^18*t^8.56 + (g2^12*g4^12*t^8.63)/(g1^6*g3^6) - (g1^11*t^8.66)/(g2*g3*g4^7) - (g3^11*t^8.66)/(g1*g2^7*g4) + g2^18*g3^6*g4^12*t^8.67 + g1^3*g2^15*g3^3*g4^15*t^8.67 + g1^6*g2^12*g4^18*t^8.67 + (g2^6*g4^6*t^8.71)/(g1^12*g3^12) + (3*g2^9*g4^9*t^8.74)/(g1^3*g3^3) + g2^18*g3^12*g4^6*t^8.78 + g1^3*g2^15*g3^9*g4^9*t^8.78 + 2*g1^6*g2^12*g3^6*g4^12*t^8.78 + g1^9*g2^9*g3^3*g4^15*t^8.78 + g1^12*g2^6*g4^18*t^8.78 + t^8.79/(g1^18*g3^18) + (2*g2^3*g4^3*t^8.82)/(g1^9*g3^9) + (4*g2^9*g3^3*g4^3*t^8.85)/g1^3 - 4*g2^6*g4^6*t^8.85 + (4*g1^3*g2^3*g4^9*t^8.85)/g3^3 + g2^18*g3^18*t^8.88 + g1^3*g2^15*g3^15*g4^3*t^8.88 + 2*g1^6*g2^12*g3^12*g4^6*t^8.88 + 2*g1^9*g2^9*g3^9*g4^9*t^8.88 + 2*g1^12*g2^6*g3^6*g4^12*t^8.88 + g1^15*g2^3*g3^3*g4^15*t^8.88 + g1^18*g4^18*t^8.88 - t^8.93/(g1^6*g3^6) - 5*g2^6*g3^6*t^8.96 + (2*g2^9*g3^9*t^8.96)/(g1^3*g4^3) + 2*g1^3*g2^3*g3^3*g4^3*t^8.96 - 5*g1^6*g4^6*t^8.96 + (2*g1^9*g4^9*t^8.96)/(g2^3*g3^3) - t^4.01/(g1*g2*g3*g4*y) - t^5.03/(g1^2*g2^2*g3^2*g4^2*y) - t^6.04/(g1^3*g2^3*g3^3*g4^3*y) - (g2^5*g4^5*t^6.87)/(g1*g3*y) - t^6.94/(g1^7*g2*g3^7*g4*y) - (g2^5*g3^5*t^6.97)/(g1*g4*y) - (g1^2*g2^2*g3^2*g4^2*t^6.97)/y - (g1^5*g4^5*t^6.97)/(g2*g3*y) - t^7.05/(g1^4*g2^4*g3^4*g4^4*y) + (g1*g2*g3*g4*t^7.99)/y - t^8.06/(g1^5*g2^5*g3^5*g4^5*y) + (g2^6*g4^6*t^8.78)/(g1^6*g3^6*y) + (g2^12*g3^6*g4^6*t^8.81)/y + (g1^3*g2^9*g3^3*g4^9*t^8.81)/y + (g1^6*g2^6*g4^12*t^8.81)/y + (g2^6*t^8.89)/(g1^6*y) + (g4^6*t^8.89)/(g3^6*y) + (g1^3*g2^9*g3^9*g4^3*t^8.92)/y + (g1^6*g2^6*g3^6*g4^6*t^8.92)/y + (g1^9*g2^3*g3^3*g4^9*t^8.92)/y - t^8.97/(g1^9*g2^3*g3^9*g4^3*y) - (t^4.01*y)/(g1*g2*g3*g4) - (t^5.03*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.04*y)/(g1^3*g2^3*g3^3*g4^3) - (g2^5*g4^5*t^6.87*y)/(g1*g3) - (t^6.94*y)/(g1^7*g2*g3^7*g4) - (g2^5*g3^5*t^6.97*y)/(g1*g4) - g1^2*g2^2*g3^2*g4^2*t^6.97*y - (g1^5*g4^5*t^6.97*y)/(g2*g3) - (t^7.05*y)/(g1^4*g2^4*g3^4*g4^4) + g1*g2*g3*g4*t^7.99*y - (t^8.06*y)/(g1^5*g2^5*g3^5*g4^5) + (g2^6*g4^6*t^8.78*y)/(g1^6*g3^6) + g2^12*g3^6*g4^6*t^8.81*y + g1^3*g2^9*g3^3*g4^9*t^8.81*y + g1^6*g2^6*g4^12*t^8.81*y + (g2^6*t^8.89*y)/g1^6 + (g4^6*t^8.89*y)/g3^6 + g1^3*g2^9*g3^9*g4^3*t^8.92*y + g1^6*g2^6*g3^6*g4^6*t^8.92*y + g1^9*g2^3*g3^3*g4^9*t^8.92*y - (t^8.97*y)/(g1^9*g2^3*g3^9*g4^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47870 SU3adj1nf2 $M_1\phi_1^3$ 1.4767 1.6956 0.8709 [X:[], M:[0.961], q:[0.4805, 0.4805], qb:[0.4805, 0.4805], phi:[0.3463]] t^2.08 + 5*t^2.88 + 4*t^3.92 + t^4.16 + 9*t^4.96 + 4*t^5.36 + 15*t^5.77 - 4*t^6. - t^4.04/y - t^5.08/y - t^4.04*y - t^5.08*y detail