Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57479 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ 1.4758 1.6871 0.8747 [X:[], M:[0.9966, 0.9668], q:[0.5131, 0.4833], qb:[0.5201, 0.4768], phi:[0.3345]] [X:[], M:[[-3, -3, 0], [9, 6, 1]], q:[[-9, -9, -1], [3, 0, 0]], qb:[[0, 3, 0], [0, 0, 1]], phi:[[1, 1, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -3 t^2.01 + t^2.88 + t^2.9 + t^2.97 + t^2.99 + t^3.01 + t^3.88 + t^3.97 + 2*t^4.01 + t^4.1 + 2*t^4.89 + t^4.91 + 2*t^4.98 + t^5. + 2*t^5.02 + t^5.11 + t^5.42 + t^5.44 + t^5.53 + t^5.55 + t^5.76 + t^5.78 + t^5.8 + t^5.85 + t^5.87 + 3*t^5.89 + t^5.94 + t^5.96 + 3*t^5.98 - 3*t^6. + 3*t^6.02 - t^6.09 + t^6.11 - t^6.13 + t^6.43 + t^6.45 + t^6.54 + t^6.56 + t^6.76 + t^6.78 + 2*t^6.85 + t^6.87 + 4*t^6.89 + t^6.91 + t^6.94 + t^6.96 + 5*t^6.98 + 3*t^7.02 + t^7.07 + 2*t^7.11 - t^7.13 + t^7.3 + t^7.36 + t^7.43 + t^7.45 + t^7.54 + t^7.56 + t^7.63 + t^7.69 + 3*t^7.77 + 2*t^7.79 + t^7.81 + 4*t^7.86 + t^7.88 + 6*t^7.9 + 3*t^7.95 + t^7.97 + 7*t^7.99 - 4*t^8.01 + 5*t^8.03 + 2*t^8.08 - 2*t^8.1 + 3*t^8.12 - 2*t^8.14 + t^8.21 + t^8.3 + t^8.32 + t^8.39 + 2*t^8.41 + 3*t^8.43 + t^8.45 - t^8.47 + t^8.5 + t^8.52 + t^8.54 - t^8.58 + t^8.64 - t^8.65 + t^8.66 - t^8.67 + t^8.68 + t^8.7 + t^8.73 + t^8.75 + 4*t^8.77 + 2*t^8.79 + t^8.82 + t^8.84 + 6*t^8.86 - 3*t^8.88 + 4*t^8.9 + t^8.91 + t^8.92 + t^8.93 + 4*t^8.95 - 3*t^8.97 + 6*t^8.99 - t^4./y - t^5.01/y - t^6.01/y - t^6.88/y - t^6.9/y - t^6.97/y - t^6.99/y - (2*t^7.01)/y + t^8./y - t^8.02/y + t^8.78/y + t^8.85/y + (2*t^8.87)/y + t^8.89/y + t^8.96/y - t^4.*y - t^5.01*y - t^6.01*y - t^6.88*y - t^6.9*y - t^6.97*y - t^6.99*y - 2*t^7.01*y + t^8.*y - t^8.02*y + t^8.78*y + t^8.85*y + 2*t^8.87*y + t^8.89*y + t^8.96*y g1^2*g2^2*t^2.01 + g1^3*g3*t^2.88 + g1^9*g2^6*g3*t^2.9 + t^2.97/(g1^9*g2^9) + t^2.99/(g1^3*g2^3) + g1^3*g2^3*t^3.01 + g1^4*g2*g3*t^3.88 + t^3.97/(g1^8*g2^8) + 2*g1^4*g2^4*t^4.01 + t^4.1/(g1^8*g2^5*g3) + 2*g1^5*g2^2*g3*t^4.89 + g1^11*g2^8*g3*t^4.91 + (2*t^4.98)/(g1^7*g2^7) + t^5./(g1*g2) + 2*g1^5*g2^5*t^5.02 + t^5.11/(g1^7*g2^4*g3) + g1*g2^4*g3^2*t^5.42 + t^5.44/(g1^2*g2^8*g3) + t^5.53/(g1^14*g2^17*g3^2) + g1*g2^7*g3*t^5.55 + g1^6*g3^2*t^5.76 + g1^12*g2^6*g3^2*t^5.78 + g1^18*g2^12*g3^2*t^5.8 + (g3*t^5.85)/(g1^6*g2^9) + (g3*t^5.87)/g2^3 + 3*g1^6*g2^3*g3*t^5.89 + t^5.94/(g1^18*g2^18) + t^5.96/(g1^12*g2^12) + (3*t^5.98)/(g1^6*g2^6) - 3*t^6. + 3*g1^6*g2^6*t^6.02 - t^6.09/(g1^12*g2^9*g3) + t^6.11/(g1^6*g2^3*g3) - (g2^3*t^6.13)/g3 + g1^2*g2^5*g3^2*t^6.43 + t^6.45/(g1*g2^7*g3) + t^6.54/(g1^13*g2^16*g3^2) + g1^2*g2^8*g3*t^6.56 + g1^7*g2*g3^2*t^6.76 + g1^13*g2^7*g3^2*t^6.78 + (2*g3*t^6.85)/(g1^5*g2^8) + (g1*g3*t^6.87)/g2^2 + 4*g1^7*g2^4*g3*t^6.89 + g1^13*g2^10*g3*t^6.91 + t^6.94/(g1^17*g2^17) + t^6.96/(g1^11*g2^11) + (5*t^6.98)/(g1^5*g2^5) + 3*g1^7*g2^7*t^7.02 + t^7.07/(g1^17*g2^14*g3) + (2*t^7.11)/(g1^5*g2^2*g3) - (g1*g2^4*t^7.13)/g3 + g1^3*g2^3*g3^3*t^7.3 + g1^12*g2^3*t^7.36 - t^7.43/(g1^6*g2^12*g3) + 2*g1^3*g2^6*g3^2*t^7.43 + (2*t^7.45)/(g2^6*g3) - g1^9*g2^12*g3^2*t^7.45 + (2*t^7.54)/(g1^12*g2^15*g3^2) - (g2^3*g3*t^7.54)/g1^3 - t^7.56/(g1^6*g2^9*g3^2) + 2*g1^3*g2^9*g3*t^7.56 + t^7.63/(g1^24*g2^24*g3^3) + g1^3*g2^12*t^7.69 + 3*g1^8*g2^2*g3^2*t^7.77 + 2*g1^14*g2^8*g3^2*t^7.79 + g1^20*g2^14*g3^2*t^7.81 + (4*g3*t^7.86)/(g1^4*g2^7) + (g1^2*g3*t^7.88)/g2 + 6*g1^8*g2^5*g3*t^7.9 + (3*t^7.95)/(g1^16*g2^16) + t^7.97/(g1^10*g2^10) + (7*t^7.99)/(g1^4*g2^4) - 4*g1^2*g2^2*t^8.01 + 5*g1^8*g2^8*t^8.03 + (2*t^8.08)/(g1^16*g2^13*g3) - (2*t^8.1)/(g1^10*g2^7*g3) + (3*t^8.12)/(g1^4*g2*g3) - (2*g1^2*g2^5*t^8.14)/g3 + t^8.21/(g1^16*g2^10*g3^2) + g1^4*g2^4*g3^3*t^8.3 + (g1*t^8.32)/g2^8 + (g3^2*t^8.39)/(g1^8*g2^5) + (2*t^8.41)/(g1^11*g2^17*g3) + 3*g1^4*g2^7*g3^2*t^8.43 + (2*g1*t^8.45)/(g2^5*g3) - g1^10*g2^13*g3^2*t^8.45 - (g1^7*g2*t^8.47)/g3 + t^8.5/(g1^23*g2^26*g3^2) + (g3*t^8.52)/(g1^8*g2^2) + (2*t^8.54)/(g1^11*g2^14*g3^2) - (g2^4*g3*t^8.54)/g1^2 - (2*t^8.56)/(g1^5*g2^8*g3^2) + 2*g1^4*g2^10*g3*t^8.56 - g1^10*g2^16*g3*t^8.58 + g1^9*g3^3*t^8.64 - t^8.65/(g1^17*g2^17*g3^3) + g1^15*g2^6*g3^3*t^8.66 - (g2^7*t^8.67)/g1^2 + g1^21*g2^12*g3^3*t^8.68 + g1^27*g2^18*g3^3*t^8.7 + (g3^2*t^8.73)/(g1^3*g2^9) + (g1^3*g3^2*t^8.75)/g2^3 + 4*g1^9*g2^3*g3^2*t^8.77 + 2*g1^15*g2^9*g3^2*t^8.79 + (g3*t^8.82)/(g1^15*g2^18) + (g3*t^8.84)/(g1^9*g2^12) + (6*g3*t^8.86)/(g1^3*g2^6) - 3*g1^3*g3*t^8.88 + 4*g1^9*g2^6*g3*t^8.9 + t^8.91/(g1^27*g2^27) + g1^15*g2^12*g3*t^8.92 + t^8.93/(g1^21*g2^21) + (4*t^8.95)/(g1^15*g2^15) - (3*t^8.97)/(g1^9*g2^9) + (6*t^8.99)/(g1^3*g2^3) - (g1*g2*t^4.)