Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47870 | SU3adj1nf2 | $M_1\phi_1^3$ | 1.4767 | 1.6956 | 0.8709 | [X:[], M:[0.961], q:[0.4805, 0.4805], qb:[0.4805, 0.4805], phi:[0.3463]] | [X:[], M:[[3, 3, 3, 3]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$\phi_1^2$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_1$, $ M_1$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1^4$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1\phi_1^2$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1q_1^2q_2$, $ \phi_1q_1q_2^2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ q_1^2\tilde{q}_1^2$, $ q_1q_2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_1q_1\tilde{q}_1$, $ M_1q_2\tilde{q}_1$, $ q_1^2\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_1q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$ | $\phi_1^3q_1\tilde{q}_1$, $ \phi_1^3q_2\tilde{q}_1$, $ \phi_1^3q_1\tilde{q}_2$, $ \phi_1^3q_2\tilde{q}_2$ | -4 | t^2.08 + 5*t^2.88 + 4*t^3.92 + t^4.16 + 9*t^4.96 + 4*t^5.36 + 15*t^5.77 - 4*t^6. + t^6.23 + 4*t^6.4 + 20*t^6.8 + 2*t^7.04 + 8*t^7.44 + 40*t^7.84 - 10*t^8.08 + 20*t^8.25 + t^8.31 - 12*t^8.48 + 35*t^8.65 - 9*t^8.88 - t^4.04/y - t^5.08/y - t^6.12/y - (5*t^6.92)/y - t^7.16/y + t^7.96/y - t^8.2/y + (10*t^8.77)/y - t^4.04*y - t^5.08*y - t^6.12*y - 5*t^6.92*y - t^7.16*y + t^7.96*y - t^8.2*y + 10*t^8.77*y | t^2.08/(g1^2*g2^2*g3^2*g4^2) + g1^6*g3^6*t^2.88 + g2^6*g3^6*t^2.88 + g1^3*g2^3*g3^3*g4^3*t^2.88 + g1^6*g4^6*t^2.88 + g2^6*g4^6*t^2.88 + (g1^5*g3^5*t^3.92)/(g2*g4) + (g2^5*g3^5*t^3.92)/(g1*g4) + (g1^5*g4^5*t^3.92)/(g2*g3) + (g2^5*g4^5*t^3.92)/(g1*g3) + t^4.16/(g1^4*g2^4*g3^4*g4^4) + (2*g1^4*g3^4*t^4.96)/(g2^2*g4^2) + (2*g2^4*g3^4*t^4.96)/(g1^2*g4^2) + g1*g2*g3*g4*t^4.96 + (2*g1^4*g4^4*t^4.96)/(g2^2*g3^2) + (2*g2^4*g4^4*t^4.96)/(g1^2*g3^2) + (g1^11*g2^5*t^5.36)/(g3*g4) + (g1^5*g2^11*t^5.36)/(g3*g4) + (g3^11*g4^5*t^5.36)/(g1*g2) + (g3^5*g4^11*t^5.36)/(g1*g2) + g1^12*g3^12*t^5.77 + g1^6*g2^6*g3^12*t^5.77 + g2^12*g3^12*t^5.77 + g1^9*g2^3*g3^9*g4^3*t^5.77 + g1^3*g2^9*g3^9*g4^3*t^5.77 + g1^12*g3^6*g4^6*t^5.77 + 3*g1^6*g2^6*g3^6*g4^6*t^5.77 + g2^12*g3^6*g4^6*t^5.77 + g1^9*g2^3*g3^3*g4^9*t^5.77 + g1^3*g2^9*g3^3*g4^9*t^5.77 + g1^12*g4^12*t^5.77 + g1^6*g2^6*g4^12*t^5.77 + g2^12*g4^12*t^5.77 - 4*t^6. - (g1^6*t^6.)