Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47873 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ 1.4741 1.6841 0.8753 [q:[0.5, 0.4923], qb:[0.5, 0.4923], phi:[0.3359]] [q:[[0, -1, 0], [6, 0, 0]], qb:[[0, 1, 0], [0, 0, 6]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{5}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${2}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ 2}\phi_{1}^{3}q_{1}\tilde{q}_{2}$ 1 t^2.015 + t^2.954 + 2*t^2.977 + t^3. + t^3.023 + t^3.962 + 2*t^3.985 + t^4.008 + t^4.031 + 2*t^4.969 + 4*t^4.992 + 2*t^5.015 + t^5.038 + 2*t^5.462 + 2*t^5.485 + t^5.908 + 2*t^5.931 + 4*t^5.954 + 2*t^5.977 + t^6. + 2*t^6.046 + 2*t^6.469 + 2*t^6.492 + t^6.915 + 4*t^6.939 + 6*t^6.962 + 5*t^6.985 + 4*t^7.008 + t^7.031 + t^7.054 + 2*t^7.454 + 2*t^7.477 + 2*t^7.5 + 2*t^7.523 + 3*t^7.923 + 7*t^7.946 + 11*t^7.969 + 6*t^7.992 + 3*t^8.015 - t^8.038 + 2*t^8.061 + 2*t^8.415 + 6*t^8.439 + 4*t^8.462 - 2*t^8.508 - 2*t^8.531 + t^8.862 + 2*t^8.885 + 4*t^8.908 + 7*t^8.931 + 5*t^8.954 + 3*t^8.977 - t^4.008/y - t^5.015/y - t^6.023/y - t^6.962/y - (2*t^6.985)/y - t^7.008/y - (2*t^7.031)/y + t^7.992/y - t^8.038/y + (2*t^8.931)/y + (2*t^8.954)/y + (2*t^8.977)/y - t^4.008*y - t^5.015*y - t^6.023*y - t^6.962*y - 2*t^6.985*y - t^7.008*y - 2*t^7.031*y + t^7.992*y - t^8.038*y + 2*t^8.931*y + 2*t^8.954*y + 2*t^8.977*y t^2.015/(g1^2*g3^2) + g1^6*g3^6*t^2.954 + g1^6*g2*t^2.977 + (g3^6*t^2.977)/g2 + t^3. + t^3.023/(g1^3*g3^3) + g1^5*g3^5*t^3.962 + (g1^5*g2*t^3.985)/g3 + (g3^5*t^3.985)/(g1*g2) + t^4.008/(g1*g3) + t^4.031/(g1^4*g3^4) + 2*g1^4*g3^4*t^4.969 + (2*g1^4*g2*t^4.992)/g3^2 + (2*g3^4*t^4.992)/(g1^2*g2) + (2*t^5.015)/(g1^2*g3^2) + t^5.038/(g1^5*g3^5) + (g1^11*t^5.462)/(g2*g3) + (g2*g3^11*t^5.462)/g1 + (g1^5*t^5.485)/(g2^2*g3) + (g2^2*g3^5*t^5.485)/g1 + g1^12*g3^12*t^5.908 + g1^12*g2*g3^6*t^5.931 + (g1^6*g3^12*t^5.931)/g2 + g1^12*g2^2*t^5.954 + 2*g1^6*g3^6*t^5.954 + (g3^12*t^5.954)/g2^2 + 2*g1^3*g3^3*t^5.977 - 3*t^6. + (2*g1^3*g2*t^6.)/g3^3 + (2*g3^3*t^6.)