Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47918 SU3adj1nf2 $M_1\phi_1q_1\tilde{q}_1$ + $ M_1\phi_1q_2\tilde{q}_2$ 1.4951 1.7263 0.8661 [X:[], M:[0.6749], q:[0.4938, 0.4938], qb:[0.4938, 0.4938], phi:[0.3375]] [X:[], M:[[-2, 0, -2]], q:[[3, -1, 3], [3, 0, 0]], qb:[[0, 1, 0], [0, 0, 3]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \phi_1^2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ \phi_1^3$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ M_1^2$, $ M_1\phi_1^2$, $ \phi_1^4$, $ M_1q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1q_1\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_1$, $ M_1q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_1q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$, $ M_1\phi_1^3$, $ \phi_1^5$, $ \phi_1q_1q_2^2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ \phi_1q_1^2q_2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_1^2$, $ q_1q_2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_1^2\tilde{q}_1^2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ q_1^2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ q_1^2\tilde{q}_2^2$ $\phi_1^3q_1\tilde{q}_1$, $ 2\phi_1^3q_2\tilde{q}_1$, $ 2\phi_1^3q_1\tilde{q}_2$, $ 2\phi_1^3q_2\tilde{q}_2$ 2 2*t^2.02 + 4*t^2.96 + t^3.04 + 3*t^3.98 + 3*t^4.05 + 12*t^4.99 + 2*t^5.06 + 4*t^5.46 + 10*t^5.93 + 2*t^6. + 5*t^6.07 + 4*t^6.47 + 12*t^6.94 + 16*t^7.01 + 3*t^7.09 + 12*t^7.48 + 37*t^7.95 - t^8.02 + 7*t^8.1 + 16*t^8.42 - 4*t^8.49 + 20*t^8.89 + 9*t^8.96 - t^4.01/y - t^5.02/y - (2*t^6.04)/y - (4*t^6.98)/y - (2*t^7.05)/y + (6*t^7.99)/y - (2*t^8.06)/y + (6*t^8.93)/y - t^4.01*y - t^5.02*y - 2*t^6.04*y - 4*t^6.98*y - 2*t^7.05*y + 6*t^7.99*y - 2*t^8.06*y + 6*t^8.93*y (2*t^2.02)/(g1^2*g3^2) + g1^3*g2*t^2.96 + 2*g1^3*g3^3*t^2.96 + (g1^3*g3^6*t^2.96)/g2 + t^3.04/(g1^3*g3^3) + (g1^2*g2*t^3.98)/g3 + g1^2*g3^2*t^3.98 + (g1^2*g3^5*t^3.98)/g2 + (3*t^4.05)/(g1^4*g3^4) + (3*g1*g2*t^4.99)/g3^2 + 6*g1*g3*t^4.99 + (3*g1*g3^4*t^4.99)/g2 + (2*t^5.06)/(g1^5*g3^5) + (g1^8*g3^2*t^5.46)/g2 + (g2^2*g3^2*t^5.46)/g1 + (g1^8*g3^5*t^5.46)/g2^2 + (g2*g3^5*t^5.46)/g1 + g1^6*g2^2*t^5.93 + 2*g1^6*g2*g3^3*t^5.93 + 4*g1^6*g3^6*t^5.93 + (2*g1^6*g3^9*t^5.93)/g2 + (g1^6*g3^12*t^5.93)/g2^2 + (g2*t^6.)/g3^3 + (g3^3*t^6.)