Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47870 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ 1.4767 1.6956 0.8709 [M:[0.961], q:[0.4805, 0.4805], qb:[0.4805, 0.4805], phi:[0.3463]] [M:[[3, 3, 3, 3]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ ${}\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ -4 t^2.078 + 5*t^2.883 + 4*t^3.922 + t^4.156 + 9*t^4.961 + 4*t^5.363 + 15*t^5.766 - 4*t^6. + t^6.234 + 4*t^6.402 + 20*t^6.805 + 2*t^7.039 + 8*t^7.441 + 40*t^7.844 - 10*t^8.078 + 20*t^8.246 + t^8.312 - 12*t^8.48 + 35*t^8.649 - 9*t^8.883 - t^4.039/y - t^5.078/y - t^6.117/y - (5*t^6.922)/y - t^7.156/y + t^7.961/y - t^8.195/y + (10*t^8.766)/y - t^4.039*y - t^5.078*y - t^6.117*y - 5*t^6.922*y - t^7.156*y + t^7.961*y - t^8.195*y + 10*t^8.766*y t^2.078/(g1^2*g2^2*g3^2*g4^2) + g1^6*g3^6*t^2.883 + g2^6*g3^6*t^2.883 + g1^3*g2^3*g3^3*g4^3*t^2.883 + g1^6*g4^6*t^2.883 + g2^6*g4^6*t^2.883 + (g1^5*g3^5*t^3.922)/(g2*g4) + (g2^5*g3^5*t^3.922)/(g1*g4) + (g1^5*g4^5*t^3.922)/(g2*g3) + (g2^5*g4^5*t^3.922)/(g1*g3) + t^4.156/(g1^4*g2^4*g3^4*g4^4) + (2*g1^4*g3^4*t^4.961)/(g2^2*g4^2) + (2*g2^4*g3^4*t^4.961)/(g1^2*g4^2) + g1*g2*g3*g4*t^4.961 + (2*g1^4*g4^4*t^4.961)/(g2^2*g3^2) + (2*g2^4*g4^4*t^4.961)/(g1^2*g3^2) + (g1^11*g2^5*t^5.363)/(g3*g4) + (g1^5*g2^11*t^5.363)/(g3*g4) + (g3^11*g4^5*t^5.363)/(g1*g2) + (g3^5*g4^11*t^5.363)/(g1*g2) + g1^12*g3^12*t^5.766 + g1^6*g2^6*g3^12*t^5.766 + g2^12*g3^12*t^5.766 + g1^9*g2^3*g3^9*g4^3*t^5.766 + g1^3*g2^9*g3^9*g4^3*t^5.766 + g1^12*g3^6*g4^6*t^5.766 + 3*g1^6*g2^6*g3^6*g4^6*t^5.766 + g2^12*g3^6*g4^6*t^5.766 + g1^9*g2^3*g3^3*g4^9*t^5.766 + g1^3*g2^9*g3^3*g4^9*t^5.766 + g1^12*g4^12*t^5.766 + g1^6*g2^6*g4^12*t^5.766 + g2^12*g4^12*t^5.766 - 4*t^6. - (g1^6*t^6.)/g2^6 - (g2^6*t^6.)/g1^6 - (g3^6*t^6.)/g4^6 + (g1^3*g3^3*t^6.)/(g2^3*g4^3) + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (g1^3*g4^3*t^6.)/(g2^3*g3^3) + (g2^3*g4^3*t^6.)/(g1^3*g3^3) - (g4^6*t^6.)/g3^6 + t^6.234/(g1^6*g2^6*g3^6*g4^6) + (g1^10*g2^4*t^6.402)/(g3^2*g4^2) + (g1^4*g2^10*t^6.402)/(g3^2*g4^2) + (g3^10*g4^4*t^6.402)/(g1^2*g2^2) + (g3^4*g4^10*t^6.402)/(g1^2*g2^2) + (g1^11*g3^11*t^6.805)/(g2*g4) + (2*g1^5*g2^5*g3^11*t^6.805)/g4 + (g2^11*g3^11*t^6.805)/(g1*g4) + g1^8*g2^2*g3^8*g4^2*t^6.805 + g1^2*g2^8*g3^8*g4^2*t^6.805 + (2*g1^11*g3^5*g4^5*t^6.805)/g2 + 4*g1^5*g2^5*g3^5*g4^5*t^6.805 + (2*g2^11*g3^5*g4^5*t^6.805)/g1 + g1^8*g2^2*g3^2*g4^8*t^6.805 + g1^2*g2^8*g3^2*g4^8*t^6.805 + (g1^11*g4^11*t^6.805)/(g2*g3) + (2*g1^5*g2^5*g4^11*t^6.805)/g3 + (g2^11*g4^11*t^6.805)/(g1*g3) - (g3^5*t^7.039)/(g1*g2*g4^7) + (2*g1^2*g3^2*t^7.039)/(g2^4*g4^4) + (2*g2^2*g3^2*t^7.039)/(g1^4*g4^4) - (g1^5*t^7.039)/(g2^7*g3*g4) - (2*t^7.039)/(g1*g2*g3*g4) - (g2^5*t^7.039)/(g1^7*g3*g4) + (2*g1^2*g4^2*t^7.039)/(g2^4*g3^4) + (2*g2^2*g4^2*t^7.039)/(g1^4*g3^4) - (g4^5*t^7.039)/(g1*g2*g3^7) - (g1^6*g2^6*t^7.441)/g3^6 - (g1^6*g2^6*t^7.441)/g4^6 + (g1^15*t^7.441)/(g2^3*g3^3*g4^3) + (2*g1^9*g2^3*t^7.441)/(g3^3*g4^3) + (2*g1^3*g2^9*t^7.441)/(g3^3*g4^3) + (g2^15*t^7.441)/(g1^3*g3^3*g4^3) + (g3^15*t^7.441)/(g1^3*g2^3*g4^3) + (2*g3^9*g4^3*t^7.441)/(g1^3*g2^3) - (g3^6*g4^6*t^7.441)/g1^6 - (g3^6*g4^6*t^7.441)/g2^6 + (2*g3^3*g4^9*t^7.441)/(g1^3*g2^3) + (g4^15*t^7.441)/(g1^3*g2^3*g3^3) + (3*g1^10*g3^10*t^7.844)/(g2^2*g4^2) + (4*g1^4*g2^4*g3^10*t^7.844)/g4^2 + (3*g2^10*g3^10*t^7.844)/(g1^2*g4^2) + g1^7*g2*g3^7*g4*t^7.844 + g1*g2^7*g3^7*g4*t^7.844 + (4*g1^10*g3^4*g4^4*t^7.844)/g2^2 + 8*g1^4*g2^4*g3^4*g4^4*t^7.844 + (4*g2^10*g3^4*g4^4*t^7.844)/g1^2 + g1^7*g2*g3*g4^7*t^7.844 + g1*g2^7*g3*g4^7*t^7.844 + (3*g1^10*g4^10*t^7.844)/(g2^2*g3^2) + (4*g1^4*g2^4*g4^10*t^7.844)/g3^2 + (3*g2^10*g4^10*t^7.844)/(g1^2*g3^2) - (2*g3^4*t^8.078)/(g1^2*g2^2*g4^8) + (g1*g3*t^8.078)/(g2^5*g4^5) + (g2*g3*t^8.078)/(g1^5*g4^5) - (2*g1^4*t^8.078)/(g2^8*g3^2*g4^2) - (6*t^8.078)/(g1^2*g2^2*g3^2*g4^2) - (2*g2^4*t^8.078)/(g1^8*g3^2*g4^2) + (g1*g4*t^8.078)/(g2^5*g3^5) + (g2*g4*t^8.078)/(g1^5*g3^5) - (2*g4^4*t^8.078)/(g1^2*g2^2*g3^8) + (g1^17*g2^5*g3^5*t^8.246)/g4 + (2*g1^11*g2^11*g3^5*t^8.246)/g4 + (g1^5*g2^17*g3^5*t^8.246)/g4 + g1^14*g2^8*g3^2*g4^2*t^8.246 + g1^8*g2^14*g3^2*g4^2*t^8.246 + (g1^17*g2^5*g4^5*t^8.246)/g3 + (2*g1^11*g2^11*g4^5*t^8.246)/g3 + (g1^5*g2^17*g4^5*t^8.246)/g3 + (g1^5*g3^17*g4^5*t^8.246)/g2 + (g2^5*g3^17*g4^5*t^8.246)/g1 + g1^2*g2^2*g3^14*g4^8*t^8.246 + (2*g1^5*g3^11*g4^11*t^8.246)/g2 + (2*g2^5*g3^11*g4^11*t^8.246)/g1 + g1^2*g2^2*g3^8*g4^14*t^8.246 + (g1^5*g3^5*g4^17*t^8.246)/g2 + (g2^5*g3^5*g4^17*t^8.246)/g1 + t^8.312/(g1^8*g2^8*g3^8*g4^8) - (g1^11*t^8.48)/(g2*g3*g4^7) - (2*g1^5*g2^5*t^8.48)/(g3*g4^7) - (g2^11*t^8.48)/(g1*g3*g4^7) + (g1^8*g2^2*t^8.48)/(g3^4*g4^4) + (g1^2*g2^8*t^8.48)/(g3^4*g4^4) - (g1^11*t^8.48)/(g2*g3^7*g4) - (2*g1^5*g2^5*t^8.48)/(g3^7*g4) - (g2^11*t^8.48)/(g1*g3^7*g4) - (g3^11*t^8.48)/(g1*g2^7*g4) - (g3^11*t^8.48)/(g1^7*g2*g4) + (g3^8*g4^2*t^8.48)/(g1^4*g2^4) - (2*g3^5*g4^5*t^8.48)/(g1*g2^7) - (2*g3^5*g4^5*t^8.48)/(g1^7*g2) + (g3^2*g4^8*t^8.48)/(g1^4*g2^4) - (g4^11*t^8.48)/(g1*g2^7*g3) - (g4^11*t^8.48)/(g1^7*g2*g3) + g1^18*g3^18*t^8.649 + g1^12*g2^6*g3^18*t^8.649 + g1^6*g2^12*g3^18*t^8.649 + g2^18*g3^18*t^8.649 + g1^15*g2^3*g3^15*g4^3*t^8.649 + g1^9*g2^9*g3^15*g4^3*t^8.649 + g1^3*g2^15*g3^15*g4^3*t^8.649 + g1^18*g3^12*g4^6*t^8.649 + 3*g1^12*g2^6*g3^12*g4^6*t^8.649 + 3*g1^6*g2^12*g3^12*g4^6*t^8.649 + g2^18*g3^12*g4^6*t^8.649 + g1^15*g2^3*g3^9*g4^9*t^8.649 + 3*g1^9*g2^9*g3^9*g4^9*t^8.649 + g1^3*g2^15*g3^9*g4^9*t^8.649 + g1^18*g3^6*g4^12*t^8.649 + 3*g1^12*g2^6*g3^6*g4^12*t^8.649 + 3*g1^6*g2^12*g3^6*g4^12*t^8.649 + g2^18*g3^6*g4^12*t^8.649 + g1^15*g2^3*g3^3*g4^15*t^8.649 + g1^9*g2^9*g3^3*g4^15*t^8.649 + g1^3*g2^15*g3^3*g4^15*t^8.649 + g1^18*g4^18*t^8.649 + g1^12*g2^6*g4^18*t^8.649 + g1^6*g2^12*g4^18*t^8.649 + g2^18*g4^18*t^8.649 - 6*g1^6*g3^6*t^8.883 - (g1^12*g3^6*t^8.883)/g2^6 - 6*g2^6*g3^6*t^8.883 - (g2^12*g3^6*t^8.883)/g1^6 - (g1^6*g3^12*t^8.883)/g4^6 - (g2^6*g3^12*t^8.883)/g4^6 + (2*g1^9*g3^9*t^8.883)/(g2^3*g4^3) + (3*g1^3*g2^3*g3^9*t^8.883)/g4^3 + (2*g2^9*g3^9*t^8.883)/(g1^3*g4^3) + (3*g1^9*g3^3*g4^3*t^8.883)/g2^3 + 3*g1^3*g2^3*g3^3*g4^3*t^8.883 + (3*g2^9*g3^3*g4^3*t^8.883)/g1^3 - 6*g1^6*g4^6*t^8.883 - (g1^12*g4^6*t^8.883)/g2^6 - 6*g2^6*g4^6*t^8.883 - (g2^12*g4^6*t^8.883)/g1^6 + (2*g1^9*g4^9*t^8.883)/(g2^3*g3^3) + (3*g1^3*g2^3*g4^9*t^8.883)/g3^3 + (2*g2^9*g4^9*t^8.883)/(g1^3*g3^3) - (g1^6*g4^12*t^8.883)/g3^6 - (g2^6*g4^12*t^8.883)/g3^6 - t^4.039/(g1*g2*g3*g4*y) - t^5.078/(g1^2*g2^2*g3^2*g4^2*y) - t^6.117/(g1^3*g2^3*g3^3*g4^3*y) - (g1^5*g3^5*t^6.922)/(g2*g4*y) - (g2^5*g3^5*t^6.922)/(g1*g4*y) - (g1^2*g2^2*g3^2*g4^2*t^6.922)/y - (g1^5*g4^5*t^6.922)/(g2*g3*y) - (g2^5*g4^5*t^6.922)/(g1*g3*y) - t^7.156/(g1^4*g2^4*g3^4*g4^4*y) + (g1*g2*g3*g4*t^7.961)/y - t^8.195/(g1^5*g2^5*g3^5*g4^5*y) + (g1^6*g2^6*g3^12*t^8.766)/y + (g1^9*g2^3*g3^9*g4^3*t^8.766)/y + (g1^3*g2^9*g3^9*g4^3*t^8.766)/y + (g1^12*g3^6*g4^6*t^8.766)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.766)/y + (g2^12*g3^6*g4^6*t^8.766)/y + (g1^9*g2^3*g3^3*g4^9*t^8.766)/y + (g1^3*g2^9*g3^3*g4^9*t^8.766)/y + (g1^6*g2^6*g4^12*t^8.766)/y - (t^4.039*y)/(g1*g2*g3*g4) - (t^5.078*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.117*y)/(g1^3*g2^3*g3^3*g4^3) - (g1^5*g3^5*t^6.922*y)/(g2*g4) - (g2^5*g3^5*t^6.922*y)/(g1*g4) - g1^2*g2^2*g3^2*g4^2*t^6.922*y - (g1^5*g4^5*t^6.922*y)/(g2*g3) - (g2^5*g4^5*t^6.922*y)/(g1*g3) - (t^7.156*y)/(g1^4*g2^4*g3^4*g4^4) + g1*g2*g3*g4*t^7.961*y - (t^8.195*y)/(g1^5*g2^5*g3^5*g4^5) + g1^6*g2^6*g3^12*t^8.766*y + g1^9*g2^3*g3^9*g4^3*t^8.766*y + g1^3*g2^9*g3^9*g4^3*t^8.766*y + g1^12*g3^6*g4^6*t^8.766*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.766*y + g2^12*g3^6*g4^6*t^8.766*y + g1^9*g2^3*g3^3*g4^9*t^8.766*y + g1^3*g2^9*g3^3*g4^9*t^8.766*y + g1^6*g2^6*g4^12*t^8.766*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47935 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ 1.4747 1.6858 0.8748 [M:[0.9898], q:[0.5051, 0.4847], qb:[0.5051, 0.4847], phi:[0.3367]] t^2.02 + t^2.908 + 3*t^2.969 + t^3.031 + t^3.919 + 2*t^3.98 + 2*t^4.041 + 2*t^4.929 + 5*t^4.99 + 2*t^5.051 + 2*t^5.434 + 2*t^5.495 + t^5.817 + 3*t^5.878 + 6*t^5.939 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail
47894 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{2}$ 1.4561 1.6566 0.8789 [M:[0.9583, 1.3055], q:[0.4791, 0.4791], qb:[0.4791, 0.4791], phi:[0.3472]] 5*t^2.875 + 5*t^3.917 + 4*t^4.958 + 4*t^5.354 + 15*t^5.75 - 8*t^6. - t^4.042/y - t^5.083/y - t^4.042*y - t^5.083*y detail
47915 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 1.476 1.6893 0.8737 [M:[0.9872, 0.9765], q:[0.5118, 0.4754], qb:[0.5118, 0.4754], phi:[0.3376]] t^2.026 + t^2.852 + t^2.929 + 3*t^2.961 + t^3.865 + 2*t^3.974 + t^4.051 + t^4.083 + 2*t^4.878 + t^4.955 + 5*t^4.987 + t^5.096 + 2*t^5.4 + 2*t^5.51 + t^5.705 + t^5.782 + 3*t^5.814 + t^5.859 + 2*t^5.891 + 6*t^5.923 - 2*t^6. - t^4.013/y - t^5.026/y - t^4.013*y - t^5.026*y detail
47936 ${}M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4408 1.6253 0.8865 [X:[1.3398], M:[1.0097], q:[0.5767, 0.5165], qb:[0.4631, 0.4631], phi:[0.3301]] 2*t^2.939 + t^3.029 + 2*t^3.119 + 2*t^3.929 + t^4.019 + 2*t^4.11 + 2*t^4.919 + 2*t^5.1 + 2*t^5.158 + 3*t^5.878 + 2*t^5.968 - 5*t^6. - t^3.99/y - t^4.981/y - t^3.99*y - t^4.981*y detail
47928 ${}M_{1}\phi_{1}^{3}$ + ${ }q_{1}^{2}\tilde{q}_{1}^{2}$ 1.4756 1.6901 0.8731 [M:[0.9773], q:[0.5, 0.4773], qb:[0.5, 0.4773], phi:[0.3409]] t^2.045 + t^2.864 + 3*t^2.932 + t^3. + t^3.886 + 2*t^3.955 + t^4.023 + t^4.091 + 2*t^4.909 + 5*t^4.977 + 2*t^5.045 + 2*t^5.386 + 2*t^5.455 + t^5.727 + 3*t^5.796 + 7*t^5.864 + 2*t^5.932 - t^6. - t^4.023/y - t^5.045/y - t^4.023*y - t^5.045*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47866 SU3adj1nf2 ${}$ 1.4743 1.6854 0.8748 [q:[0.4934, 0.4934], qb:[0.4934, 0.4934], phi:[0.3377]] t^2.026 + 4*t^2.96 + t^3.04 + 4*t^3.974 + t^4.053 + 8*t^4.987 + t^5.066 + 4*t^5.454 + 10*t^5.921 - t^4.013/y - t^5.026/y - t^4.013*y - t^5.026*y detail