Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57481 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4968 | 1.7304 | 0.865 | [X:[], M:[0.9878, 0.9758, 0.6733], q:[0.5114, 0.4764], qb:[0.5129, 0.475], phi:[0.3374]] | [X:[], M:[[3, 3, 3, 3], [-6, 0, -6, 0], [1, -5, -5, 1]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | ${}\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | -3 | 2*t^2.02 + t^2.85 + t^2.93 + 2*t^2.96 + t^2.97 + t^3.87 + t^3.97 + 2*t^4.04 + t^4.05 + t^4.08 + t^4.87 + 2*t^4.88 + 2*t^4.95 + 4*t^4.98 + 4*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.71 + t^5.78 + t^5.81 + 2*t^5.82 + t^5.85 + 3*t^5.89 + 2*t^5.92 + 3*t^5.93 + t^5.94 + t^5.99 - 3*t^6. + 2*t^6.06 + 2*t^6.07 + t^6.41 + t^6.42 + t^6.52 + t^6.53 + t^6.72 + t^6.79 + 4*t^6.83 + t^6.89 + 4*t^6.9 - t^6.91 + 2*t^6.93 + 2*t^6.94 + 2*t^6.97 + t^6.98 + 4*t^7. + 5*t^7.01 + 2*t^7.02 + t^7.04 + 2*t^7.05 + t^7.12 - t^7.13 + t^7.31 + t^7.32 + t^7.42 + 3*t^7.43 + 3*t^7.53 + t^7.54 + t^7.64 + t^7.65 + 4*t^7.73 + t^7.8 + 2*t^7.81 + t^7.83 + 7*t^7.84 + 3*t^7.85 + t^7.87 + t^7.88 + 3*t^7.91 + 2*t^7.92 + 5*t^7.94 + 9*t^7.95 + 4*t^7.96 + t^8.01 - 7*t^8.02 + 3*t^8.06 + 2*t^8.08 + 2*t^8.09 + t^8.1 - t^8.13 - 2*t^8.14 + t^8.17 + 2*t^8.26 + 4*t^8.36 + 4*t^8.37 + t^8.44 - t^8.45 + 3*t^8.47 + 3*t^8.48 - t^8.55 + t^8.64 - 2*t^8.66 + 2*t^8.67 + t^8.68 + t^8.71 + t^8.74 + 3*t^8.75 + t^8.77 + 4*t^8.78 + 2*t^8.79 + t^8.81 + 2*t^8.82 + 4*t^8.85 + 2*t^8.86 + 2*t^8.88 + 6*t^8.89 + 2*t^8.9 + t^8.91 + 4*t^8.92 - 3*t^8.93 + 4*t^8.95 - 3*t^8.96 - 6*t^8.97 + 2*t^8.99 - t^4.01/y - t^5.02/y - t^6.03/y - t^6.04/y - t^6.87/y - t^6.94/y - t^6.97/y - (2*t^6.98)/y - t^7.05/y + t^7.87/y + t^7.95/y + (2*t^7.98)/y + (3*t^7.99)/y - t^8.05/y - (2*t^8.06)/y + t^8.78/y + t^8.81/y + (2*t^8.82)/y + t^8.89/y + t^8.9/y + t^8.92/y + (2*t^8.93)/y - (2*t^8.96)/y - t^4.01*y - t^5.02*y - t^6.03*y - t^6.04*y - t^6.87*y - t^6.94*y - t^6.97*y - 2*t^6.98*y - t^7.05*y + t^7.87*y + t^7.95*y + 2*t^7.98*y + 3*t^7.99*y - t^8.05*y - 2*t^8.06*y + t^8.78*y + t^8.81*y + 2*t^8.82*y + t^8.89*y + t^8.9*y + t^8.92*y + 2*t^8.93*y - 2*t^8.96*y | t^2.02/(g1^2*g2^2*g3^2*g4^2) + (g1*g4*t^2.02)/(g2^5*g3^5) + g2^6*g4^6*t^2.85 + t^2.93/(g1^6*g3^6) + g1^3*g2^3*g3^3*g4^3*t^2.96 + g1^6*g4^6*t^2.96 + g2^6*g3^6*t^2.97 + (g2^5*g4^5*t^3.87)/(g1*g3) + (g1^5*g4^5*t^3.97)/(g2*g3) + t^4.04/(g1*g2^7*g3^7*g4) + (g1^2*g4^2*t^4.04)/(g2^10*g3^10) + t^4.05/(g1^4*g2^4*g3^4*g4^4) + (g1^5*g3^5*t^4.08)/(g2*g4) + (g1*g2*g4^7*t^4.87)/g3^5 + (2*g2^4*g4^4*t^4.88)/(g1^2*g3^2) + t^4.95/(g1^8*g2^2*g3^8*g4^2) + (g4*t^4.95)/(g1^5*g2^5*g3^11) + (3*g1^4*g4^4*t^4.98)/(g2^2*g3^2) + (g1^7*g4^7*t^4.98)/(g2^5*g3^5) + (2*g2^4*g3^4*t^4.99)/(g1^2*g4^2) + 2*g1*g2*g3*g4*t^4.99 + (g1^4*g3^4*t^5.1)/(g2^2*g4^2) + (g1^5*g2^11*t^5.4)/(g3*g4) + (g3^5*g4^11*t^5.4)/(g1*g2) + (g1^11*g2^5*t^5.51)/(g3*g4) + (g3^11*g4^5*t^5.51)/(g1*g2) + g2^12*g4^12*t^5.71 + (g2^6*g4^6*t^5.78)/(g1^6*g3^6) + g1^6*g2^6*g4^12*t^5.81 + g2^12*g3^6*g4^6*t^5.82 + g1^3*g2^9*g3^3*g4^9*t^5.82 + t^5.85/(g1^12*g3^12) + (2*g2^3*g4^3*t^5.89)/(g1^3*g3^3) + (g4^6*t^5.89)/g3^6 + g1^9*g2^3*g3^3*g4^9*t^5.92 + g1^12*g4^12*t^5.92 + g1^3*g2^9*g3^9*g4^3*t^5.93 + 2*g1^6*g2^6*g3^6*g4^6*t^5.93 + g2^12*g3^12*t^5.94 + (g1^6*g4^6*t^5.99)/(g2^6*g3^6) - 4*t^6. + (g1^3*g4^3*t^6.)/(g2^3*g3^3) + t^6.06/(g2^12*g3^12) + (g1^3*g4^3*t^6.06)/(g2^15*g3^15) + t^6.07/(g1^6*g2^6*g3^6*g4^6) + t^6.07/(g1^3*g2^9*g3^9*g4^3) - (g3^6*t^6.11)/g4^6 + (g1^3*g3^3*t^6.11)/(g2^3*g4^3) + (g3^4*g4^10*t^6.41)/(g1^2*g2^2) + (g1^4*g2^10*t^6.42)/(g3^2*g4^2) + (g1^10*g2^4*t^6.52)/(g3^2*g4^2) + (g3^10*g4^4*t^6.53)/(g1^2*g2^2) + (g2^11*g4^11*t^6.72)/(g1*g3) + (g2^5*g4^5*t^6.79)/(g1^7*g3^7) + (g2^11*g3^5*g4^5*t^6.83)/g1 + g1^2*g2^8*g3^2*g4^8*t^6.83 + (2*g1^5*g2^5*g4^11*t^6.83)/g3 + (g1^2*g4^8*t^6.89)/(g2^4*g3^10) + (2*g2^2*g4^2*t^6.9)/(g1^4*g3^4) + (2*g4^5*t^6.9)/(g1*g2*g3^7) - (g2^5*t^6.91)/(g1^7*g3*g4) + g1^8*g2^2*g3^2*g4^8*t^6.93 + (g1^11*g4^11*t^6.93)/(g2*g3) + 2*g1^5*g2^5*g3^5*g4^5*t^6.94 + t^6.97/(g1^7*g2^7*g3^13*g4) + (g4^2*t^6.97)/(g1^4*g2^10*g3^16) + t^6.98/(g1^10*g2^4*g3^10*g4^4) + (3*g1^5*g4^5*t^7.)