/g2 + (5*t^6.07)/(g1^6*g3^6) + (g1^7*g3*t^6.47)/g2 + (g2^2*g3*t^6.47)/g1^2 + (g1^7*g3^4*t^6.47)/g2^2 + (g2*g3^4*t^6.47)/g1^2 + (g1^5*g2^2*t^6.94)/g3 + 3*g1^5*g2*g3^2*t^6.94 + 4*g1^5*g3^5*t^6.94 + (3*g1^5*g3^8*t^6.94)/g2 + (g1^5*g3^11*t^6.94)/g2^2 + (4*g2*t^7.01)/(g1*g3^4) + (8*t^7.01)/(g1*g3) + (4*g3^2*t^7.01)/(g1*g2) + (3*t^7.09)/(g1^7*g3^7) + (2*g1^6*t^7.48)/g2 + (2*g2^2*t^7.48)/g1^3 + (g1^6*t^7.48)/g3^3 + (g2^3*t^7.48)/(g1^3*g3^3) + (2*g1^6*g3^3*t^7.48)/g2^2 + (2*g2*g3^3*t^7.48)/g1^3 + (g3^6*t^7.48)/g1^3 + (g1^6*g3^6*t^7.48)/g2^3 + (4*g1^4*g2^2*t^7.95)/g3^2 + 8*g1^4*g2*g3*t^7.95 + 13*g1^4*g3^4*t^7.95 + (8*g1^4*g3^7*t^7.95)/g2 + (4*g1^4*g3^10*t^7.95)/g2^2 - t^8.02/(g1^2*g3^2) + (7*t^8.1)/(g1^8*g3^8) + g1^11*g3^2*t^8.42 + g1^2*g2^3*g3^2*t^8.42 + (3*g1^11*g3^5*t^8.42)/g2 + 3*g1^2*g2^2*g3^5*t^8.42 + (3*g1^11*g3^8*t^8.42)/g2^2 + 3*g1^2*g2*g3^8*t^8.42 + g1^2*g3^11*t^8.42 + (g1^11*g3^11*t^8.42)/g2^3 - (g1^5*t^8.49)/g3^4 - (g2^3*t^8.49)/(g1^4*g3^4) - (g3^5*t^8.49)/g1^4 - (g1^5*g3^5*t^8.49)/g2^3 + g1^9*g2^3*t^8.89 + 2*g1^9*g2^2*g3^3*t^8.89 + 4*g1^9*g2*g3^6*t^8.89 + 6*g1^9*g3^9*t^8.89 + (4*g1^9*g3^12*t^8.89)/g2 + (2*g1^9*g3^15*t^8.89)/g2^2 + (g1^9*g3^18*t^8.89)/g2^3 + 2*g1^3*g2*t^8.96 + (2*g1^3*g2^2*t^8.96)/g3^3 + g1^3*g3^3*t^8.96 + (2*g1^3*g3^6*t^8.96)/g2 + (2*g1^3*g3^9*t^8.96)/g2^2 - t^4.01/(g1*g3*y) - t^5.02/(g1^2*g3^2*y) - (2*t^6.04)/(g1^3*g3^3*y) - (g1^2*g2*t^6.98)/(g3*y) - (2*g1^2*g3^2*t^6.98)/y - (g1^2*g3^5*t^6.98)/(g2*y) - (2*t^7.05)/(g1^4*g3^4*y) + (g1*g2*t^7.99)/(g3^2*y) + (4*g1*g3*t^7.99)/y + (g1*g3^4*t^7.99)/(g2*y) - (2*t^8.06)/(g1^5*g3^5*y) + (2*g1^6*g2*g3^3*t^8.93)/y + (2*g1^6*g3^6*t^8.93)/y + (2*g1^6*g3^9*t^8.93)/(g2*y) - (t^4.01*y)/(g1*g3) - (t^5.02*y)/(g1^2*g3^2) - (2*t^6.04*y)/(g1^3*g3^3) - (g1^2*g2*t^6.98*y)/g3 - 2*g1^2*g3^2*t^6.98*y - (g1^2*g3^5*t^6.98*y)/g2 - (2*t^7.05*y)/(g1^4*g3^4) + (g1*g2*t^7.99*y)/g3^2 + 4*g1*g3*t^7.99*y + (g1*g3^4*t^7.99*y)/g2 - (2*t^8.06*y)/(g1^5*g3^5) + 2*g1^6*g2*g3^3*t^8.93*y + 2*g1^6*g3^6*t^8.93*y + (2*g1^6*g3^9*t^8.93*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47874 SU3adj1nf2 $M_1\phi_1q_1\tilde{q}_1$ 1.4951 1.7264 0.866 [X:[], M:[0.6735], q:[0.4945, 0.493], qb:[0.4945, 0.493], phi:[0.3375]] t^2.02 + t^2.03 + 3*t^2.96 + t^2.97 + t^3.04 + 3*t^3.97 + t^4.04 + 2*t^4.05 + 5*t^4.98 + 7*t^4.99 + 2*t^5.06 + 2*t^5.45 + 2*t^5.46 + 7*t^5.92 + 3*t^5.93 + t^5.99 + t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y detail