Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47915 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 1.476 1.6893 0.8737 [M:[0.9872, 0.9765], q:[0.5118, 0.4754], qb:[0.5118, 0.4754], phi:[0.3376]] [M:[[3, 3, 3, 3], [-6, 0, -6, 0]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ -2 t^2.026 + t^2.852 + t^2.929 + 3*t^2.961 + t^3.865 + 2*t^3.974 + t^4.051 + t^4.083 + 2*t^4.878 + t^4.955 + 5*t^4.987 + t^5.096 + 2*t^5.4 + 2*t^5.51 + t^5.705 + t^5.782 + 3*t^5.814 + t^5.859 + 2*t^5.891 + 6*t^5.923 - 2*t^6. + t^6.077 - t^6.109 + 2*t^6.413 + 2*t^6.522 + t^6.717 + t^6.795 + 5*t^6.827 + 2*t^6.904 + 7*t^6.936 + t^6.981 + 3*t^7.013 + 3*t^7.045 - t^7.122 + 2*t^7.317 + 2*t^7.426 + 2*t^7.535 + 2*t^7.644 + 3*t^7.73 + 2*t^7.807 + 9*t^7.839 + t^7.884 + 2*t^7.917 + 14*t^7.949 - 3*t^8.026 + 4*t^8.058 + t^8.103 - 3*t^8.135 + t^8.167 + 2*t^8.253 + 8*t^8.362 - 2*t^8.439 + 6*t^8.471 - 4*t^8.548 + t^8.557 + t^8.634 - 2*t^8.657 + 3*t^8.666 + t^8.711 + 3*t^8.743 + 6*t^8.775 + t^8.788 + 2*t^8.82 + 4*t^8.852 + 10*t^8.884 - t^8.929 - 4*t^8.961 - t^4.013/y - t^5.026/y - t^6.039/y - t^6.865/y - t^6.942/y - (3*t^6.974)/y - t^7.051/y + t^7.987/y - t^8.064/y + t^8.782/y + (3*t^8.814)/y + (2*t^8.891)/y + (3*t^8.923)/y - t^8.968/y - t^4.013*y - t^5.026*y - t^6.039*y - t^6.865*y - t^6.942*y - 3*t^6.974*y - t^7.051*y + t^7.987*y - t^8.064*y + t^8.782*y + 3*t^8.814*y + 2*t^8.891*y + 3*t^8.923*y - t^8.968*y t^2.026/(g1^2*g2^2*g3^2*g4^2) + g2^6*g4^6*t^2.852 + t^2.929/(g1^6*g3^6) + g2^6*g3^6*t^2.961 + g1^3*g2^3*g3^3*g4^3*t^2.961 + g1^6*g4^6*t^2.961 + (g2^5*g4^5*t^3.865)/(g1*g3) + (g2^5*g3^5*t^3.974)/(g1*g4) + (g1^5*g4^5*t^3.974)/(g2*g3) + t^4.051/(g1^4*g2^4*g3^4*g4^4) + (g1^5*g3^5*t^4.083)/(g2*g4) + (2*g2^4*g4^4*t^4.878)/(g1^2*g3^2) + t^4.955/(g1^8*g2^2*g3^8*g4^2) + (2*g2^4*g3^4*t^4.987)/(g1^2*g4^2) + g1*g2*g3*g4*t^4.987 + (2*g1^4*g4^4*t^4.987)/(g2^2*g3^2) + (g1^4*g3^4*t^5.096)/(g2^2*g4^2) + (g1^5*g2^11*t^5.4)/(g3*g4) + (g3^5*g4^11*t^5.4)/(g1*g2) + (g1^11*g2^5*t^5.51)/(g3*g4) + (g3^11*g4^5*t^5.51)/(g1*g2) + g2^12*g4^12*t^5.705 + (g2^6*g4^6*t^5.782)/(g1^6*g3^6) + g2^12*g3^6*g4^6*t^5.814 + g1^3*g2^9*g3^3*g4^9*t^5.814 + g1^6*g2^6*g4^12*t^5.814 + t^5.859/(g1^12*g3^12) + (2*g2^3*g4^3*t^5.891)/(g1^3*g3^3) + g2^12*g3^12*t^5.923 + g1^3*g2^9*g3^9*g4^3*t^5.923 + 2*g1^6*g2^6*g3^6*g4^6*t^5.923 + g1^9*g2^3*g3^3*g4^9*t^5.923 + g1^12*g4^12*t^5.923 - 4*t^6. + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (g1^3*g4^3*t^6.)