/g2^6 - (g2^6*t^6.)/g1^6 - (g3^6*t^6.)/g4^6 + (g1^3*g3^3*t^6.)/(g2^3*g4^3) + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (g1^3*g4^3*t^6.)/(g2^3*g3^3) + (g2^3*g4^3*t^6.)/(g1^3*g3^3) - (g4^6*t^6.)/g3^6 + t^6.23/(g1^6*g2^6*g3^6*g4^6) + (g1^10*g2^4*t^6.4)/(g3^2*g4^2) + (g1^4*g2^10*t^6.4)/(g3^2*g4^2) + (g3^10*g4^4*t^6.4)/(g1^2*g2^2) + (g3^4*g4^10*t^6.4)/(g1^2*g2^2) + (g1^11*g3^11*t^6.8)/(g2*g4) + (2*g1^5*g2^5*g3^11*t^6.8)/g4 + (g2^11*g3^11*t^6.8)/(g1*g4) + g1^8*g2^2*g3^8*g4^2*t^6.8 + g1^2*g2^8*g3^8*g4^2*t^6.8 + (2*g1^11*g3^5*g4^5*t^6.8)/g2 + 4*g1^5*g2^5*g3^5*g4^5*t^6.8 + (2*g2^11*g3^5*g4^5*t^6.8)/g1 + g1^8*g2^2*g3^2*g4^8*t^6.8 + g1^2*g2^8*g3^2*g4^8*t^6.8 + (g1^11*g4^11*t^6.8)/(g2*g3) + (2*g1^5*g2^5*g4^11*t^6.8)/g3 + (g2^11*g4^11*t^6.8)/(g1*g3) - (g3^5*t^7.04)/(g1*g2*g4^7) + (2*g1^2*g3^2*t^7.04)/(g2^4*g4^4) + (2*g2^2*g3^2*t^7.04)/(g1^4*g4^4) - (g1^5*t^7.04)/(g2^7*g3*g4) - (2*t^7.04)/(g1*g2*g3*g4) - (g2^5*t^7.04)/(g1^7*g3*g4) + (2*g1^2*g4^2*t^7.04)/(g2^4*g3^4) + (2*g2^2*g4^2*t^7.04)/(g1^4*g3^4) - (g4^5*t^7.04)/(g1*g2*g3^7) - (g1^6*g2^6*t^7.44)/g3^6 - (g1^6*g2^6*t^7.44)/g4^6 + (g1^15*t^7.44)/(g2^3*g3^3*g4^3) + (2*g1^9*g2^3*t^7.44)/(g3^3*g4^3) + (2*g1^3*g2^9*t^7.44)/(g3^3*g4^3) + (g2^15*t^7.44)/(g1^3*g3^3*g4^3) + (g3^15*t^7.44)/(g1^3*g2^3*g4^3) + (2*g3^9*g4^3*t^7.44)/(g1^3*g2^3) - (g3^6*g4^6*t^7.44)/g1^6 - (g3^6*g4^6*t^7.44)/g2^6 + (2*g3^3*g4^9*t^7.44)/(g1^3*g2^3) + (g4^15*t^7.44)/(g1^3*g2^3*g3^3) + (3*g1^10*g3^10*t^7.84)/(g2^2*g4^2) + (4*g1^4*g2^4*g3^10*t^7.84)/g4^2 + (3*g2^10*g3^10*t^7.84)/(g1^2*g4^2) + g1^7*g2*g3^7*g4*t^7.84 + g1*g2^7*g3^7*g4*t^7.84 + (4*g1^10*g3^4*g4^4*t^7.84)/g2^2 + 8*g1^4*g2^4*g3^4*g4^4*t^7.84 + (4*g2^10*g3^4*g4^4*t^7.84)/g1^2 + g1^7*g2*g3*g4^7*t^7.84 + g1*g2^7*g3*g4^7*t^7.84 + (3*g1^10*g4^10*t^7.84)/(g2^2*g3^2) + (4*g1^4*g2^4*g4^10*t^7.84)/g3^2 + (3*g2^10*g4^10*t^7.84)/(g1^2*g3^2) - (2*g3^4*t^8.08)/(g1^2*g2^2*g4^8) + (g1*g3*t^8.08)/(g2^5*g4^5) + (g2*g3*t^8.08)/(g1^5*g4^5) - (2*g1^4*t^8.08)/(g2^8*g3^2*g4^2) - (6*t^8.08)/(g1^2*g2^2*g3^2*g4^2) - (2*g2^4*t^8.08)/(g1^8*g3^2*g4^2) + (g1*g4*t^8.08)/(g2^5*g3^5) + (g2*g4*t^8.08)/(g1^5*g3^5) - (2*g4^4*t^8.08)/(g1^2*g2^2*g3^8) + (g1^17*g2^5*g3^5*t^8.25)/g4 + (2*g1^11*g2^11*g3^5*t^8.25)/g4 + (g1^5*g2^17*g3^5*t^8.25)/g4 + g1^14*g2^8*g3^2*g4^2*t^8.25 + g1^8*g2^14*g3^2*g4^2*t^8.25 + (g1^17*g2^5*g4^5*t^8.25)/g3 + (2*g1^11*g2^11*g4^5*t^8.25)/g3 + (g1^5*g2^17*g4^5*t^8.25)/g3 + (g1^5*g3^17*g4^5*t^8.25)/g2 + (g2^5*g3^17*g4^5*t^8.25)/g1 + g1^2*g2^2*g3^14*g4^8*t^8.25 + (2*g1^5*g3^11*g4^11*t^8.25)/g2 + (2*g2^5*g3^11*g4^11*t^8.25)/g1 + g1^2*g2^2*g3^8*g4^14*t^8.25 + (g1^5*g3^5*g4^17*t^8.25)/g2 + (g2^5*g3^5*g4^17*t^8.25)/g1 + t^8.31/(g1^8*g2^8*g3^8*g4^8) - (g1^11*t^8.48)/(g2*g3*g4^7) - (2*g1^5*g2^5*t^8.48)/(g3*g4^7) - (g2^11*t^8.48)/(g1*g3*g4^7) + (g1^8*g2^2*t^8.48)/(g3^4*g4^4) + (g1^2*g2^8*t^8.48)/(g3^4*g4^4) - (g1^11*t^8.48)/(g2*g3^7*g4) - (2*g1^5*g2^5*t^8.48)/(g3^7*g4) - (g2^11*t^8.48)/(g1*g3^7*g4) - (g3^11*t^8.48)/(g1*g2^7*g4) - (g3^11*t^8.48)/(g1^7*g2*g4) + (g3^8*g4^2*t^8.48)/(g1^4*g2^4) - (2*g3^5*g4^5*t^8.48)/(g1*g2^7) - (2*g3^5*g4^5*t^8.48)/(g1^7*g2) + (g3^2*g4^8*t^8.48)/(g1^4*g2^4) - (g4^11*t^8.48)/(g1*g2^7*g3) - (g4^11*t^8.48)/(g1^7*g2*g3) + g1^18*g3^18*t^8.65 + g1^12*g2^6*g3^18*t^8.65 + g1^6*g2^12*g3^18*t^8.65 + g2^18*g3^18*t^8.65 + g1^15*g2^3*g3^15*g4^3*t^8.65 + g1^9*g2^9*g3^15*g4^3*t^8.65 + g1^3*g2^15*g3^15*g4^3*t^8.65 + g1^18*g3^12*g4^6*t^8.65 + 3*g1^12*g2^6*g3^12*g4^6*t^8.65 + 3*g1^6*g2^12*g3^12*g4^6*t^8.65 + g2^18*g3^12*g4^6*t^8.65 + g1^15*g2^3*g3^9*g4^9*t^8.65 + 3*g1^9*g2^9*g3^9*g4^9*t^8.65 + g1^3*g2^15*g3^9*g4^9*t^8.65 + g1^18*g3^6*g4^12*t^8.65 + 3*g1^12*g2^6*g3^6*g4^12*t^8.65 + 3*g1^6*g2^12*g3^6*g4^12*t^8.65 + g2^18*g3^6*g4^12*t^8.65 + g1^15*g2^3*g3^3*g4^15*t^8.65 + g1^9*g2^9*g3^3*g4^15*t^8.65 + g1^3*g2^15*g3^3*g4^15*t^8.65 + g1^18*g4^18*t^8.65 + g1^12*g2^6*g4^18*t^8.65 + g1^6*g2^12*g4^18*t^8.65 + g2^18*g4^18*t^8.65 - 6*g1^6*g3^6*t^8.88 - (g1^12*g3^6*t^8.88)/g2^6 - 6*g2^6*g3^6*t^8.88 - (g2^12*g3^6*t^8.88)/g1^6 - (g1^6*g3^12*t^8.88)/g4^6 - (g2^6*g3^12*t^8.88)/g4^6 + (2*g1^9*g3^9*t^8.88)/(g2^3*g4^3) + (3*g1^3*g2^3*g3^9*t^8.88)/g4^3 + (2*g2^9*g3^9*t^8.88)/(g1^3*g4^3) + (3*g1^9*g3^3*g4^3*t^8.88)/g2^3 + 3*g1^3*g2^3*g3^3*g4^3*t^8.88 + (3*g2^9*g3^3*g4^3*t^8.88)/g1^3 - 6*g1^6*g4^6*t^8.88 - (g1^12*g4^6*t^8.88)/g2^6 - 6*g2^6*g4^6*t^8.88 - (g2^12*g4^6*t^8.88)/g1^6 + (2*g1^9*g4^9*t^8.88)/(g2^3*g3^3) + (3*g1^3*g2^3*g4^9*t^8.88)/g3^3 + (2*g2^9*g4^9*t^8.88)/(g1^3*g3^3) - (g1^6*g4^12*t^8.88)/g3^6 - (g2^6*g4^12*t^8.88)/g3^6 - t^4.04/(g1*g2*g3*g4*y) - t^5.08/(g1^2*g2^2*g3^2*g4^2*y) - t^6.12/(g1^3*g2^3*g3^3*g4^3*y) - (g1^5*g3^5*t^6.92)/(g2*g4*y) - (g2^5*g3^5*t^6.92)/(g1*g4*y) - (g1^2*g2^2*g3^2*g4^2*t^6.92)/y - (g1^5*g4^5*t^6.92)/(g2*g3*y) - (g2^5*g4^5*t^6.92)/(g1*g3*y) - t^7.16/(g1^4*g2^4*g3^4*g4^4*y) + (g1*g2*g3*g4*t^7.96)/y - t^8.2/(g1^5*g2^5*g3^5*g4^5*y) + (g1^6*g2^6*g3^12*t^8.77)/y + (g1^9*g2^3*g3^9*g4^3*t^8.77)/y + (g1^3*g2^9*g3^9*g4^3*t^8.77)/y + (g1^12*g3^6*g4^6*t^8.77)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.77)/y + (g2^12*g3^6*g4^6*t^8.77)/y + (g1^9*g2^3*g3^3*g4^9*t^8.77)/y + (g1^3*g2^9*g3^3*g4^9*t^8.77)/y + (g1^6*g2^6*g4^12*t^8.77)/y - (t^4.04*y)/(g1*g2*g3*g4) - (t^5.08*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.12*y)/(g1^3*g2^3*g3^3*g4^3) - (g1^5*g3^5*t^6.92*y)/(g2*g4) - (g2^5*g3^5*t^6.92*y)/(g1*g4) - g1^2*g2^2*g3^2*g4^2*t^6.92*y - (g1^5*g4^5*t^6.92*y)/(g2*g3) - (g2^5*g4^5*t^6.92*y)/(g1*g3) - (t^7.16*y)/(g1^4*g2^4*g3^4*g4^4) + g1*g2*g3*g4*t^7.96*y - (t^8.2*y)/(g1^5*g2^5*g3^5*g4^5) + g1^6*g2^6*g3^12*t^8.77*y + g1^9*g2^3*g3^9*g4^3*t^8.77*y + g1^3*g2^9*g3^9*g4^3*t^8.77*y + g1^12*g3^6*g4^6*t^8.77*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.77*y + g2^12*g3^6*g4^6*t^8.77*y + g1^9*g2^3*g3^3*g4^9*t^8.77*y + g1^3*g2^9*g3^3*g4^9*t^8.77*y + g1^6*g2^6*g4^12*t^8.77*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
