Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57480 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4964 1.7271 0.8664 [X:[], M:[0.9906, 0.9803, 0.7021], q:[0.5099, 0.4807], qb:[0.5099, 0.4807], phi:[0.3365]] [X:[], M:[[3, 3, 3, 3], [-6, 0, -6, 0], [1, -5, 1, -5]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ -2 t^2.02 + t^2.11 + t^2.88 + t^2.94 + 3*t^2.97 + 2*t^3.98 + t^4.04 + t^4.07 + t^4.13 + t^4.21 + 2*t^4.9 + t^4.96 + 6*t^4.99 + t^5.05 + 4*t^5.08 + 2*t^5.42 + 2*t^5.51 + t^5.77 + t^5.82 + 3*t^5.86 + t^5.88 + t^5.91 + 6*t^5.94 - 2*t^6. + t^6.06 + t^6.09 + t^6.14 + t^6.18 + t^6.23 + t^6.32 + 2*t^6.43 + 2*t^6.52 + 2*t^6.87 + 2*t^6.92 + 7*t^6.95 + t^6.98 + 5*t^7.01 + 3*t^7.04 + t^7.07 + 5*t^7.1 + t^7.15 + 4*t^7.18 + 2*t^7.35 + 2*t^7.44 + 4*t^7.53 + 4*t^7.62 + 2*t^7.79 + 2*t^7.84 + 8*t^7.87 + t^7.9 + 2*t^7.93 + 16*t^7.96 + t^7.99 - 2*t^8.02 + 10*t^8.05 + t^8.08 - 5*t^8.11 + t^8.14 + t^8.16 + t^8.19 + t^8.25 + t^8.28 + 2*t^8.31 + t^8.34 + 8*t^8.39 + t^8.43 - 2*t^8.45 + 6*t^8.48 - 2*t^8.54 + t^8.65 + t^8.71 + 3*t^8.74 + t^8.77 + t^8.8 + t^8.82 + 6*t^8.83 + t^8.85 - t^8.88 + 10*t^8.91 - t^8.94 - 3*t^8.97 - t^4.01/y - t^5.02/y - t^6.03/y - t^6.12/y - t^6.89/y - t^6.95/y - (3*t^6.98)/y - t^7.04/y + t^7.9/y + (2*t^7.99)/y + (3*t^8.08)/y - t^8.13/y - t^8.22/y + t^8.82/y + (3*t^8.86)/y + (2*t^8.91)/y + (3*t^8.94)/y - t^8.97/y - t^4.01*y - t^5.02*y - t^6.03*y - t^6.12*y - t^6.89*y - t^6.95*y - 3*t^6.98*y - t^7.04*y + t^7.9*y + 2*t^7.99*y + 3*t^8.08*y - t^8.13*y - t^8.22*y + t^8.82*y + 3*t^8.86*y + 2*t^8.91*y + 3*t^8.94*y - t^8.97*y t^2.02/(g1^2*g2^2*g3^2*g4^2) + (g1*g3*t^2.11)/(g2^5*g4^5) + g2^6*g4^6*t^2.88 + t^2.94/(g1^6*g3^6) + g2^6*g3^6*t^2.97 + g1^3*g2^3*g3^3*g4^3*t^2.97 + g1^6*g4^6*t^2.97 + (g2^5*g3^5*t^3.98)/(g1*g4) + (g1^5*g4^5*t^3.98)/(g2*g3) + t^4.04/(g1^4*g2^4*g3^4*g4^4) + (g1^5*g3^5*t^4.07)/(g2*g4) + t^4.13/(g1*g2^7*g3*g4^7) + (g1^2*g3^2*t^4.21)/(g2^10*g4^10) + (2*g2^4*g4^4*t^4.9)/(g1^2*g3^2) + t^4.96/(g1^8*g2^2*g3^8*g4^2) + (2*g2^4*g3^4*t^4.99)/(g1^2*g4^2) + 