/(g2^3*g3^3) + t^6.077/(g1^6*g2^6*g3^6*g4^6) - (g1^6*t^6.109)/g2^6 - (g3^6*t^6.109)/g4^6 + (g1^3*g3^3*t^6.109)/(g2^3*g4^3) + (g1^4*g2^10*t^6.413)/(g3^2*g4^2) + (g3^4*g4^10*t^6.413)/(g1^2*g2^2) + (g1^10*g2^4*t^6.522)/(g3^2*g4^2) + (g3^10*g4^4*t^6.522)/(g1^2*g2^2) + (g2^11*g4^11*t^6.717)/(g1*g3) + (g2^5*g4^5*t^6.795)/(g1^7*g3^7) + (2*g2^11*g3^5*g4^5*t^6.827)/g1 + g1^2*g2^8*g3^2*g4^8*t^6.827 + (2*g1^5*g2^5*g4^11*t^6.827)/g3 + (2*g2^2*g4^2*t^6.904)/(g1^4*g3^4) + (g2^11*g3^11*t^6.936)/(g1*g4) + g1^2*g2^8*g3^8*g4^2*t^6.936 + 3*g1^5*g2^5*g3^5*g4^5*t^6.936 + g1^8*g2^2*g3^2*g4^8*t^6.936 + (g1^11*g4^11*t^6.936)/(g2*g3) + t^6.981/(g1^10*g2^4*g3^10*g4^4) + (2*g2^2*g3^2*t^7.013)/(g1^4*g4^4) - t^7.013/(g1*g2*g3*g4) + (2*g1^2*g4^2*t^7.013)/(g2^4*g3^4) + (g1^5*g2^5*g3^11*t^7.045)/g4 + g1^8*g2^2*g3^8*g4^2*t^7.045 + (g1^11*g3^5*g4^5*t^7.045)/g2 - (g3^5*t^7.122)/(g1*g2*g4^7) + (g1^2*g3^2*t^7.122)/(g2^4*g4^4) - (g1^5*t^7.122)/(g2^7*g3*g4) + (g2^15*t^7.317)/(g1^3*g3^3*g4^3) + (g4^15*t^7.317)/(g1^3*g2^3*g3^3) - (g1^6*g2^6*t^7.426)/g3^6 + (2*g1^3*g2^9*t^7.426)/(g3^3*g4^3) - (g3^6*g4^6*t^7.426)/g1^6 + (2*g3^3*g4^9*t^7.426)/(g1^3*g2^3) - (g1^6*g2^6*t^7.535)/g4^6 + (2*g1^9*g2^3*t^7.535)/(g3^3*g4^3) + (2*g3^9*g4^3*t^7.535)/(g1^3*g2^3) - (g3^6*g4^6*t^7.535)/g2^6 + (g1^15*t^7.644)/(g2^3*g3^3*g4^3) + (g3^15*t^7.644)/(g1^3*g2^3*g4^3) + (3*g2^10*g4^10*t^7.73)/(g1^2*g3^2) + (2*g2^4*g4^4*t^7.807)/(g1^8*g3^8) + (4*g2^10*g3^4*g4^4*t^7.839)/g1^2 + g1*g2^7*g3*g4^7*t^7.839 + (4*g1^4*g2^4*g4^10*t^7.839)/g3^2 + t^7.884/(g1^14*g2^2*g3^14*g4^2) + (2*g2*g4*t^7.917)/(g1^5*g3^5) + (3*g2^10*g3^10*t^7.949)/(g1^2*g4^2) + g1*g2^7*g3^7*g4*t^7.949 + 6*g1^4*g2^4*g3^4*g4^4*t^7.949 + g1^7*g2*g3*g4^7*t^7.949 + (3*g1^10*g4^10*t^7.949)/(g2^2*g3^2) + (g2*g3*t^8.026)/(g1^5*g4^5) - (5*t^8.026)/(g1^2*g2^2*g3^2*g4^2) + (g1*g4*t^8.026)/(g2^5*g3^5) + (2*g1^4*g2^4*g3^10*t^8.058)/g4^2 + (2*g1^10*g3^4*g4^4*t^8.058)/g2^2 + t^8.103/(g1^8*g2^8*g3^8*g4^8) - (2*g3^4*t^8.135)/(g1^2*g2^2*g4^8) + (g1*g3*t^8.135)/(g2^5*g4^5) - (2*g1^4*t^8.135)/(g2^8*g3^2*g4^2) + (g1^10*g3^10*t^8.167)/(g2^2*g4^2) + (g1^5*g2^17*g4^5*t^8.253)/g3 + (g2^5*g3^5*g4^17*t^8.253)/g1 + (g1^5*g2^17*g3^5*t^8.362)/g4 + g1^8*g2^14*g3^2*g4^2*t^8.362 + (2*g1^11*g2^11*g4^5*t^8.362)/g3 + (2*g2^5*g3^11*g4^11*t^8.362)/g1 + g1^2*g2^2*g3^8*g4^14*t^8.362 + (g1^5*g3^5*g4^17*t^8.362)/g2 - (g2^11*t^8.439)/(g1*g3*g4^7) + (g1^2*g2^8*t^8.439)/(g3^4*g4^4) - (g1^5*g2^5*t^8.439)/(g3^7*g4) - (g3^5*g4^5*t^8.439)/(g1^7*g2) + (g3^2*g4^8*t^8.439)/(g1^4*g2^4) - (g4^11*t^8.439)/(g1*g2^7*g3) + (g1^11*g2^11*g3^5*t^8.471)/g4 + g1^14*g2^8*g3^2*g4^2*t^8.471 + (g1^17*g2^5*g4^5*t^8.471)/g3 + (g2^5*g3^17*g4^5*t^8.471)/g1 + g1^2*g2^2*g3^14*g4^8*t^8.471 + (g1^5*g3^11*g4^11*t^8.471)/g2 - (2*g1^5*g2^5*t^8.548)/(g3*g4^7) + (g1^8*g2^2*t^8.548)/(g3^4*g4^4) - (g1^11*t^8.548)/(g2*g3^7*g4) - (g3^11*t^8.548)/(g1^7*g2*g4) + (g3^8*g4^2*t^8.548)/(g1^4*g2^4) - (2*g3^5*g4^5*t^8.548)/(g1*g2^7) + g2^18*g4^18*t^8.557 + (g2^12*g4^12*t^8.634)/(g1^6*g3^6) - (g1^11*t^8.657)/(g2*g3*g4^7) - (g3^11*t^8.657)/(g1*g2^7*g4) + g2^18*g3^6*g4^12*t^8.666 + g1^3*g2^15*g3^3*g4^15*t^8.666 + g1^6*g2^12*g4^18*t^8.666 + (g2^6*g4^6*t^8.711)/(g1^12*g3^12) + (3*g2^9*g4^9*t^8.743)/(g1^3*g3^3) + g2^18*g3^12*g4^6*t^8.775 + g1^3*g2^15*g3^9*g4^9*t^8.775 + 2*g1^6*g2^12*g3^6*g4^12*t^8.775 + g1^9*g2^9*g3^3*g4^15*t^8.775 + g1^12*g2^6*g4^18*t^8.775 + t^8.788/(g1^18*g3^18) + (2*g2^3*g4^3*t^8.82)/(g1^9*g3^9) + (4*g2^9*g3^3*g4^3*t^8.852)/g1^3 - 4*g2^6*g4^6*t^8.852 + (4*g1^3*g2^3*g4^9*t^8.852)/g3^3 + g2^18*g3^18*t^8.884 + g1^3*g2^15*g3^15*g4^3*t^8.884 + 2*g1^6*g2^12*g3^12*g4^6*t^8.884 + 2*g1^9*g2^9*g3^9*g4^9*t^8.884 + 2*g1^12*g2^6*g3^6*g4^12*t^8.884 + g1^15*g2^3*g3^3*g4^15*t^8.884 + g1^18*g4^18*t^8.884 - t^8.929/(g1^6*g3^6) - 5*g2^6*g3^6*t^8.961 + (2*g2^9*g3^9*t^8.961)/(g1^3*g4^3) + 2*g1^3*g2^3*g3^3*g4^3*t^8.961 - 5*g1^6*g4^6*t^8.961 + (2*g1^9*g4^9*t^8.961)/(g2^3*g3^3) - t^4.013/(g1*g2*g3*g4*y) - t^5.026/(g1^2*g2^2*g3^2*g4^2*y) - t^6.039/(g1^3*g2^3*g3^3*g4^3*y) - (g2^5*g4^5*t^6.865)/(g1*g3*y) - t^6.942/(g1^7*g2*g3^7*g4*y) - (g2^5*g3^5*t^6.974)/(g1*g4*y) - (g1^2*g2^2*g3^2*g4^2*t^6.974)/y - (g1^5*g4^5*t^6.974)/(g2*g3*y) - t^7.051/(g1^4*g2^4*g3^4*g4^4*y) + (g1*g2*g3*g4*t^7.987)/y - t^8.064/(g1^5*g2^5*g3^5*g4^5*y) + (g2^6*g4^6*t^8.782)/(g1^6*g3^6*y) + (g2^12*g3^6*g4^6*t^8.814)/y + (g1^3*g2^9*g3^3*g4^9*t^8.814)/y + (g1^6*g2^6*g4^12*t^8.814)/y + (g2^6*t^8.891)/(g1^6*y) + (g4^6*t^8.891)/(g3^6*y) + (g1^3*g2^9*g3^9*g4^3*t^8.923)/y + (g1^6*g2^6*g3^6*g4^6*t^8.923)/y + (g1^9*g2^3*g3^3*g4^9*t^8.923)/y - t^8.968/(g1^9*g2^3*g3^9*g4^3*y) - (t^4.013*y)/(g1*g2*g3*g4) - (t^5.026*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.039*y)/(g1^3*g2^3*g3^3*g4^3) - (g2^5*g4^5*t^6.865*y)/(g1*g3) - (t^6.942*y)/(g1^7*g2*g3^7*g4) - (g2^5*g3^5*t^6.974*y)/(g1*g4) - g1^2*g2^2*g3^2*g4^2*t^6.974*y - (g1^5*g4^5*t^6.974*y)/(g2*g3) - (t^7.051*y)/(g1^4*g2^4*g3^4*g4^4) + g1*g2*g3*g4*t^7.987*y - (t^8.064*y)/(g1^5*g2^5*g3^5*g4^5) + (g2^6*g4^6*t^8.782*y)/(g1^6*g3^6) + g2^12*g3^6*g4^6*t^8.814*y + g1^3*g2^9*g3^3*g4^9*t^8.814*y + g1^6*g2^6*g4^12*t^8.814*y + (g2^6*t^8.891*y)/g1^6 + (g4^6*t^8.891*y)/g3^6 + g1^3*g2^9*g3^9*g4^3*t^8.923*y + g1^6*g2^6*g3^6*g4^6*t^8.923*y + g1^9*g2^3*g3^3*g4^9*t^8.923*y - (t^8.968*y)/(g1^9*g2^3*g3^9*g4^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57479 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ 1.4758 1.6871 0.8747 [X:[], M:[0.9966, 0.9668], q:[0.5131, 0.4833], qb:[0.5201, 0.4768], phi:[0.3345]] t^2.01 + t^2.88 + t^2.9 + t^2.97 + t^2.99 + t^3.01 + t^3.88 + t^3.97 + 2*t^4.01 + t^4.1 + 2*t^4.89 + t^4.91 + 2*t^4.98 + t^5. + 2*t^5.02 + t^5.11 + t^5.42 + t^5.44 + t^5.53 + t^5.55 + t^5.76 + t^5.78 + t^5.8 + t^5.85 + t^5.87 + 3*t^5.89 + t^5.94 + t^5.96 + 3*t^5.98 - 3*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y detail
57481 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4968 1.7304 0.865 [X:[], M:[0.9878, 0.9758, 0.6733], q:[0.5114, 0.4764], qb:[0.5129, 0.475], phi:[0.3374]] 2*t^2.02 + t^2.85 + t^2.93 + 2*t^2.96 + t^2.97 + t^3.87 + t^3.97 + 2*t^4.04 + t^4.05 + t^4.08 + t^4.87 + 2*t^4.88 + 2*t^4.95 + 4*t^4.98 + 4*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.71 + t^5.78 + t^5.81 + 2*t^5.82 + t^5.85 + 3*t^5.89 + 2*t^5.92 + 3*t^5.93 + t^5.94 + t^5.99 - 3*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail
57480 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4964 1.7271 0.8664 [X:[], M:[0.9906, 0.9803, 0.7021], q:[0.5099, 0.4807], qb:[0.5099, 0.4807], phi:[0.3365]] t^2.02 + t^2.11 + t^2.88 + t^2.94 + 3*t^2.97 + 2*t^3.98 + t^4.04 + t^4.07 + t^4.13 + t^4.21 + 2*t^4.9 + t^4.96 + 6*t^4.99 + t^5.05 + 4*t^5.08 + 2*t^5.42 + 2*t^5.51 + t^5.77 + t^5.82 + 3*t^5.86 + t^5.88 + t^5.91 + 6*t^5.94 - 2*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail
57475 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4419 1.6213 0.8893 [X:[1.3563], M:[1.0345, 0.9563], q:[0.5485, 0.5648], qb:[0.4952, 0.4604], phi:[0.3218]] t^2.87 + t^3.03 + t^3.08 + t^3.1 + t^3.18 + t^3.99 + t^4.04 + t^4.07 + t^4.1 + t^4.15 + t^4.96 + t^5.01 + t^5.06 + t^5.11 + t^5.21 + t^5.32 + t^5.74 + t^5.94 + t^5.97 - 3*t^6. - t^3.97/y - t^4.93/y - t^3.97*y - t^4.93*y detail
57474 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ 1.1109 1.2296 0.9035 [X:[1.52], M:[1.2799, 0.7017], q:[0.403, 0.8646], qb:[0.8953, 0.3969], phi:[0.24]] t^2.1 + t^2.4 + t^3.12 + t^3.78 + 2*t^3.84 + t^4.21 + t^4.5 + t^4.56 + t^4.8 + t^5.22 + t^5.28 + t^5.52 + 2*t^5.73 + 2*t^5.79 + t^5.89 + t^5.94 - 3*t^6. - t^3.72/y - t^4.44/y - t^5.83/y - t^3.72*y - t^4.44*y - t^5.83*y detail
57473 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.075 1.1578 0.9285 [X:[1.535], M:[1.3025, 1.1625], q:[0.4187, 0.8837], qb:[0.4187, 0.8837], phi:[0.2325]] t^3.21 + t^3.49 + 4*t^3.91 + t^4.6 + t^5.3 + 4*t^5.86 - 5*t^6. - t^3.7/y - t^4.4/y - t^3.7*y - t^4.4*y detail
57478 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ 1.4759 1.688 0.8743 [X:[], M:[0.9925, 0.971], q:[0.5106, 0.4816], qb:[0.5184, 0.4744], phi:[0.3358]] t^2.02 + t^2.87 + t^2.91 + t^2.95 + t^2.98 + t^3. + t^3.88 + t^3.96 + t^4.01 + t^4.03 + t^4.09 + 2*t^4.88 + t^4.93 + 2*t^4.97 + t^4.99 + 2*t^5.02 + t^5.1 + t^5.41 + t^5.43 + t^5.52 + t^5.54 + t^5.74 + t^5.78 + t^5.82 + t^5.83 + t^5.85 + t^5.87 + 2*t^5.89 + t^5.91 + t^5.93 + 2*t^5.95 + 2*t^5.98 - 3*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail
57476 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4533 1.6393 0.8865 [X:[1.3387], M:[1.0081, 0.9839], q:[0.5081, 0.5], qb:[0.5081, 0.5], phi:[0.3306]] t^2.95 + t^3. + 3*t^3.02 + t^3.99 + 3*t^4.02 + t^4.04 + t^4.98 + 2*t^5.01 + t^5.03 + 2*t^5.52 + 2*t^5.54 + t^5.9 + t^5.95 + t^5.98 - 3*t^6. - t^3.99/y - t^4.98/y - t^3.99*y - t^4.98*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47870 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ 1.4767 1.6956 0.8709 [M:[0.961], q:[0.4805, 0.4805], qb:[0.4805, 0.4805], phi:[0.3463]] t^2.078 + 5*t^2.883 + 4*t^3.922 + t^4.156 + 9*t^4.961 + 4*t^5.363 + 15*t^5.766 - 4*t^6. - t^4.039/y - t^5.078/y - t^4.039*y - t^5.078*y detail