/(g2^7*g3^7) + (g1^8*g4^8*t^7.)/(g2^10*g3^10) + t^7.01/(g1*g2*g3*g4) + (4*g1^2*g4^2*t^7.01)/(g2^4*g3^4) + (2*g2^2*g3^2*t^7.02)/(g1^4*g4^4) + (g1^11*g3^5*g4^5*t^7.04)/g2 + (g1^5*g2^5*g3^11*t^7.05)/g4 + g1^8*g2^2*g3^8*g4^2*t^7.05 + (g1^2*g3^2*t^7.12)/(g2^4*g4^4) - (g3^5*t^7.13)/(g1*g2*g4^7) + (g4^15*t^7.31)/(g1^3*g2^3*g3^3) + (g2^15*t^7.32)/(g1^3*g3^3*g4^3) + (g4^12*t^7.42)/g2^6 + (2*g1^3*g2^9*t^7.43)/(g3^3*g4^3) - (g3^6*g4^6*t^7.43)/g1^6 + (2*g3^3*g4^9*t^7.43)/(g1^3*g2^3) + (g1^12*t^7.53)/g3^6 + (2*g1^9*g2^3*t^7.53)/(g3^3*g4^3) - (g1^6*g2^6*t^7.54)/g4^6 + (2*g3^9*g4^3*t^7.54)/(g1^3*g2^3) + (g1^15*t^7.64)/(g2^3*g3^3*g4^3) + (g3^15*t^7.65)/(g1^3*g2^3*g4^3) + (3*g2^10*g4^10*t^7.73)/(g1^2*g3^2) + (g1*g2^7*g4^13*t^7.73)/g3^5 + (g2*g4^7*t^7.8)/(g1^5*g3^11) + (2*g2^4*g4^4*t^7.81)/(g1^8*g3^8) + (g1^7*g2*g4^13*t^7.83)/g3^5 + 2*g1*g2^7*g3*g4^7*t^7.84 + (5*g1^4*g2^4*g4^10*t^7.84)/g3^2 + (3*g2^10*g3^4*g4^4*t^7.85)/g1^2 + (g4*t^7.87)/(g1^11*g2^5*g3^17) + t^7.88/(g1^14*g2^2*g3^14*g4^2) + (2*g4^4*t^7.91)/(g1^2*g2^2*g3^8) + (g1*g4^7*t^7.91)/(g2^5*g3^11) + (2*g2*g4*t^7.92)/(g1^5*g3^5) + (4*g1^10*g4^10*t^7.94)/(g2^2*g3^2) + (g1^13*g4^13*t^7.94)/(g2^5*g3^5) + 6*g1^4*g2^4*g3^4*g4^4*t^7.95 + 3*g1^7*g2*g3*g4^7*t^7.95 + (2*g2^10*g3^10*t^7.96)/(g1^2*g4^2) + 2*g1*g2^7*g3^7*g4*t^7.96 + (g1^7*g4^7*t^8.01)/(g2^11*g3^11) - (5*t^8.02)/(g1^2*g2^2*g3^2*g4^2) - (3*g1*g4*t^8.02)/(g2^5*g3^5) + (g1^4*g4^4*t^8.02)/(g2^8*g3^8) + (g1^4*g2^4*g3^10*t^8.06)/g4^2 + (2*g1^10*g3^4*g4^4*t^8.06)/g2^2 + (g1*g4*t^8.08)/(g2^17*g3^17) + (g1^4*g4^4*t^8.08)/(g2^20*g3^20) + t^8.09/(g1^5*g2^11*g3^11*g4^5) + t^8.09/(g1^2*g2^14*g3^14*g4^2) + t^8.1/(g1^8*g2^8*g3^8*g4^8) - (g1^4*t^8.13)/(g2^8*g3^2*g4^2) - (2*g3^4*t^8.14)/(g1^2*g2^2*g4^8) + (g1^10*g3^10*t^8.17)/(g2^2*g4^2) + (g1^5*g2^17*g4^5*t^8.26)/g3 + (g2^5*g3^5*g4^17*t^8.26)/g1 + (2*g1^11*g2^11*g4^5*t^8.36)/g3 + g1^2*g2^2*g3^8*g4^14*t^8.36 + (g1^5*g3^5*g4^17*t^8.36)/g2 + (g1^5*g2^17*g3^5*t^8.37)/g4 + g1^8*g2^14*g3^2*g4^2*t^8.37 + (2*g2^5*g3^11*g4^11*t^8.37)/g1 + (g1^2*g2^8*t^8.44)/(g3^4*g4^4) - (g3^5*g4^5*t^8.44)/(g1^7*g2) + (g3^2*g4^8*t^8.44)/(g1^4*g2^4) - (g2^11*t^8.45)/(g1*g3*g4^7) + g1^14*g2^8*g3^2*g4^2*t^8.47 + (g1^17*g2^5*g4^5*t^8.47)/g3 + (g1^5*g3^11*g4^11*t^8.47)/g2 + (g1^11*g2^11*g3^5*t^8.48)/g4 + (g2^5*g3^17*g4^5*t^8.48)/g1 + g1^2*g2^2*g3^14*g4^8*t^8.48 - (2*g1^5*g2^5*t^8.55)/(g3*g4^7) + (g1^8*g2^2*t^8.55)/(g3^4*g4^4) + (g3^8*g4^2*t^8.55)/(g1^4*g2^4) - (g3^5*g4^5*t^8.55)/(g1*g2^7) - (g3^11*t^8.56)/(g1^7*g2*g4) + g2^18*g4^18*t^8.56 + (g2^12*g4^12*t^8.64)/(g1^6*g3^6) - (g1^11*t^8.66)/(g2*g3*g4^7) - (g3^11*t^8.66)/(g1*g2^7*g4) + g1^3*g2^15*g3^3*g4^15*t^8.67 + g1^6*g2^12*g4^18*t^8.67 + g2^18*g3^6*g4^12*t^8.68 + (g2^6*g4^6*t^8.71)/(g1^12*g3^12) + (g2^6*g4^12*t^8.74)/g3^6 + (3*g2^9*g4^9*t^8.75)/(g1^3*g3^3) + g1^12*g2^6*g4^18*t^8.77 + t^8.78/(g1^18*g3^18) + 2*g1^6*g2^12*g3^6*g4^12*t^8.78 + g1^9*g2^9*g3^3*g4^15*t^8.78 + g2^18*g3^12*g4^6*t^8.79 + g1^3*g2^15*g3^9*g4^9*t^8.79 + (g4^6*t^8.81)/(g1^6*g3^12) + (2*g2^3*g4^3*t^8.82)/(g1^9*g3^9) - 3*g2^6*g4^6*t^8.85 + (5*g1^3*g2^3*g4^9*t^8.85)/g3^3 + (2*g1^6*g4^12*t^8.85)/g3^6 + (2*g2^9*g3^3*g4^3*t^8.86)/g1^3 + g1^15*g2^3*g3^3*g4^15*t^8.88 + g1^18*g4^18*t^8.88 + 2*g1^6*g2^12*g3^12*g4^6*t^8.89 + 2*g1^9*g2^9*g3^9*g4^9*t^8.89 + 2*g1^12*g2^6*g3^6*g4^12*t^8.89 + g2^18*g3^18*t^8.9 + g1^3*g2^15*g3^15*g4^3*t^8.9 + (g1^3*g4^9*t^8.91)/(g2^9*g3^15) + (2*g4^3*t^8.92)/(g1^3*g2^3*g3^9) + (2*g4^6*t^8.92)/(g2^6*g3^12) - (2*t^8.93)/(g1^6*g3^6) - (g2^3*t^8.93)/(g1^9*g3^3*g4^3) + (3*g1^9*g4^9*t^8.95)/(g2^3*g3^3) + (g1^12*g4^12*t^8.95)/(g2^6*g3^6) - 3*g1^6*g4^6*t^8.96 - 6*g2^6*g3^6*t^8.97 + t^8.99/(g1^6*g2^12*g3^18) + (g4^3*t^8.99)/(g1^3*g2^15*g3^21) - t^4.01/(g1*g2*g3*g4*y) - t^5.02/(g1^2*g2^2*g3^2*g4^2*y) - t^6.03/(g2^6*g3^6*y) - t^6.04/(g1^3*g2^3*g3^3*g4^3*y) - (g2^5*g4^5*t^6.87)/(g1*g3*y) - t^6.94/(g1^7*g2*g3^7*g4*y) - (g1^5*g4^5*t^6.97)/(g2*g3*y) - (g2^5*g3^5*t^6.98)/(g1*g4*y) - (g1^2*g2^2*g3^2*g4^2*t^6.98)/y - t^7.05/(g1^4*g2^4*g3^4*g4^4*y) + (g1*g2*g4^7*t^7.87)/(g3^5*y) + (g4*t^7.95)/(g1^5*g2^5*g3^11*y) + (g1^4*g4^4*t^7.98)/(g2^2*g3^2*y) + (g1^7*g4^7*t^7.98)/(g2^5*g3^5*y) + (g2^4*g3^4*t^7.99)/(g1^2*g4^2*y) + (2*g1*g2*g3*g4*t^7.99)/y - (g1*g4*t^8.05)/(g2^11*g3^11*y) - t^8.06/(g1^5*g2^5*g3^5*g4^5*y) - t^8.06/(g1^2*g2^8*g3^8*g4^2*y) + (g2^6*g4^6*t^8.78)/(g1^6*g3^6*y) + (g1^6*g2^6*g4^12*t^8.81)/y + (g2^12*g3^6*g4^6*t^8.82)/y + (g1^3*g2^9*g3^3*g4^9*t^8.82)/y + (g4^6*t^8.89)/(g3^6*y) + (g2^6*t^8.9)/(g1^6*y) + (g1^9*g2^3*g3^3*g4^9*t^8.92)/y + (g1^3*g2^9*g3^9*g4^3*t^8.93)/y + (g1^6*g2^6*g3^6*g4^6*t^8.93)/y - t^8.96/(g1^6*g2^6*g3^12*y) - t^8.96/(g1^9*g2^3*g3^9*g4^3*y) - (t^4.01*y)/(g1*g2*g3*g4) - (t^5.02*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.03*y)/(g2^6*g3^6) - (t^6.04*y)/(g1^3*g2^3*g3^3*g4^3) - (g2^5*g4^5*t^6.87*y)/(g1*g3) - (t^6.94*y)/(g1^7*g2*g3^7*g4) - (g1^5*g4^5*t^6.97*y)/(g2*g3) - (g2^5*g3^5*t^6.98*y)/(g1*g4) - g1^2*g2^2*g3^2*g4^2*t^6.98*y - (t^7.05*y)/(g1^4*g2^4*g3^4*g4^4) + (g1*g2*g4^7*t^7.87*y)/g3^5 + (g4*t^7.95*y)/(g1^5*g2^5*g3^11) + (g1^4*g4^4*t^7.98*y)/(g2^2*g3^2) + (g1^7*g4^7*t^7.98*y)/(g2^5*g3^5) + (g2^4*g3^4*t^7.99*y)/(g1^2*g4^2) + 2*g1*g2*g3*g4*t^7.99*y - (g1*g4*t^8.05*y)/(g2^11*g3^11) - (t^8.06*y)/(g1^5*g2^5*g3^5*g4^5) - (t^8.06*y)/(g1^2*g2^8*g3^8*g4^2) + (g2^6*g4^6*t^8.78*y)/(g1^6*g3^6) + g1^6*g2^6*g4^12*t^8.81*y + g2^12*g3^6*g4^6*t^8.82*y + g1^3*g2^9*g3^3*g4^9*t^8.82*y + (g4^6*t^8.89*y)/g3^6 + (g2^6*t^8.9*y)/g1^6 + g1^9*g2^3*g3^3*g4^9*t^8.92*y + g1^3*g2^9*g3^9*g4^3*t^8.93*y + g1^6*g2^6*g3^6*g4^6*t^8.93*y - (t^8.96*y)/(g1^6*g2^6*g3^12) - (t^8.96*y)/(g1^9*g2^3*g3^9*g4^3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
59451 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ | 1.4966 | 1.7281 | 0.866 | [X:[], M:[0.9974, 0.9661, 0.6736], q:[0.5197, 0.4779], qb:[0.5143, 0.4829], phi:[0.3342]] | t^2.01 + t^2.02 + t^2.88 + t^2.9 + t^2.98 + t^2.99 + t^3.01 + t^3.89 + 2*t^4.01 + t^4.03 + t^4.04 + t^4.1 + 2*t^4.89 + 2*t^4.9 + t^4.92 + 2*t^4.98 + 2*t^5. + 3*t^5.01 + t^5.03 + t^5.11 + t^5.43 + t^5.44 + t^5.54 + t^5.55 + t^5.76 + t^5.78 + t^5.8 + t^5.86 + t^5.87 + 3*t^5.89 + t^5.91 + t^5.95 + t^5.97 + 2*t^5.98 - 3*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y | detail | |
