Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57478 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ 1.4759 1.688 0.8743 [X:[], M:[0.9925, 0.971], q:[0.5106, 0.4816], qb:[0.5184, 0.4744], phi:[0.3358]] [X:[], M:[[3, 0, 3], [-6, -1, 0]], q:[[6, 0, 0], [0, -1, 0]], qb:[[0, 1, 0], [0, 0, 6]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ ${}$ -3 t^2.02 + t^2.87 + t^2.91 + t^2.95 + t^2.98 + t^3. + t^3.88 + t^3.96 + t^4.01 + t^4.03 + t^4.09 + 2*t^4.88 + t^4.93 + 2*t^4.97 + t^4.99 + 2*t^5.02 + t^5.1 + t^5.41 + t^5.43 + t^5.52 + t^5.54 + t^5.74 + t^5.78 + t^5.82 + t^5.83 + t^5.85 + t^5.87 + 2*t^5.89 + t^5.91 + t^5.93 + 2*t^5.95 + 2*t^5.98 - 3*t^6. + t^6.02 + t^6.05 - t^6.09 + t^6.11 - t^6.13 + t^6.42 + t^6.44 + t^6.52 + t^6.55 + t^6.74 + t^6.79 + 2*t^6.83 + t^6.85 + 2*t^6.88 + 2*t^6.9 + t^6.92 + 2*t^6.94 + 3*t^6.96 + 3*t^6.98 + 2*t^7.03 + t^7.05 + t^7.07 + t^7.12 - t^7.14 + t^7.29 + t^7.36 + t^7.42 + 2*t^7.44 - t^7.45 + t^7.53 - t^7.55 + 2*t^7.56 + t^7.62 + t^7.69 + 3*t^7.75 + 2*t^7.8 + 5*t^7.84 + t^7.86 + 4*t^7.88 + 2*t^7.91 + 3*t^7.92 + t^7.95 + 6*t^7.97 + 2*t^7.99 - 2*t^8.02 + t^8.04 + 3*t^8.06 + t^8.12 - 2*t^8.15 + t^8.19 + t^8.28 + t^8.3 + t^8.36 + 2*t^8.38 + t^8.39 + 2*t^8.41 + t^8.43 + t^8.49 + t^8.5 + t^8.52 - t^8.56 - t^8.59 + t^8.6 - t^8.67 + 2*t^8.69 + t^8.71 + 2*t^8.74 + 3*t^8.76 + t^8.78 + 3*t^8.8 + 2*t^8.82 + 5*t^8.85 + t^8.86 - 3*t^8.87 + 5*t^8.89 + t^8.91 + 4*t^8.93 - 3*t^8.95 + t^8.96 + 3*t^8.98 - t^4.01/y - t^5.02/y - t^6.02/y - t^6.88/y - t^6.92/y - t^6.96/y - t^6.98/y - t^7.01/y - t^7.03/y + t^7.99/y - t^8.04/y + t^8.78/y + t^8.82/y + t^8.85/y + (2*t^8.87)/y + t^8.91/y + t^8.93/y - t^8.94/y + t^8.95/y - t^4.01*y - t^5.02*y - t^6.02*y - t^6.88*y - t^6.92*y - t^6.96*y - t^6.98*y - t^7.01*y - t^7.03*y + t^7.99*y - t^8.04*y + t^8.78*y + t^8.82*y + t^8.85*y + 2*t^8.87*y + t^8.91*y + t^8.93*y - t^8.94*y + t^8.95*y t^2.02/(g1^2*g3^2) + (g3^6*t^2.87)/g2 + t^2.91/(g1^6*g2) + g1^6*g3^6*t^2.95 + g1^3*g3^3*t^2.98 + t^3. + (g3^5*t^3.88)/(g1*g2) + g1^5*g3^5*t^3.96 + t^4.01/(g1*g3) + t^4.03/(g1^4*g3^4) + (g1^5*g2*t^4.09)/g3 + (2*g3^4*t^4.88)/(g1^2*g2) + t^4.93/(g1^8*g2*g3^2) + 2*g1^4*g3^4*t^4.97 + g1*g3*t^4.99 + (2*t^5.02)/(g1^2*g3^2) + (g1^4*g2*t^5.1)/g3^2 + (g2*g3^11*t^5.41)/g1 + (g1^5*t^5.43)/(g2^2*g3) + (g1^11*t^5.52)/(g2*g3) + (g2^2*g3^5*t^5.54)/g1 + (g3^12*t^5.74)/g2^2 + (g3^6*t^5.78)/(g1^6*g2^2) + (g1^6*g3^12*t^5.82)/g2 + t^5.83/(g1^12*g2^2) + (g1^3*g3^9*t^5.85)/g2 + (g3^6*t^5.87)/g2 + (2*g3^3*t^5.89)/(g1^3*g2) + g1^12*g3^12*t^5.91 + g1^9*g3^9*t^5.93 + 2*g1^6*g3^6*t^5.95 + 2*g1^3*g3^3*t^5.98 - 3*t^6. + t^6.02/(g1^3*g3^3) + t^6.05/(g1^6*g3^6) - g1^6*g2*t^6.09 + (g1^3*g2*t^6.11)/g3^3 - (g2*t^6.13)/g3^6 + (g2*g3^10*t^6.42)/g1^2 + (g1^4*t^6.44)/(g2^2*g3^2) + (g1^10*t^6.52)/(g2*g3^2) + (g2^2*g3^4*t^6.55)/g1^2 + (g3^11*t^6.74)/(g1*g2^2) + (g3^5*t^6.79)/(g1^7*g2^2) + (2*g1^5*g3^11*t^6.83)/g2 + (g1^2*g3^8*t^6.85)/g2 + (2*g3^5*t^6.88)/(g1*g2) + (2*g3^2*t^6.9)/(g1^4*g2) + g1^11*g3^11*t^6.92 + t^6.94/(g1^10*g2*g3^4) + g1^8*g3^8*t^6.94 + 3*g1^5*g3^5*t^6.96 + 3*g1^2*g3^2*t^6.98 + (2*t^7.03)/(g1^4*g3^4) + g1^11*g2*g3^5*t^7.05 + g1^8*g2*g3^2*t^7.07 + (g1^2*g2*t^7.12)/g3^4 - (g2*t^7.14)/(g1*g3^7) + (g3^15*t^7.29)/g1^3 + t^7.36/(g1^3*g2^3*g3^3) - (g1^6*t^7.42)/g2^2 + (2*g2*g3^9*t^7.42)/g1^3 + (2*g1^3*t^7.44)/(g2^2*g3^3) - (g2*g3^6*t^7.45)/g1^6 + (2*g1^9*t^7.53)/(g2*g3^3) - g2^2*g3^6*t^7.53 - (g1^6*t^7.55)/(g2*g3^6) + (2*g2^2*g3^3*t^7.56)/g1^3 + (g1^15*t^7.62)/g3^3 + (g2^3*t^7.69)/(g1^3*g3^3) + (3*g3^10*t^7.75)/(g1^2*g2^2) + (2*g3^4*t^7.8)/(g1^8*g2^2) + t^7.84/(g1^14*g2^2*g3^2) + (4*g1^4*g3^10*t^7.84)/g2 + (g1*g3^7*t^7.86)/g2 + (4*g3^4*t^7.88)/(g1^2*g2) + (2*g3*t^7.91)/(g1^5*g2) + 3*g1^10*g3^10*t^7.92 + g1^7*g3^7*t^7.95 + 6*g1^4*g3^4*t^7.97 + 2*g1*g3*t^7.99 - (2*t^8.02)/(g1^2*g3^2) + t^8.04/(g1^5*g3^5) + t^8.06/(g1^8*g3^8) + 2*g1^10*g2*g3^4*t^8.06 + (g1*g2*t^8.12)/g3^5 - (2*g2*t^8.15)/(g1^2*g3^8) + (g1^10*g2^2*t^8.19)/g3^2 + (g3^17*t^8.28)/g1 + (g1^5*g3^5*t^8.3)/g2^3 + g1^5*g2*g3^17*t^8.36 + (2*g1^11*g3^5*t^8.38)/g2^2 + g1^2*g2*g3^14*t^8.39 + (g1^8*g3^2*t^8.41)/g2^2 + (g2*g3^11*t^8.41)/g1 + (g2*g3^8*t^8.43)/g1^4 + (g1^2*t^8.45)/(g2^2*g3^4) - (g2*g3^5*t^8.45)/g1^7 - t^8.47/(g1*g2^2*g3^7) + (g1^17*g3^5*t^8.47)/g2 + (g1^14*g3^2*t^8.49)/g2 + g1^5*g2^2*g3^11*t^8.5 + g1^2*g2^2*g3^8*t^8.52 + (g1^8*t^8.54)/(g2*g3^4) - (g2^2*g3^5*t^8.54)/g1 - (2*g1^5*t^8.56)/(g2*g3^7) + (g2^2*g3^2*t^8.56)/g1^4 - (g2^2*t^8.59)/(g1^7*g3) + (g3^18*t^8.6)/g2^3 - (g1^11*t^8.65)/g3^7 + (g3^12*t^8.65)/(g1^6*g2^3) - (g2^3*t^8.67)/(g1*g3) + (g3^6*t^8.69)/(g1^12*g2^3) + (g1^6*g3^18*t^8.69)/g2^2 + (g1^3*g3^15*t^8.71)/g2^2 + t^8.74/(g1^18*g2^3) + (g3^12*t^8.74)/g2^2 + (3*g3^9*t^8.76)/(g1^3*g2^2) + (g1^12*g3^18*t^8.78)/g2 + (2*g3^3*t^8.8)/(g1^9*g2^2) + (g1^9*g3^15*t^8.8)/g2 + (2*g1^6*g3^12*t^8.82)/g2 + (5*g1^3*g3^9*t^8.85)/g2 + g1^18*g3^18*t^8.86 - (3*g3^6*t^8.87)/g2 + (4*g3^3*t^8.89)/(g1^3*g2) + g1^15*g3^15*t^8.89 - t^8.91/(g1^6*g2) + 2*g1^12*g3^12*t^8.91 + 4*g1^9*g3^9*t^8.93 - 3*g1^6*g3^6*t^8.95 + t^8.96/(g1^12*g2*g3^6) + 3*g1^3*g3^3*t^8.98 - t^4.01/(g1*g3*y) - t^5.02/(g1^2*g3^2*y) - t^6.02/(g1^3*g3^3*y) - (g3^5*t^6.88)/(g1*g2*y) - t^6.92/(g1^7*g2*g3*y) - (g1^5*g3^5*t^6.96)/y - (g1^2*g3^2*t^6.98)/y - t^7.01/(g1*g3*y) - t^7.03/(g1^4*g3^4*y) + (g1*g3*t^7.99)/y - t^8.04/(g1^5*g3^5*y) + (g3^6*t^8.78)/(g1^6*g2^2*y) + (g1^6*g3^12*t^8.82)/(g2*y) + (g1^3*g3^9*t^8.85)/(g2*y) + (2*g3^6*t^8.87)/(g2*y) + t^8.91/(g1^6*g2*y) + (g1^9*g3^9*t^8.93)/y - t^8.94/(g1^9*g2*g3^3*y) + (g1^6*g3^6*t^8.95)/y - (t^4.01*y)/(g1*g3) - (t^5.02*y)/(g1^2*g3^2) - (t^6.02*y)/(g1^3*g3^3) - (g3^5*t^6.88*y)/(g1*g2) - (t^6.92*y)/(g1^7*g2*g3) - g1^5*g3^5*t^6.96*y - g1^2*g3^2*t^6.98*y - (t^7.01*y)/(g1*g3) - (t^7.03*y)/(g1^4*g3^4) + g1*g3*t^7.99*y - (t^8.04*y)/(g1^5*g3^5) + (g3^6*t^8.78*y)/(g1^6*g2^2) + (g1^6*g3^12*t^8.82*y)/g2 + (g1^3*g3^9*t^8.85*y)/g2 + (2*g3^6*t^8.87*y)/g2 + (t^8.91*y)/(g1^6*g2) + g1^9*g3^9*t^8.93*y - (t^8.94*y)/(g1^9*g2*g3^3) + g1^6*g3^6*t^8.95*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
59407 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4537 1.6401 0.8864 [X:[1.3392], M:[1.0088, 0.9736], q:[0.5177, 0.4913], qb:[0.5087, 0.4999], phi:[0.3304]] t^2.92 + t^2.97 + t^3. + t^3.03 + t^3.05 + t^3.96 + t^3.99 + t^4.02 + t^4.04 + t^4.07 + t^4.96 + t^4.98 + t^5.04 + t^5.06 + t^5.49 + t^5.52 + t^5.54 + t^5.57 + t^5.84 + t^5.89 + 2*t^5.95 + t^5.97 - 2*t^6. - t^3.99/y - t^4.98/y - t^3.99*y - t^4.98*y detail
58854 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4418 1.6221 0.8889 [X:[1.3541], M:[1.0311, 0.9603], q:[0.4957, 0.456], qb:[0.544, 0.5665], phi:[0.323]] t^2.88 + t^3. + t^3.07 + t^3.09 + t^3.19 + t^3.97 + t^4.04 + t^4.06 + t^4.09 + t^4.16 + t^4.94 + t^5.01 + t^5.06 + t^5.12 + t^5.19 + t^5.31 + t^5.76 + t^5.95 + t^5.97 - 2*t^6. - t^3.97/y - t^4.94/y - t^3.97*y - t^4.94*y detail
60485 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4439 1.6334 0.884 [X:[1.3387], M:[1.008, 0.9281], q:[0.4968, 0.425], qb:[0.575, 0.5192], phi:[0.3307]] t^2.78 + t^2.83 + t^3. + t^3.02 + t^3.05 + t^3.82 + t^3.99 + t^4.02 + t^4.04 + t^4.21 + t^4.82 + t^4.98 + 2*t^5.03 + t^5.2 + t^5.25 + t^5.57 + t^5.62 + t^5.67 + t^5.81 + 2*t^5.83 + t^5.86 + t^5.88 - 2*t^6. - t^3.99/y - t^4.98/y - t^3.99*y - t^4.98*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47915 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 1.476 1.6893 0.8737 [M:[0.9872, 0.9765], q:[0.5118, 0.4754], qb:[0.5118, 0.4754], phi:[0.3376]] t^2.026 + t^2.852 + t^2.929 + 3*t^2.961 + t^3.865 + 2*t^3.974 + t^4.051 + t^4.083 + 2*t^4.878 + t^4.955 + 5*t^4.987 + t^5.096 + 2*t^5.4 + 2*t^5.51 + t^5.705 + t^5.782 + 3*t^5.814 + t^5.859 + 2*t^5.891 + 6*t^5.923 - 2*t^6. - t^4.013/y - t^5.026/y - t^4.013*y - t^5.026*y detail