2*g1*g2*g3*g4*t^4.99 + (2*g1^4*g4^4*t^4.99)/(g2^2*g3^2) + t^5.05/(g1^5*g2^5*g3^5*g4^5) + (g1*g2*g3^7*t^5.08)/g4^5 + (2*g1^4*g3^4*t^5.08)/(g2^2*g4^2) + (g1^7*g3*g4*t^5.08)/g2^5 + (g1^5*g2^11*t^5.42)/(g3*g4) + (g3^5*g4^11*t^5.42)/(g1*g2) + (g1^11*g2^5*t^5.51)/(g3*g4) + (g3^11*g4^5*t^5.51)/(g1*g2) + g2^12*g4^12*t^5.77 + (g2^6*g4^6*t^5.82)/(g1^6*g3^6) + g2^12*g3^6*g4^6*t^5.86 + g1^3*g2^9*g3^3*g4^9*t^5.86 + g1^6*g2^6*g4^12*t^5.86 + t^5.88/(g1^12*g3^12) + (g2^3*g4^3*t^5.91)/(g1^3*g3^3) + g2^12*g3^12*t^5.94 + g1^3*g2^9*g3^9*g4^3*t^5.94 + 2*g1^6*g2^6*g3^6*g4^6*t^5.94 + g1^9*g2^3*g3^3*g4^9*t^5.94 + g1^12*g4^12*t^5.94 - 4*t^6. + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (g1^3*g4^3*t^6.)/(g2^3*g3^3) + t^6.06/(g1^6*g2^6*g3^6*g4^6) + (g1^3*g3^3*t^6.09)/(g2^3*g4^3) + t^6.14/(g1^3*g2^9*g3^3*g4^9) + (g1^6*g3^6*t^6.18)/(g2^6*g4^6) + t^6.23/(g2^12*g4^12) + (g1^3*g3^3*t^6.32)/(g2^15*g4^15) + (g1^4*g2^10*t^6.43)/(g3^2*g4^2) + (g3^4*g4^10*t^6.43)/(g1^2*g2^2) + (g1^10*g2^4*t^6.52)/(g3^2*g4^2) + (g3^10*g4^4*t^6.52)/(g1^2*g2^2) + (g2^11*g3^5*g4^5*t^6.87)/g1 + (g1^5*g2^5*g4^11*t^6.87)/g3 + (2*g2^2*g4^2*t^6.92)/(g1^4*g3^4) + (g2^11*g3^11*t^6.95)/(g1*g4) + g1^2*g2^8*g3^8*g4^2*t^6.95 + 3*g1^5*g2^5*g3^5*g4^5*t^6.95 + g1^8*g2^2*g3^2*g4^8*t^6.95 + (g1^11*g4^11*t^6.95)/(g2*g3) + t^6.98/(g1^10*g2^4*g3^10*g4^4) + (2*g2^2*g3^2*t^7.01)/(g1^4*g4^4) + t^7.01/(g1*g2*g3*g4) + (2*g1^2*g4^2*t^7.01)/(g2^4*g3^4) + (g1^5*g2^5*g3^11*t^7.04)/g4 + g1^8*g2^2*g3^8*g4^2*t^7.04 + (g1^11*g3^5*g4^5*t^7.04)/g2 + t^7.07/(g1^7*g2^7*g3^7*g4^7) + (g3^5*t^7.1)/(g1*g2*g4^7) + (3*g1^2*g3^2*t^7.1)/(g2^4*g4^4) + (g1^5*t^7.1)/(g2^7*g3*g4) + t^7.15/(g1^4*g2^10*g3^4*g4^10) + (g1^2*g3^8*t^7.18)/(g2^4*g4^10) + (2*g1^5*g3^5*t^7.18)/(g2^7*g4^7) + (g1^8*g3^2*t^7.18)/(g2^10*g4^4) + (g2^15*t^7.35)/(g1^3*g3^3*g4^3) + (g4^15*t^7.35)/(g1^3*g2^3*g3^3) - (g1^6*g2^6*t^7.44)/g3^6 + (2*g1^3*g2^9*t^7.44)/(g3^3*g4^3) - (g3^6*g4^6*t^7.44)/g1^6 + (2*g3^3*g4^9*t^7.44)/(g1^3*g2^3) + (2*g1^9*g2^3*t^7.53)/(g3^3*g4^3) + (2*g3^9*g4^3*t^7.53)/(g1^3*g2^3) + (g3^12*t^7.62)/g2^6 + (g1^12*t^7.62)/g4^6 + (g1^15*t^7.62)/(g2^3*g3^3*g4^3) + (g3^15*t^7.62)/(g1^3*g2^3*g4^3) + (2*g2^10*g4^10*t^7.79)/(g1^2*g3^2) + (2*g2^4*g4^4*t^7.84)/(g1^8*g3^8) + (3*g2^10*g3^4*g4^4*t^7.87)/g1^2 + 2*g1*g2^7*g3*g4^7*t^7.87 + (3*g1^4*g2^4*g4^10*t^7.87)/g3^2 + t^7.9/(g1^14*g2^2*g3^14*g4^2) + (2*g2*g4*t^7.93)/(g1^5*g3^5) + (3*g2^10*g3^10*t^7.96)/(g1^2*g4^2) + 2*g1*g2^7*g3^7*g4*t^7.96 + 6*g1^4*g2^4*g3^4*g4^4*t^7.96 + 2*g1^7*g2*g3*g4^7*t^7.96 + (3*g1^10*g4^10*t^7.96)/(g2^2*g3^2) + t^7.99/(g1^11*g2^5*g3^11*g4^5) + (g2*g3*t^8.02)/(g1^5*g4^5) - (4*t^8.02)/(g1^2*g2^2*g3^2*g4^2) + (g1*g4*t^8.02)/(g2^5*g3^5) + (g1*g2^7*g3^13*t^8.05)/g4^5 + (3*g1^4*g2^4*g3^10*t^8.05)/g4^2 + 2*g1^7*g2*g3^7*g4*t^8.05 + (3*g1^10*g3^4*g4^4*t^8.05)/g2^2 + (g1^13*g3*g4^7*t^8.05)/g2^5 + t^8.08/(g1^8*g2^8*g3^8*g4^8) - (g3^4*t^8.11)/(g1^2*g2^2*g4^8) - (3*g1*g3*t^8.11)/(g2^5*g4^5) - (g1^4*t^8.11)/(g2^8*g3^2*g4^2) + (g1^10*g3^10*t^8.14)/(g2^2*g4^2) + t^8.16/(g1^5*g2^11*g3^5*g4^11) + (g1^4*g3^4*t^8.19)/(g2^8*g4^8) + t^8.25/(g1^2*g2^14*g3^2*g4^14) + (g1^7*g3^7*t^8.28)/(g2^11*g4^11) + (g1^5*g2^17*g4^5*t^8.31)/g3 + (g2^5*g3^5*g4^17*t^8.31)/g1 + (g1*g3*t^8.34)/(g2^17*g4^17) + (g1^5*g2^17*g3^5*t^8.39)/g4 + g1^8*g2^14*g3^2*g4^2*t^8.39 + (2*g1^11*g2^11*g4^5*t^8.39)/g3 + (2*g2^5*g3^11*g4^11*t^8.39)/g1 + g1^2*g2^2*g3^8*g4^14*t^8.39 + (g1^5*g3^5*g4^17*t^8.39)/g2 + (g1^4*g3^4*t^8.43)/(g2^20*g4^20) - (g2^11*t^8.45)/(g1*g3*g4^7) + (g1^2*g2^8*t^8.45)/(g3^4*g4^4) - (g1^5*g2^5*t^8.45)/(g3^7*g4) - (g3^5*g4^5*t^8.45)/(g1^7*g2) + (g3^2*g4^8*t^8.45)/(g1^4*g2^4) - (g4^11*t^8.45)/(g1*g2^7*g3) + (g1^11*g2^11*g3^5*t^8.48)/g4 + g1^14*g2^8*g3^2*g4^2*t^8.48 + (g1^17*g2^5*g4^5*t^8.48)/g3 + (g2^5*g3^17*g4^5*t^8.48)/g1 + g1^2*g2^2*g3^14*g4^8*t^8.48 + (g1^5*g3^11*g4^11*t^8.48)/g2 - (g1^5*g2^5*t^8.54)/(g3*g4^7) + (g1^8*g2^2*t^8.54)/(g3^4*g4^4) - (g1^11*t^8.54)/(g2*g3^7*g4) - (g3^11*t^8.54)/(g1^7*g2*g4) + (g3^8*g4^2*t^8.54)/(g1^4*g2^4) - (g3^5*g4^5*t^8.54)/(g1*g2^7) + g2^18*g4^18*t^8.65 + (g2^12*g4^12*t^8.71)/(g1^6*g3^6) + g2^18*g3^6*g4^12*t^8.74 + g1^3*g2^15*g3^3*g4^15*t^8.74 + g1^6*g2^12*g4^18*t^8.74 + (g2^6*g4^6*t^8.77)/(g1^12*g3^12) + (g2^9*g4^9*t^8.8)/(g1^3*g3^3) + t^8.82/(g1^18*g3^18) + g2^18*g3^12*g4^6*t^8.83 + g1^3*g2^15*g3^9*g4^9*t^8.83 + 2*g1^6*g2^12*g3^6*g4^12*t^8.83 + g1^9*g2^9*g3^3*g4^15*t^8.83 + g1^12*g2^6*g4^18*t^8.83 + (g2^3*g4^3*t^8.85)/(g1^9*g3^9) + (2*g2^9*g3^3*g4^3*t^8.88)/g1^3 - 5*g2^6*g4^6*t^8.88 + (2*g1^3*g2^3*g4^9*t^8.88)/g3^3 + g2^18*g3^18*t^8.91 + g1^3*g2^15*g3^15*g4^3*t^8.91 + 2*g1^6*g2^12*g3^12*g4^6*t^8.91 + 2*g1^9*g2^9*g3^9*g4^9*t^8.91 + 2*g1^12*g2^6*g3^6*g4^12*t^8.91 + g1^15*g2^3*g3^3*g4^15*t^8.91 + g1^18*g4^18*t^8.91 - t^8.94/(g1^6*g3^6) - 4*g2^6*g3^6*t^8.97 + (2*g2^9*g3^9*t^8.97)/(g1^3*g4^3) + g1^3*g2^3*g3^3*g4^3*t^8.97 - 4*g1^6*g4^6*t^8.97 + (2*g1^9*g4^9*t^8.97)/(g2^3*g3^3) - t^4.01/(g1*g2*g3*g4*y) - t^5.02/(g1^2*g2^2*g3^2*g4^2*y) - t^6.03/(g1^3*g2^3*g3^3*g4^3*y) - t^6.12/(g2^6*g4^6*y) - (g2^5*g4^5*t^6.89)/(g1*g3*y) - t^6.95/(g1^7*g2*g3^7*g4*y) - (g2^5*g3^5*t^6.98)/(g1*g4*y) - (g1^2*g2^2*g3^2*g4^2*t^6.98)/y - (g1^5*g4^5*t^6.98)/(g2*g3*y) - t^7.04/(g1^4*g2^4*g3^4*g4^4*y) + (g2^4*g4^4*t^7.9)/(g1^2*g3^2*y) + (2*g1*g2*g3*g4*t^7.99)/y + (g1*g2*g3^7*t^8.08)/(g4^5*y) + (g1^4*g3^4*t^8.08)/(g2^2*g4^2*y) + (g1^7*g3*g4*t^8.08)/(g2^5*y) - t^8.13/(g1^2*g2^8*g3^2*g4^8*y) - (g1*g3*t^8.22)/(g2^11*g4^11*y) + (g2^6*g4^6*t^8.82)/(g1^6*g3^6*y) + (g2^12*g3^6*g4^6*t^8.86)/y + (g1^3*g2^9*g3^3*g4^9*t^8.86)/y + (g1^6*g2^6*g4^12*t^8.86)/y + (g2^6*t^8.91)/(g1^6*y) + (g4^6*t^8.91)/(g3^6*y) + (g1^3*g2^9*g3^9*g4^3*t^8.94)/y + (g1^6*g2^6*g3^6*g4^6*t^8.94)/y + (g1^9*g2^3*g3^3*g4^9*t^8.94)/y - t^8.97/(g1^9*g2^3*g3^9*g4^3*y) - (t^4.01*y)/(g1*g2*g3*g4) - (t^5.02*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.03*y)/(g1^3*g2^3*g3^3*g4^3) - (t^6.12*y)/(g2^6*g4^6) - (g2^5*g4^5*t^6.89*y)/(g1*g3) - (t^6.95*y)/(g1^7*g2*g3^7*g4) - (g2^5*g3^5*t^6.98*y)/(g1*g4) - g1^2*g2^2*g3^2*g4^2*t^6.98*y - (g1^5*g4^5*t^6.98*y)/(g2*g3) - (t^7.04*y)/(g1^4*g2^4*g3^4*g4^4) + (g2^4*g4^4*t^7.9*y)/(g1^2*g3^2) + 2*g1*g2*g3*g4*t^7.99*y + (g1*g2*g3^7*t^8.08*y)/g4^5 + (g1^4*g3^4*t^8.08*y)/(g2^2*g4^2) + (g1^7*g3*g4*t^8.08*y)/g2^5 - (t^8.13*y)/(g1^2*g2^8*g3^2*g4^8) - (g1*g3*t^8.22*y)/(g2^11*g4^11) + (g2^6*g4^6*t^8.82*y)/(g1^6*g3^6) + g2^12*g3^6*g4^6*t^8.86*y + g1^3*g2^9*g3^3*g4^9*t^8.86*y + g1^6*g2^6*g4^12*t^8.86*y + (g2^6*t^8.91*y)/g1^6 + (g4^6*t^8.91*y)/g3^6 + g1^3*g2^9*g3^9*g4^3*t^8.94*y + g1^6*g2^6*g3^6*g4^6*t^8.94*y + g1^9*g2^3*g3^3*g4^9*t^8.94*y - (t^8.97*y)/(g1^9*g2^3*g3^9*g4^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
60778 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ 1.2098 1.4483 0.8353 [X:[1.5759], M:[0.7278, 0.9684, 1.1519], q:[0.5158, 0.212], qb:[0.5158, 0.212], phi:[0.4241]] 3*t^2.18 + t^2.54 + t^2.91 + 3*t^3.46 + t^3.82 + 2*t^4.09 + 7*t^4.37 + 6*t^4.73 + 2*t^5. + 2*t^5.09 + 2*t^5.36 + t^5.45 + 10*t^5.64 + 2*t^5.72 + t^5.81 + t^6. - t^4.27/y - t^5.54/y - t^4.27*y - t^5.54*y detail
59404 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ 1.365 1.5897 0.8586 [X:[1.3709], M:[0.8872, 0.8546, 1.0], q:[0.5727, 0.3145], qb:[0.5727, 0.3145], phi:[0.3709]] t^2.23 + t^2.56 + 3*t^2.66 + t^3. + 2*t^3.77 + 2*t^4.11 + t^4.45 + t^4.55 + 2*t^4.72 + t^4.79 + 5*t^4.89 + t^5.13 + 2*t^5.23 + 6*t^5.32 + 2*t^5.49 + t^5.56 + 4*t^5.66 + 2*t^5.83 - t^6. - t^4.11/y - t^5.23/y - t^4.11*y - t^5.23*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47915 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 1.476 1.6893 0.8737 [M:[0.9872, 0.9765], q:[0.5118, 0.4754], qb:[0.5118, 0.4754], phi:[0.3376]] t^2.026 + t^2.852 + t^2.929 + 3*t^2.961 + t^3.865 + 2*t^3.974 + t^4.051 + t^4.083 + 2*t^4.878 + t^4.955 + 5*t^4.987 + t^5.096 + 2*t^5.4 + 2*t^5.51 + t^5.705 + t^5.782 + 3*t^5.814 + t^5.859 + 2*t^5.891 + 6*t^5.923 - 2*t^6. - t^4.013/y - t^5.026/y - t^4.013*y - t^5.026*y detail