Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47943 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4974 1.7353 0.8629 [M:[0.6871, 0.963], q:[0.4836, 0.4794], qb:[0.4836, 0.4794], phi:[0.3457]] [M:[[-5, 1, -5, 1], [3, 3, 3, 3]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ -2 t^2.061 + t^2.074 + t^2.876 + 3*t^2.889 + t^2.902 + t^3.913 + 2*t^3.926 + t^4.123 + t^4.135 + t^4.148 + t^4.938 + 5*t^4.95 + 6*t^4.963 + 2*t^4.976 + 2*t^5.364 + 2*t^5.377 + t^5.753 + 3*t^5.765 + 7*t^5.778 + 3*t^5.791 + t^5.803 + t^5.975 + t^5.987 - 2*t^6. - 2*t^6.013 + t^6.184 + t^6.197 + t^6.209 + t^6.222 + 2*t^6.401 + 2*t^6.414 + t^6.79 + 5*t^6.802 + 7*t^6.815 + 2*t^6.828 + t^6.999 + 5*t^7.012 + 6*t^7.024 + 4*t^7.037 + 4*t^7.425 + 4*t^7.438 + 2*t^7.451 + 2*t^7.464 + t^7.814 + 6*t^7.827 + 16*t^7.839 + 18*t^7.852 + 8*t^7.865 + 2*t^7.877 + t^8.036 + t^8.049 - 5*t^8.061 - 6*t^8.074 - 4*t^8.087 + 2*t^8.24 + t^8.245 + 8*t^8.253 + t^8.258 + 8*t^8.266 + t^8.27 + 2*t^8.279 + t^8.283 + t^8.296 - 2*t^8.475 - 4*t^8.488 - 2*t^8.501 + t^8.629 + 3*t^8.642 + 7*t^8.654 + 13*t^8.667 + 7*t^8.68 + 3*t^8.693 + t^8.705 + t^8.851 + 5*t^8.864 + 5*t^8.876 - 5*t^8.889 - 7*t^8.902 - 2*t^8.914 - t^4.037/y - t^5.074/y - t^6.098/y - t^6.111/y - t^6.913/y - (3*t^6.926)/y - t^6.939/y - t^7.148/y + t^7.938/y + (3*t^7.95)/y + (2*t^7.963)/y + t^7.976/y - t^8.16/y - t^8.172/y - t^8.185/y + (3*t^8.765)/y + (4*t^8.778)/y + (3*t^8.791)/y - (2*t^8.987)/y - t^4.037*y - t^5.074*y - t^6.098*y - t^6.111*y - t^6.913*y - 3*t^6.926*y - t^6.939*y - t^7.148*y + t^7.938*y + 3*t^7.95*y + 2*t^7.963*y + t^7.976*y - t^8.16*y - t^8.172*y - t^8.185*y + 3*t^8.765*y + 4*t^8.778*y + 3*t^8.791*y - 2*t^8.987*y (g2*g4*t^2.061)/(g1^5*g3^5) + t^2.074/(g1^2*g2^2*g3^2*g4^2) + g2^6*g4^6*t^2.876 + g2^6*g3^6*t^2.889 + g1^3*g2^3*g3^3*g4^3*t^2.889 + g1^6*g4^6*t^2.889 + g1^6*g3^6*t^2.902 + (g2^5*g4^5*t^3.913)/(g1*g3) + (g2^5*g3^5*t^3.926)/(g1*g4) + (g1^5*g4^5*t^3.926)/(g2*g3) + (g2^2*g4^2*t^4.123)/(g1^10*g3^10) + t^4.135/(g1^7*g2*g3^7*g4) + t^4.148/(g1^4*g2^4*g3^4*g4^4) + (g2^7*g4^7*t^4.938)/(g1^5*g3^5) + (g2^7*g3*g4*t^4.95)/g1^5 + (3*g2^4*g4^4*t^4.95)/(g1^2*g3^2) + (g1*g2*g4^7*t^4.95)/g3^5 + (2*g2^4*g3^4*t^4.963)/(g1^2*g4^2) + 2*g1*g2*g3*g4*t^4.963 + (2*g1^4*g4^4*t^4.963)/(g2^2*g3^2) + (2*g1^4*g3^4*t^4.976)/(g2^2*g4^2) + (g1^5*g2^11*t^5.364)/(g3*g4) + (g3^5*g4^11*t^5.364)/(g1*g2) + (g1^11*g2^5*t^5.377)/(g3*g4) + (g3^11*g4^5*t^5.377)/(g1*g2) + g2^12*g4^12*t^5.753 + g2^12*g3^6*g4^6*t^5.765 + g1^3*g2^9*g3^3*g4^9*t^5.765 + g1^6*g2^6*g4^12*t^5.765 + g2^12*g3^12*t^5.778 + g1^3*g2^9*g3^9*g4^3*t^5.778 + 3*g1^6*g2^6*g3^6*g4^6*t^5.778 + g1^9*g2^3*g3^3*g4^9*t^5.778 + g1^12*g4^12*t^5.778 + g1^6*g2^6*g3^12*t^5.791 + g1^9*g2^3*g3^9*g4^3*t^5.791 + g1^12*g3^6*g4^6*t^5.791 + g1^12*g3^12*t^5.803 + (g2^6*g4^6*t^5.975)/(g1^6*g3^6) + (g2^3*g4^3*t^5.987)/(g1^3*g3^3) - 4*t^6. + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (g1^3*g4^3*t^6.)/(g2^3*g3^3) - (g1^6*t^6.013)/g2^6 - (g3^6*t^6.013)/g4^6 + (g2^3*g4^3*t^6.184)/(g1^15*g3^15) + t^6.197/(g1^12*g3^12) + t^6.209/(g1^9*g2^3*g3^9*g4^3) + t^6.222/(g1^6*g2^6*g3^6*g4^6) + (g1^4*g2^10*t^6.401)/(g3^2*g4^2) + (g3^4*g4^10*t^6.401)/(g1^2*g2^2) + (g1^10*g2^4*t^6.414)/(g3^2*g4^2) + (g3^10*g4^4*t^6.414)/(g1^2*g2^2) + (g2^11*g4^11*t^6.79)/(g1*g3) + (2*g2^11*g3^5*g4^5*t^6.802)/g1 + g1^2*g2^8*g3^2*g4^8*t^6.802 + (2*g1^5*g2^5*g4^11*t^6.802)/g3 + (g2^11*g3^11*t^6.815)/(g1*g4) + g1^2*g2^8*g3^8*g4^2*t^6.815 + 3*g1^5*g2^5*g3^5*g4^5*t^6.815 + g1^8*g2^2*g3^2*g4^8*t^6.815 + (g1^11*g4^11*t^6.815)/(g2*g3) + (g1^5*g2^5*g3^11*t^6.828)/g4 + (g1^11*g3^5*g4^5*t^6.828)/g2 + (g2^8*g4^8*t^6.999)/(g1^10*g3^10) + (g2^8*g4^2*t^7.012)/(g1^10*g3^4) + (3*g2^5*g4^5*t^7.012)/(g1^7*g3^7) + (g2^2*g4^8*t^7.012)/(g1^4*g3^10) + (g2^5*t^7.024)/(g1^7*g3*g4) + (4*g2^2*g4^2*t^7.024)/(g1^4*g3^4) + (g4^5*t^7.024)/(g1*g2*g3^7) + (2*g2^2*g3^2*t^7.037)/(g1^4*g4^4) + (2*g1^2*g4^2*t^7.037)/(g2^4*g3^4) - (g3^5*t^7.05)/(g1*g2*g4^7) + (2*g1^2*g3^2*t^7.05)/(g2^4*g4^4) - (g1^5*t^7.05)/(g2^7*g3*g4) + (g2^12*t^7.425)/g3^6 + (g2^15*t^7.425)/(g1^3*g3^3*g4^3) + (g4^12*t^7.425)/g1^6 + (g4^15*t^7.425)/(g1^3*g2^3*g3^3) + (2*g1^3*g2^9*t^7.438)/(g3^3*g4^3) + (2*g3^3*g4^9*t^7.438)/(g1^3*g2^3) - (g1^6*g2^6*t^7.451)/g4^6 + (2*g1^9*g2^3*t^7.451)/(g3^3*g4^3) + (2*g3^9*g4^3*t^7.451)/(g1^3*g2^3) - (g3^6*g4^6*t^7.451)/g2^6 + (g1^15*t^7.464)/(g2^3*g3^3*g4^3) + (g3^15*t^7.464)/(g1^3*g2^3*g4^3) + (g2^13*g4^13*t^7.814)/(g1^5*g3^5) + (g2^13*g3*g4^7*t^7.827)/g1^5 + (4*g2^10*g4^10*t^7.827)/(g1^2*g3^2) + (g1*g2^7*g4^13*t^7.827)/g3^5 + (g2^13*g3^7*g4*t^7.839)/g1^5 + (5*g2^10*g3^4*g4^4*t^7.839)/g1^2 + 4*g1*g2^7*g3*g4^7*t^7.839 + (5*g1^4*g2^4*g4^10*t^7.839)/g3^2 + (g1^7*g2*g4^13*t^7.839)/g3^5 + (3*g2^10*g3^10*t^7.852)/(g1^2*g4^2) + 2*g1*g2^7*g3^7*g4*t^7.852 + 8*g1^4*g2^4*g3^4*g4^4*t^7.852 + 2*g1^7*g2*g3*g4^7*t^7.852 + (3*g1^10*g4^10*t^7.852)/(g2^2*g3^2) + (3*g1^4*g2^4*g3^10*t^7.865)/g4^2 + 2*g1^7*g2*g3^7*g4*t^7.865 + (3*g1^10*g3^4*g4^4*t^7.865)/g2^2 + (2*g1^10*g3^10*t^7.877)/(g2^2*g4^2) + (g2^7*g4^7*t^8.036)/(g1^11*g3^11) + (g2^4*g4^4*t^8.049)/(g1^8*g3^8) - (g2^4*t^8.061)/(g1^8*g3^2*g4^2) - (3*g2*g4*t^8.061)/(g1^5*g3^5) - (g4^4*t^8.061)/(g1^2*g2^2*g3^8) - (6*t^8.074)/(g1^2*g2^2*g3^2*g4^2) - (2*g3^4*t^8.087)/(g1^2*g2^2*g4^8) - (2*g1^4*t^8.087)/(g2^8*g3^2*g4^2) + (g1^5*g2^17*g4^5*t^8.24)/g3 + (g2^5*g3^5*g4^17*t^8.24)/g1 + (g2^4*g4^4*t^8.245)/(g1^20*g3^20) + (g1^5*g2^17*g3^5*t^8.253)/g4 + g1^8*g2^14*g3^2*g4^2*t^8.253 + (2*g1^11*g2^11*g4^5*t^8.253)/g3 + (2*g2^5*g3^11*g4^11*t^8.253)/g1 + g1^2*g2^2*g3^8*g4^14*t^8.253 + (g1^5*g3^5*g4^17*t^8.253)/g2 + (g2*g4*t^8.258)/(g1^17*g3^17) + (2*g1^11*g2^11*g3^5*t^8.266)/g4 + g1^14*g2^8*g3^2*g4^2*t^8.266 + (g1^17*g2^5*g4^5*t^8.266)/g3 + (g2^5*g3^17*g4^5*t^8.266)/g1 + g1^2*g2^2*g3^14*g4^8*t^8.266 + (2*g1^5*g3^11*g4^11*t^8.266)/g2 + t^8.27/(g1^14*g2^2*g3^14*g4^2) + (g1^17*g2^5*g3^5*t^8.279)/g4 + (g1^5*g3^17*g4^5*t^8.279)/g2 + t^8.283/(g1^11*g2^5*g3^11*g4^5) + t^8.296/(g1^8*g2^8*g3^8*g4^8) - (g2^11*t^8.475)/(g1*g3*g4^7) + (g1^2*g2^8*t^8.475)/(g3^4*g4^4) - (g1^5*g2^5*t^8.475)/(g3^7*g4) - (g3^5*g4^5*t^8.475)/(g1^7*g2) + (g3^2*g4^8*t^8.475)/(g1^4*g2^4) - (g4^11*t^8.475)/(g1*g2^7*g3) - (2*g1^5*g2^5*t^8.488)/(g3*g4^7) + (g1^8*g2^2*t^8.488)/(g3^4*g4^4) - (g1^11*t^8.488)/(g2*g3^7*g4) - (g3^11*t^8.488)/(g1^7*g2*g4) + (g3^8*g4^2*t^8.488)/(g1^4*g2^4) - (2*g3^5*g4^5*t^8.488)/(g1*g2^7) - (g1^11*t^8.501)/(g2*g3*g4^7) - (g3^11*t^8.501)/(g1*g2^7*g4) + g2^18*g4^18*t^8.629 + g2^18*g3^6*g4^12*t^8.642 + g1^3*g2^15*g3^3*g4^15*t^8.642 + g1^6*g2^12*g4^18*t^8.642 + g2^18*g3^12*g4^6*t^8.654 + g1^3*g2^15*g3^9*g4^9*t^8.654 + 3*g1^6*g2^12*g3^6*g4^12*t^8.654 + g1^9*g2^9*g3^3*g4^15*t^8.654 + g1^12*g2^6*g4^18*t^8.654 + g2^18*g3^18*t^8.667 + g1^3*g2^15*g3^15*g4^3*t^8.667 + 3*g1^6*g2^12*g3^12*g4^6*t^8.667 + 3*g1^9*g2^9*g3^9*g4^9*t^8.667 + 3*g1^12*g2^6*g3^6*g4^12*t^8.667 + g1^15*g2^3*g3^3*g4^15*t^8.667 + g1^18*g4^18*t^8.667 + g1^6*g2^12*g3^18*t^8.68 + g1^9*g2^9*g3^15*g4^3*t^8.68 + 3*g1^12*g2^6*g3^12*g4^6*t^8.68 + g1^15*g2^3*g3^9*g4^9*t^8.68 + g1^18*g3^6*g4^12*t^8.68 + g1^12*g2^6*g3^18*t^8.693 + g1^15*g2^3*g3^15*g4^3*t^8.693 + g1^18*g3^12*g4^6*t^8.693 + g1^18*g3^18*t^8.705 + (g2^12*g4^12*t^8.851)/(g1^6*g3^6) + (g2^12*g4^6*t^8.864)/g1^6 + (3*g2^9*g4^9*t^8.864)/(g1^3*g3^3) + (g2^6*g4^12*t^8.864)/g3^6 + (4*g2^9*g3^3*g4^3*t^8.876)/g1^3 - 3*g2^6*g4^6*t^8.876 + (4*g1^3*g2^3*g4^9*t^8.876)/g3^3 - 5*g2^6*g3^6*t^8.889 + (2*g2^9*g3^9*t^8.889)/(g1^3*g4^3) + g1^3*g2^3*g3^3*g4^3*t^8.889 - 5*g1^6*g4^6*t^8.889 + (2*g1^9*g4^9*t^8.889)/(g2^3*g3^3) - 7*g1^6*g3^6*t^8.902 - (g2^6*g3^12*t^8.902)/g4^6 + (g1^3*g2^3*g3^9*t^8.902)/g4^3 + (g1^9*g3^3*g4^3*t^8.902)/g2^3 - (g1^12*g4^6*t^8.902)/g2^6 - (g1^12*g3^6*t^8.914)/g2^6 - (g1^6*g3^12*t^8.914)/g4^6 - t^4.037/(g1*g2*g3*g4*y) - t^5.074/(g1^2*g2^2*g3^2*g4^2*y) - t^6.098/(g1^6*g3^6*y) - t^6.111/(g1^3*g2^3*g3^3*g4^3*y) - (g2^5*g4^5*t^6.913)/(g1*g3*y) - (g2^5*g3^5*t^6.926)/(g1*g4*y) - (g1^2*g2^2*g3^2*g4^2*t^6.926)/y - (g1^5*g4^5*t^6.926)/(g2*g3*y) - (g1^5*g3^5*t^6.939)/(g2*g4*y) - t^7.148/(g1^4*g2^4*g3^4*g4^4*y) + (g2^7*g4^7*t^7.938)/(g1^5*g3^5*y) + (g2^7*g3*g4*t^7.95)/(g1^5*y) + (g2^4*g4^4*t^7.95)/(g1^2*g3^2*y) + (g1*g2*g4^7*t^7.95)/(g3^5*y) + (2*g1*g2*g3*g4*t^7.963)/y + (g1^4*g3^4*t^7.976)/(g2^2*g4^2*y) - (g2*g4*t^8.16)/(g1^11*g3^11*y) - t^8.172/(g1^8*g2^2*g3^8*g4^2*y) - t^8.185/(g1^5*g2^5*g3^5*g4^5*y) + (g2^12*g3^6*g4^6*t^8.765)/y + (g1^3*g2^9*g3^3*g4^9*t^8.765)/y + (g1^6*g2^6*g4^12*t^8.765)/y + (g1^3*g2^9*g3^9*g4^3*t^8.778)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.778)/y + (g1^9*g2^3*g3^3*g4^9*t^8.778)/y + (g1^6*g2^6*g3^12*t^8.791)/y + (g1^9*g2^3*g3^9*g4^3*t^8.791)/y + (g1^12*g3^6*g4^6*t^8.791)/y - (2*g2^3*g4^3*t^8.987)/(g1^3*g3^3*y) - (t^4.037*y)/(g1*g2*g3*g4) - (t^5.074*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.098*y)/(g1^6*g3^6) - (t^6.111*y)/(g1^3*g2^3*g3^3*g4^3) - (g2^5*g4^5*t^6.913*y)/(g1*g3) - (g2^5*g3^5*t^6.926*y)/(g1*g4) - g1^2*g2^2*g3^2*g4^2*t^6.926*y - (g1^5*g4^5*t^6.926*y)/(g2*g3) - (g1^5*g3^5*t^6.939*y)/(g2*g4) - (t^7.148*y)/(g1^4*g2^4*g3^4*g4^4) + (g2^7*g4^7*t^7.938*y)/(g1^5*g3^5) + (g2^7*g3*g4*t^7.95*y)/g1^5 + (g2^4*g4^4*t^7.95*y)/(g1^2*g3^2) + (g1*g2*g4^7*t^7.95*y)/g3^5 + 2*g1*g2*g3*g4*t^7.963*y + (g1^4*g3^4*t^7.976*y)/(g2^2*g4^2) - (g2*g4*t^8.16*y)/(g1^11*g3^11) - (t^8.172*y)/(g1^8*g2^2*g3^8*g4^2) - (t^8.185*y)/(g1^5*g2^5*g3^5*g4^5) + g2^12*g3^6*g4^6*t^8.765*y + g1^3*g2^9*g3^3*g4^9*t^8.765*y + g1^6*g2^6*g4^12*t^8.765*y + g1^3*g2^9*g3^9*g4^3*t^8.778*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.778*y + g1^9*g2^3*g3^3*g4^9*t^8.778*y + g1^6*g2^6*g3^12*t^8.791*y + g1^9*g2^3*g3^9*g4^3*t^8.791*y + g1^12*g3^6*g4^6*t^8.791*y - (2*g2^3*g4^3*t^8.987*y)/(g1^3*g3^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47874 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ 1.4951 1.7264 0.866 [M:[0.6735], q:[0.4945, 0.493], qb:[0.4945, 0.493], phi:[0.3375]] t^2.021 + t^2.025 + t^2.958 + 2*t^2.962 + t^2.967 + t^3.038 + t^3.971 + 2*t^3.975 + t^4.041 + t^4.046 + t^4.05 + t^4.979 + 4*t^4.983 + 5*t^4.987 + 2*t^4.992 + t^5.058 + t^5.063 + 2*t^5.454 + 2*t^5.458 + t^5.916 + 2*t^5.92 + 4*t^5.925 + 2*t^5.929 + t^5.934 + t^5.991 + 2*t^5.996 - t^4.013/y - t^5.025/y - t^4.013*y - t^5.025*y detail