60717 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4958 | 1.7267 | 0.8663 | [X:[], M:[0.9893, 0.9948, 0.6897], q:[0.5107, 0.4789], qb:[0.4945, 0.4945], phi:[0.3369]] | t^2.02 + t^2.07 + 2*t^2.92 + t^2.97 + t^2.98 + t^3.02 + t^3.93 + 2*t^4.03 + t^4.04 + t^4.09 + t^4.14 + 4*t^4.94 + 3*t^4.99 + t^5.01 + 4*t^5.04 + t^5.05 + t^5.08 + t^5.42 + 2*t^5.46 + t^5.51 + 3*t^5.84 + 2*t^5.89 + t^5.9 + 3*t^5.94 + 2*t^5.95 + t^5.97 + t^5.98 - 4*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail | |
58974 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.3901 | 1.5662 | 0.8875 | [X:[1.3738], M:[1.0607, 1.0896, 0.7891], q:[0.5236, 0.511], qb:[0.3868, 0.6999], phi:[0.3131]] | t^2.37 + t^2.69 + t^3.18 + t^3.27 + t^3.63 + 2*t^3.67 + t^4.12 + 2*t^4.57 + 2*t^4.61 + t^4.73 + t^5.36 + t^5.39 + t^5.51 + 2*t^5.55 + t^5.58 + t^5.61 + t^5.64 + t^5.88 - 4*t^6. - t^3.94/y - t^4.88/y - t^3.94*y - t^4.88*y | detail | |
60077 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.5176 | 1.7713 | 0.8568 | [X:[], M:[0.9887, 0.9749, 0.6742, 0.6742], q:[0.5126, 0.4761], qb:[0.5126, 0.4761], phi:[0.3371]] | 3*t^2.02 + t^2.86 + t^2.92 + 3*t^2.97 + t^3.87 + 6*t^4.05 + t^4.09 + 4*t^4.88 + 3*t^4.95 + 11*t^4.99 + t^5.1 + 2*t^5.41 + 2*t^5.52 + t^5.71 + t^5.78 + 3*t^5.82 + t^5.85 + 4*t^5.89 + 6*t^5.93 - 4*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47915 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ | 1.476 | 1.6893 | 0.8737 | [M:[0.9872, 0.9765], q:[0.5118, 0.4754], qb:[0.5118, 0.4754], phi:[0.3376]] | t^2.026 + t^2.852 + t^2.929 + 3*t^2.961 + t^3.865 + 2*t^3.974 + t^4.051 + t^4.083 + 2*t^4.878 + t^4.955 + 5*t^4.987 + t^5.096 + 2*t^5.4 + 2*t^5.51 + t^5.705 + t^5.782 + 3*t^5.814 + t^5.859 + 2*t^5.891 + 6*t^5.923 - 2*t^6. - t^4.013/y - t^5.026/y - t^4.013*y - t^5.026*y | detail |