47935 | $M_1\phi_1^3$ + $ M_1q_1\tilde{q}_1$ | 1.4747 | 1.6858 | 0.8748 | [X:[], M:[0.9898], q:[0.5051, 0.4847], qb:[0.5051, 0.4847], phi:[0.3367]] | t^2.02 + t^2.91 + 3*t^2.97 + t^3.03 + t^3.92 + 2*t^3.98 + 2*t^4.04 + 2*t^4.93 + 5*t^4.99 + 2*t^5.05 + 2*t^5.43 + 2*t^5.49 + t^5.82 + 3*t^5.88 + 6*t^5.94 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail | |
47894 | $M_1\phi_1^3$ + $ M_2\phi_1^2$ | 1.4561 | 1.6566 | 0.8789 | [X:[], M:[0.9583, 1.3055], q:[0.4791, 0.4791], qb:[0.4791, 0.4791], phi:[0.3472]] | 5*t^2.87 + 5*t^3.92 + 4*t^4.96 + 4*t^5.35 + 15*t^5.75 - 8*t^6. - t^4.04/y - t^5.08/y - t^4.04*y - t^5.08*y | detail | |
47915 | $M_1\phi_1^3$ + $ M_2q_1\tilde{q}_1$ | 1.476 | 1.6893 | 0.8737 | [X:[], M:[0.9872, 0.9765], q:[0.5118, 0.4754], qb:[0.5118, 0.4754], phi:[0.3376]] | t^2.03 + t^2.85 + t^2.93 + 3*t^2.96 + t^3.87 + 2*t^3.97 + t^4.05 + t^4.08 + 2*t^4.88 + t^4.96 + 5*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.7 + t^5.78 + 3*t^5.81 + t^5.86 + 2*t^5.89 + 6*t^5.92 - 2*t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y | detail | |
47936 | $M_1\phi_1^3$ + $ \phi_1q_1^2q_2$ + $ \phi_1^2X_1$ | 1.4408 | 1.6253 | 0.8865 | [X:[1.3398], M:[1.0097], q:[0.5767, 0.5165], qb:[0.4631, 0.4631], phi:[0.3301]] | 2*t^2.94 + t^3.03 + 2*t^3.12 + 2*t^3.93 + t^4.02 + 2*t^4.11 + 2*t^4.92 + 2*t^5.1 + 2*t^5.16 + 3*t^5.88 + 2*t^5.97 - 5*t^6. - t^3.99/y - t^4.98/y - t^3.99*y - t^4.98*y | detail | |
47928 | $M_1\phi_1^3$ + $ q_1^2\tilde{q}_1^2$ | 1.4756 | 1.6901 | 0.8731 | [X:[], M:[0.9773], q:[0.5, 0.4773], qb:[0.5, 0.4773], phi:[0.3409]] | t^2.05 + t^2.86 + 3*t^2.93 + t^3. + t^3.89 + 2*t^3.95 + t^4.02 + t^4.09 + 2*t^4.91 + 5*t^4.98 + 2*t^5.05 + 2*t^5.39 + 2*t^5.45 + t^5.73 + 3*t^5.8 + 7*t^5.86 + 2*t^5.93 - t^6. - t^4.02/y - t^5.05/y - t^4.02*y - t^5.05*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47866 | SU3adj1nf2 | . | 1.4743 | 1.6854 | 0.8748 | [X:[], M:[], q:[0.4934, 0.4934], qb:[0.4934, 0.4934], phi:[0.3377]] | t^2.03 + 4*t^2.96 + t^3.04 + 4*t^3.97 + t^4.05 + 8*t^4.99 + t^5.07 + 4*t^5.45 + 10*t^5.92 - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y | detail |