Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47943 | SU3adj1nf2 | $M_1\phi_1q_1\tilde{q}_1$ + $ M_2\phi_1^3$ | 1.4974 | 1.7353 | 0.8629 | [X:[], M:[0.6871, 0.963], q:[0.4836, 0.4794], qb:[0.4836, 0.4794], phi:[0.3457]] | [X:[], M:[[-5, 1, -5, 1], [3, 3, 3, 3]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ \phi_1^2$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_2$, $ q_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_1^2$, $ M_1\phi_1^2$, $ \phi_1^4$, $ M_1q_2\tilde{q}_2$, $ M_1q_2\tilde{q}_1$, $ M_1M_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_1q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_2\phi_1^2$, $ M_1q_1\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1q_1q_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1q_1^2q_2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ q_2^2\tilde{q}_1^2$, $ M_2q_2\tilde{q}_1$, $ M_2^2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ M_2q_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_1^2$, $ M_2q_1\tilde{q}_1$, $ q_1^2\tilde{q}_1\tilde{q}_2$, $ q_1^2\tilde{q}_1^2$, $ M_1\phi_1q_2\tilde{q}_2$, $ \phi_1^3q_2\tilde{q}_2$ | $\phi_1^3q_2\tilde{q}_1$, $ \phi_1^3q_1\tilde{q}_2$ | -2 | t^2.06 + t^2.07 + t^2.88 + 3*t^2.89 + t^2.9 + t^3.91 + 2*t^3.93 + t^4.12 + t^4.14 + t^4.15 + t^4.94 + 5*t^4.95 + 6*t^4.96 + 2*t^4.98 + 2*t^5.36 + 2*t^5.38 + t^5.75 + 3*t^5.77 + 7*t^5.78 + 3*t^5.79 + t^5.8 + t^5.97 + t^5.99 - 2*t^6. - 2*t^6.01 + t^6.18 + t^6.2 + t^6.21 + t^6.22 + 2*t^6.4 + 2*t^6.41 + t^6.79 + 5*t^6.8 + 7*t^6.82 + 2*t^6.83 + t^7. + 5*t^7.01 + 6*t^7.02 + 4*t^7.04 + 4*t^7.43 + 4*t^7.44 + 2*t^7.45 + 2*t^7.46 + t^7.81 + 6*t^7.83 + 16*t^7.84 + 18*t^7.85 + 8*t^7.86 + 2*t^7.88 + t^8.04 + t^8.05 - 5*t^8.06 - 6*t^8.07 - 4*t^8.09 + 2*t^8.24 + 9*t^8.25 + t^8.26 + 9*t^8.27 + 3*t^8.28 + t^8.3 - 2*t^8.48 - 4*t^8.49 - 2*t^8.5 + t^8.63 + 3*t^8.64 + 7*t^8.65 + 13*t^8.67 + 7*t^8.68 + 3*t^8.69 + t^8.71 + t^8.85 + 5*t^8.86 + 5*t^8.88 - 5*t^8.89 - 7*t^8.9 - 2*t^8.91 - t^4.04/y - t^5.07/y - t^6.1/y - t^6.11/y - t^6.91/y - (3*t^6.93)/y - t^6.94/y - t^7.15/y + t^7.94/y + (3*t^7.95)/y + (2*t^7.96)/y + t^7.98/y - t^8.16/y - t^8.17/y - t^8.18/y + (3*t^8.77)/y + (4*t^8.78)/y + (3*t^8.79)/y - (2*t^8.99)/y - t^4.04*y - t^5.07*y - t^6.1*y - t^6.11*y - t^6.91*y - 3*t^6.93*y - t^6.94*y - t^7.15*y + t^7.94*y + 3*t^7.95*y + 2*t^7.96*y + t^7.98*y - t^8.16*y - t^8.17*y - t^8.18*y + 3*t^8.77*y + 4*t^8.78*y + 3*t^8.79*y - 2*t^8.99*y | (g2*g4*t^2.06)/(g1^5*g3^5) + t^2.07/(g1^2*g2^2*g3^2*g4^2) + g2^6*g4^6*t^2.88 + g2^6*g3^6*t^2.89 + g1^3*g2^3*g3^3*g4^3*t^2.89 + g1^6*g4^6*t^2.89 + g1^6*g3^6*t^2.9 + (g2^5*g4^5*t^3.91)/(g1*g3) + (g2^5*g3^5*t^3.93)/(g1*g4) + (g1^5*g4^5*t^3.93)/(g2*g3) + (g2^2*g4^2*t^4.12)/(g1^10*g3^10) + t^4.14/(g1^7*g2*g3^7*g4) + t^4.15/(g1^4*g2^4*g3^4*g4^4) + (g2^7*g4^7*t^4.94)/(g1^5*g3^5) + (g2^7*g3*g4*t^4.95)/g1^5 + (3*g2^4*g4^4*t^4.95)/(g1^2*g3^2) + (g1*g2*g4^7*t^4.95)/g3^5 + (2*g2^4*g3^4*t^4.96)/(g1^2*g4^2) + 2*g1*g2*g3*g4*t^4.96 + (2*g1^4*g4^4*t^4.96)/(g2^2*g3^2) + (2*g1^4*g3^4*t^4.98)/(g2^2*g4^2) + (g1^5*g2^11*t^5.36)/(g3*g4) + (g3^5*g4^11*t^5.36)/(g1*g2) + (g1^11*g2^5*t^5.38)/(g3*g4) + (g3^11*g4^5*t^5.38)/(g1*g2) + g2^12*g4^12*t^5.75 + g2^12*g3^6*g4^6*t^5.77 + g1^3*g2^9*g3^3*g4^9*t^5.77 + g1^6*g2^6*g4^12*t^5.77 + g2^12*g3^12*t^5.78 + g1^3*g2^9*g3^9*g4^3*t^5.78 + 3*g1^6*g2^6*g3^6*g4^6*t^5.78 + g1^9*g2^3*g3^3*g4^9*t^5.78 + g1^12*g4^12*t^5.78 + g1^6*g2^6*g3^12*t^5.79 + g1^9*g2^3*g3^9*g4^3*t^5.79 + g1^12*g3^6*g4^6*t^5.79 + g1^12*g3^12*t^5.8 + (g2^6*g4^6*t^5.97)/(g1^6*g3^6) + (g2^3*g4^3*t^5.99)/(g1^3*g3^3) - 4*t^6. + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (g1^3*g4^3*t^6.)/(g2^3*g3^3) - (g1^6*t^6.01)/g2^6 - (g3^6*t^6.01)/g4^6 + (g2^3*g4^3*t^6.18)/(g1^15*g3^15) + t^6.2/(g1^12*g3^12) + t^6.21/(g1^9*g2^3*g3^9*g4^3) + t^6.22/(g1^6*g2^6*g3^6*g4^6) + (g1^4*g2^10*t^6.4)/(g3^2*g4^2) + (g3^4*g4^10*t^6.4)/(g1^2*g2^2) + (g1^10*g2^4*t^6.41)/(g3^2*g4^2) + (g3^10*g4^4*t^6.41)/(g1^2*g2^2) + (g2^11*g4^11*t^6.79)/(g1*g3) + (2*g2^11*g3^5*g4^5*t^6.8)/g1 + g1^2*g2^8*g3^2*g4^8*t^6.8 + (2*g1^5*g2^5*g4^11*t^6.8)/g3 + (g2^11*g3^11*t^6.82)/(g1*g4) + g1^2*g2^8*g3^8*g4^2*t^6.82 + 3*g1^5*g2^5*g3^5*g4^5*t^6.82 + g1^8*g2^2*g3^2*g4^8*t^6.82 + (g1^11*g4^11*t^6.82)/(g2*g3) + (g1^5*g2^5*g3^11*t^6.83)/g4 + (g1^11*g3^5*g4^5*t^6.83)/g2 + (g2^8*g4^8*t^7.)