/y - (g1^2*g2^2*t^5.01)/y - (g1^3*g2^3*t^6.01)/y - (g1^4*g2*g3*t^6.88)/y - (g1^10*g2^7*g3*t^6.9)/y - t^6.97/(g1^8*g2^8*y) - t^6.99/(g1^2*g2^2*y) - (2*g1^4*g2^4*t^7.01)/y + t^8./(g1*g2*y) - (g1^5*g2^5*t^8.02)/y + (g1^12*g2^6*g3^2*t^8.78)/y + (g3*t^8.85)/(g1^6*g2^9*y) + (2*g3*t^8.87)/(g2^3*y) + (g1^6*g2^3*g3*t^8.89)/y + t^8.96/(g1^12*g2^12*y) - g1*g2*t^4.*y - g1^2*g2^2*t^5.01*y - g1^3*g2^3*t^6.01*y - g1^4*g2*g3*t^6.88*y - g1^10*g2^7*g3*t^6.9*y - (t^6.97*y)/(g1^8*g2^8) - (t^6.99*y)/(g1^2*g2^2) - 2*g1^4*g2^4*t^7.01*y + (t^8.*y)/(g1*g2) - g1^5*g2^5*t^8.02*y + g1^12*g2^6*g3^2*t^8.78*y + (g3*t^8.85*y)/(g1^6*g2^9) + (2*g3*t^8.87*y)/g2^3 + g1^6*g2^3*g3*t^8.89*y + (t^8.96*y)/(g1^12*g2^12)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58905 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4535 1.6403 0.8861 [X:[1.3373], M:[1.006, 0.982], q:[0.5151, 0.4911], qb:[0.5029, 0.5029], phi:[0.3313]] t^2.95 + 2*t^2.98 + t^3.02 + t^3.05 + 2*t^3.98 + t^4.01 + 2*t^4.05 + 2*t^4.97 + 2*t^5.04 + t^5.49 + 2*t^5.52 + t^5.56 + t^5.89 + t^5.93 + 4*t^5.96 - 3*t^6. - t^3.99/y - t^4.99/y - t^3.99*y - t^4.99*y detail
58747 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.4646 1.6776 0.873 [X:[], M:[0.9971, 0.937], q:[0.4839, 0.4238], qb:[0.5791, 0.5075], phi:[0.3343]] t^2.01 + t^2.79 + t^2.81 + t^2.97 + t^2.99 + t^3.01 + t^3.8 + t^3.98 + 2*t^4.01 + t^4.19 + 2*t^4.8 + t^4.82 + 2*t^4.98 + 2*t^5. + 2*t^5.01 + t^5.18 + t^5.19 + t^5.59 + t^5.61 + t^5.62 + t^5.77 + 2*t^5.79 + 3*t^5.8 + t^5.95 + t^5.97 + 3*t^5.98 - t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47915 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 1.476 1.6893 0.8737 [M:[0.9872, 0.9765], q:[0.5118, 0.4754], qb:[0.5118, 0.4754], phi:[0.3376]] t^2.026 + t^2.852 + t^2.929 + 3*t^2.961 + t^3.865 + 2*t^3.974 + t^4.051 + t^4.083 + 2*t^4.878 + t^4.955 + 5*t^4.987 + t^5.096 + 2*t^5.4 + 2*t^5.51 + t^5.705 + t^5.782 + 3*t^5.814 + t^5.859 + 2*t^5.891 + 6*t^5.923 - 2*t^6. - t^4.013/y - t^5.026/y - t^4.013*y - t^5.026*y detail