/(g1^10*g3^10) + (g2^8*g4^2*t^7.01)/(g1^10*g3^4) + (3*g2^5*g4^5*t^7.01)/(g1^7*g3^7) + (g2^2*g4^8*t^7.01)/(g1^4*g3^10) + (g2^5*t^7.02)/(g1^7*g3*g4) + (4*g2^2*g4^2*t^7.02)/(g1^4*g3^4) + (g4^5*t^7.02)/(g1*g2*g3^7) + (2*g2^2*g3^2*t^7.04)/(g1^4*g4^4) + (2*g1^2*g4^2*t^7.04)/(g2^4*g3^4) - (g3^5*t^7.05)/(g1*g2*g4^7) + (2*g1^2*g3^2*t^7.05)/(g2^4*g4^4) - (g1^5*t^7.05)/(g2^7*g3*g4) + (g2^12*t^7.43)/g3^6 + (g2^15*t^7.43)/(g1^3*g3^3*g4^3) + (g4^12*t^7.43)/g1^6 + (g4^15*t^7.43)/(g1^3*g2^3*g3^3) + (2*g1^3*g2^9*t^7.44)/(g3^3*g4^3) + (2*g3^3*g4^9*t^7.44)/(g1^3*g2^3) - (g1^6*g2^6*t^7.45)/g4^6 + (2*g1^9*g2^3*t^7.45)/(g3^3*g4^3) + (2*g3^9*g4^3*t^7.45)/(g1^3*g2^3) - (g3^6*g4^6*t^7.45)/g2^6 + (g1^15*t^7.46)/(g2^3*g3^3*g4^3) + (g3^15*t^7.46)/(g1^3*g2^3*g4^3) + (g2^13*g4^13*t^7.81)/(g1^5*g3^5) + (g2^13*g3*g4^7*t^7.83)/g1^5 + (4*g2^10*g4^10*t^7.83)/(g1^2*g3^2) + (g1*g2^7*g4^13*t^7.83)/g3^5 + (g2^13*g3^7*g4*t^7.84)/g1^5 + (5*g2^10*g3^4*g4^4*t^7.84)/g1^2 + 4*g1*g2^7*g3*g4^7*t^7.84 + (5*g1^4*g2^4*g4^10*t^7.84)/g3^2 + (g1^7*g2*g4^13*t^7.84)/g3^5 + (3*g2^10*g3^10*t^7.85)/(g1^2*g4^2) + 2*g1*g2^7*g3^7*g4*t^7.85 + 8*g1^4*g2^4*g3^4*g4^4*t^7.85 + 2*g1^7*g2*g3*g4^7*t^7.85 + (3*g1^10*g4^10*t^7.85)/(g2^2*g3^2) + (3*g1^4*g2^4*g3^10*t^7.86)/g4^2 + 2*g1^7*g2*g3^7*g4*t^7.86 + (3*g1^10*g3^4*g4^4*t^7.86)/g2^2 + (2*g1^10*g3^10*t^7.88)/(g2^2*g4^2) + (g2^7*g4^7*t^8.04)/(g1^11*g3^11) + (g2^4*g4^4*t^8.05)/(g1^8*g3^8) - (g2^4*t^8.06)/(g1^8*g3^2*g4^2) - (3*g2*g4*t^8.06)/(g1^5*g3^5) - (g4^4*t^8.06)/(g1^2*g2^2*g3^8) - (6*t^8.07)/(g1^2*g2^2*g3^2*g4^2) - (2*g3^4*t^8.09)/(g1^2*g2^2*g4^8) - (2*g1^4*t^8.09)/(g2^8*g3^2*g4^2) + (g1^5*g2^17*g4^5*t^8.24)/g3 + (g2^5*g3^5*g4^17*t^8.24)/g1 + (g1^5*g2^17*g3^5*t^8.25)/g4 + g1^8*g2^14*g3^2*g4^2*t^8.25 + (g2^4*g4^4*t^8.25)/(g1^20*g3^20) + (2*g1^11*g2^11*g4^5*t^8.25)/g3 + (2*g2^5*g3^11*g4^11*t^8.25)/g1 + g1^2*g2^2*g3^8*g4^14*t^8.25 + (g1^5*g3^5*g4^17*t^8.25)/g2 + (g2*g4*t^8.26)/(g1^17*g3^17) + t^8.27/(g1^14*g2^2*g3^14*g4^2) + (2*g1^11*g2^11*g3^5*t^8.27)/g4 + g1^14*g2^8*g3^2*g4^2*t^8.27 + (g1^17*g2^5*g4^5*t^8.27)/g3 + (g2^5*g3^17*g4^5*t^8.27)/g1 + g1^2*g2^2*g3^14*g4^8*t^8.27 + (2*g1^5*g3^11*g4^11*t^8.27)/g2 + t^8.28/(g1^11*g2^5*g3^11*g4^5) + (g1^17*g2^5*g3^5*t^8.28)/g4 + (g1^5*g3^17*g4^5*t^8.28)/g2 + t^8.3/(g1^8*g2^8*g3^8*g4^8) - (g2^11*t^8.48)/(g1*g3*g4^7) + (g1^2*g2^8*t^8.48)/(g3^4*g4^4) - (g1^5*g2^5*t^8.48)/(g3^7*g4) - (g3^5*g4^5*t^8.48)/(g1^7*g2) + (g3^2*g4^8*t^8.48)/(g1^4*g2^4) - (g4^11*t^8.48)/(g1*g2^7*g3) - (2*g1^5*g2^5*t^8.49)/(g3*g4^7) + (g1^8*g2^2*t^8.49)/(g3^4*g4^4) - (g1^11*t^8.49)/(g2*g3^7*g4) - (g3^11*t^8.49)/(g1^7*g2*g4) + (g3^8*g4^2*t^8.49)/(g1^4*g2^4) - (2*g3^5*g4^5*t^8.49)/(g1*g2^7) - (g1^11*t^8.5)/(g2*g3*g4^7) - (g3^11*t^8.5)/(g1*g2^7*g4) + g2^18*g4^18*t^8.63 + g2^18*g3^6*g4^12*t^8.64 + g1^3*g2^15*g3^3*g4^15*t^8.64 + g1^6*g2^12*g4^18*t^8.64 + g2^18*g3^12*g4^6*t^8.65 + g1^3*g2^15*g3^9*g4^9*t^8.65 + 3*g1^6*g2^12*g3^6*g4^12*t^8.65 + g1^9*g2^9*g3^3*g4^15*t^8.65 + g1^12*g2^6*g4^18*t^8.65 + g2^18*g3^18*t^8.67 + g1^3*g2^15*g3^15*g4^3*t^8.67 + 3*g1^6*g2^12*g3^12*g4^6*t^8.67 + 3*g1^9*g2^9*g3^9*g4^9*t^8.67 + 3*g1^12*g2^6*g3^6*g4^12*t^8.67 + g1^15*g2^3*g3^3*g4^15*t^8.67 + g1^18*g4^18*t^8.67 + g1^6*g2^12*g3^18*t^8.68 + g1^9*g2^9*g3^15*g4^3*t^8.68 + 3*g1^12*g2^6*g3^12*g4^6*t^8.68 + g1^15*g2^3*g3^9*g4^9*t^8.68 + g1^18*g3^6*g4^12*t^8.68 + g1^12*g2^6*g3^18*t^8.69 + g1^15*g2^3*g3^15*g4^3*t^8.69 + g1^18*g3^12*g4^6*t^8.69 + g1^18*g3^18*t^8.71 + (g2^12*g4^12*t^8.85)/(g1^6*g3^6) + (g2^12*g4^6*t^8.86)/g1^6 + (3*g2^9*g4^9*t^8.86)/(g1^3*g3^3) + (g2^6*g4^12*t^8.86)/g3^6 + (4*g2^9*g3^3*g4^3*t^8.88)/g1^3 - 3*g2^6*g4^6*t^8.88 + (4*g1^3*g2^3*g4^9*t^8.88)/g3^3 - 5*g2^6*g3^6*t^8.89 + (2*g2^9*g3^9*t^8.89)/(g1^3*g4^3) + g1^3*g2^3*g3^3*g4^3*t^8.89 - 5*g1^6*g4^6*t^8.89 + (2*g1^9*g4^9*t^8.89)/(g2^3*g3^3) - 7*g1^6*g3^6*t^8.9 - (g2^6*g3^12*t^8.9)/g4^6 + (g1^3*g2^3*g3^9*t^8.9)/g4^3 + (g1^9*g3^3*g4^3*t^8.9)/g2^3 - (g1^12*g4^6*t^8.9)/g2^6 - (g1^12*g3^6*t^8.91)/g2^6 - (g1^6*g3^12*t^8.91)/g4^6 - t^4.04/(g1*g2*g3*g4*y) - t^5.07/(g1^2*g2^2*g3^2*g4^2*y) - t^6.1/(g1^6*g3^6*y) - t^6.11/(g1^3*g2^3*g3^3*g4^3*y) - (g2^5*g4^5*t^6.91)/(g1*g3*y) - (g2^5*g3^5*t^6.93)/(g1*g4*y) - (g1^2*g2^2*g3^2*g4^2*t^6.93)/y - (g1^5*g4^5*t^6.93)/(g2*g3*y) - (g1^5*g3^5*t^6.94)/(g2*g4*y) - t^7.15/(g1^4*g2^4*g3^4*g4^4*y) + (g2^7*g4^7*t^7.94)/(g1^5*g3^5*y) + (g2^7*g3*g4*t^7.95)/(g1^5*y) + (g2^4*g4^4*t^7.95)/(g1^2*g3^2*y) + (g1*g2*g4^7*t^7.95)/(g3^5*y) + (2*g1*g2*g3*g4*t^7.96)/y + (g1^4*g3^4*t^7.98)/(g2^2*g4^2*y) - (g2*g4*t^8.16)/(g1^11*g3^11*y) - t^8.17/(g1^8*g2^2*g3^8*g4^2*y) - t^8.18/(g1^5*g2^5*g3^5*g4^5*y) + (g2^12*g3^6*g4^6*t^8.77)/y + (g1^3*g2^9*g3^3*g4^9*t^8.77)/y + (g1^6*g2^6*g4^12*t^8.77)/y + (g1^3*g2^9*g3^9*g4^3*t^8.78)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.78)/y + (g1^9*g2^3*g3^3*g4^9*t^8.78)/y + (g1^6*g2^6*g3^12*t^8.79)/y + (g1^9*g2^3*g3^9*g4^3*t^8.79)/y + (g1^12*g3^6*g4^6*t^8.79)/y - (2*g2^3*g4^3*t^8.99)/(g1^3*g3^3*y) - (t^4.04*y)/(g1*g2*g3*g4) - (t^5.07*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.1*y)/(g1^6*g3^6) - (t^6.11*y)/(g1^3*g2^3*g3^3*g4^3) - (g2^5*g4^5*t^6.91*y)/(g1*g3) - (g2^5*g3^5*t^6.93*y)/(g1*g4) - g1^2*g2^2*g3^2*g4^2*t^6.93*y - (g1^5*g4^5*t^6.93*y)/(g2*g3) - (g1^5*g3^5*t^6.94*y)/(g2*g4) - (t^7.15*y)/(g1^4*g2^4*g3^4*g4^4) + (g2^7*g4^7*t^7.94*y)/(g1^5*g3^5) + (g2^7*g3*g4*t^7.95*y)/g1^5 + (g2^4*g4^4*t^7.95*y)/(g1^2*g3^2) + (g1*g2*g4^7*t^7.95*y)/g3^5 + 2*g1*g2*g3*g4*t^7.96*y + (g1^4*g3^4*t^7.98*y)/(g2^2*g4^2) - (g2*g4*t^8.16*y)/(g1^11*g3^11) - (t^8.17*y)/(g1^8*g2^2*g3^8*g4^2) - (t^8.18*y)/(g1^5*g2^5*g3^5*g4^5) + g2^12*g3^6*g4^6*t^8.77*y + g1^3*g2^9*g3^3*g4^9*t^8.77*y + g1^6*g2^6*g4^12*t^8.77*y + g1^3*g2^9*g3^9*g4^3*t^8.78*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.78*y + g1^9*g2^3*g3^3*g4^9*t^8.78*y + g1^6*g2^6*g3^12*t^8.79*y + g1^9*g2^3*g3^9*g4^3*t^8.79*y + g1^12*g3^6*g4^6*t^8.79*y - (2*g2^3*g4^3*t^8.99*y)/(g1^3*g3^3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47874 | SU3adj1nf2 | $M_1\phi_1q_1\tilde{q}_1$ | 1.4951 | 1.7264 | 0.866 | [X:[], M:[0.6735], q:[0.4945, 0.493], qb:[0.4945, 0.493], phi:[0.3375]] | t^2.02 + t^2.03 + 3*t^2.96 + t^2.97 + t^3.04 + 3*t^3.97 + t^4.04 + 2*t^4.05 + 5*t^4.98 + 7*t^4.99 + 2*t^5.06 + 2*t^5.45 + 2*t^5.46 + 7*t^5.92 + 3*t^5.93 + t^5.99 + t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y | detail |