/(g1^3*g2) - t^6.023/(g1^6*g2) - (g2*t^6.023)/g3^6 + (2*t^6.023)/(g1^3*g3^3) + (2*t^6.046)/(g1^6*g3^6) + (g1^10*t^6.469)/(g2*g3^2) + (g2*g3^10*t^6.469)/g1^2 + (g1^4*t^6.492)/(g2^2*g3^2) + (g2^2*g3^4*t^6.492)/g1^2 + g1^11*g3^11*t^6.915 + 2*g1^11*g2*g3^5*t^6.939 + (2*g1^5*g3^11*t^6.939)/g2 + (g1^11*g2^2*t^6.962)/g3 + 4*g1^5*g3^5*t^6.962 + (g3^11*t^6.962)/(g1*g2^2) + (g1^5*g2*t^6.985)/g3 + 3*g1^2*g3^2*t^6.985 + (g3^5*t^6.985)/(g1*g2) + (3*g1^2*g2*t^7.008)/g3^4 - (2*t^7.008)/(g1*g3) + (3*g3^2*t^7.008)/(g1^4*g2) - (g2*t^7.031)/(g1*g3^7) + (3*t^7.031)/(g1^4*g3^4) - t^7.031/(g1^7*g2*g3) + t^7.054/(g1^7*g3^7) + (g1^15*t^7.454)/g3^3 + (g3^15*t^7.454)/g1^3 - (g1^6*t^7.477)/g2^2 + (2*g1^9*t^7.477)/(g2*g3^3) - g2^2*g3^6*t^7.477 + (2*g2*g3^9*t^7.477)/g1^3 - (g1^6*t^7.5)/(g2*g3^6) + (2*g1^3*t^7.5)/(g2^2*g3^3) + (2*g2^2*g3^3*t^7.5)/g1^3 - (g2*g3^6*t^7.5)/g1^6 + t^7.523/(g1^3*g2^3*g3^3) + (g2^3*t^7.523)/(g1^3*g3^3) + 3*g1^10*g3^10*t^7.923 + 4*g1^10*g2*g3^4*t^7.946 - g1^7*g3^7*t^7.946 + (4*g1^4*g3^10*t^7.946)/g2 + (3*g1^10*g2^2*t^7.969)/g3^2 - g1^7*g2*g3*t^7.969 + 7*g1^4*g3^4*t^7.969 - (g1*g3^7*t^7.969)/g2 + (3*g3^10*t^7.969)/(g1^2*g2^2) + (2*g1^4*g2*t^7.992)/g3^2 + 2*g1*g3*t^7.992 + (2*g3^4*t^7.992)/(g1^2*g2) + (3*g1*g2*t^8.015)/g3^5 - (3*t^8.015)/(g1^2*g3^2) + (3*g3*t^8.015)/(g1^5*g2) - (2*g2*t^8.038)/(g1^2*g3^8) + (3*t^8.038)/(g1^5*g3^5) - (2*t^8.038)/(g1^8*g2*g3^2) + (2*t^8.061)/(g1^8*g3^8) + (g1^17*g3^5*t^8.415)/g2 + g1^5*g2*g3^17*t^8.415 + (g1^17*t^8.439)/g3 + (2*g1^11*g3^5*t^8.439)/g2^2 + 2*g1^5*g2^2*g3^11*t^8.439 + (g3^17*t^8.439)/g1 + (g1^11*t^8.462)/(g2*g3) + (g1^5*g3^5*t^8.462)/g2^3 + g1^5*g2^3*g3^5*t^8.462 + (g2*g3^11*t^8.462)/g1 - (g1^11*t^8.485)/g3^7 + (2*g1^8*t^8.485)/(g2*g3^4) - (g1^5*t^8.485)/(g2^2*g3) - (g2^2*g3^5*t^8.485)/g1 + (2*g2*g3^8*t^8.485)/g1^4 - (g3^11*t^8.485)/g1^7 - (2*g1^5*t^8.508)/(g2*g3^7) + (2*g1^2*t^8.508)/(g2^2*g3^4) - t^8.508/(g1*g2^3*g3) - (g2^3*t^8.508)/(g1*g3) + (2*g2^2*g3^2*t^8.508)/g1^4 - (2*g2*g3^5*t^8.508)/g1^7 - t^8.531/(g1*g2^2*g3^7) - (g2^2*t^8.531)/(g1^7*g3) + g1^18*g3^18*t^8.862 + g1^18*g2*g3^12*t^8.885 + (g1^12*g3^18*t^8.885)/g2 + g1^18*g2^2*g3^6*t^8.908 + 2*g1^12*g3^12*t^8.908 + (g1^6*g3^18*t^8.908)/g2^2 + g1^18*g2^3*t^8.931 + g1^12*g2*g3^6*t^8.931 + 3*g1^9*g3^9*t^8.931 + (g1^6*g3^12*t^8.931)/g2 + (g3^18*t^8.931)/g2^3 + 5*g1^9*g2*g3^3*t^8.954 - 5*g1^6*g3^6*t^8.954 + (5*g1^3*g3^9*t^8.954)/g2 - 6*g1^6*g2*t^8.977 + (3*g1^9*g2^2*t^8.977)/g3^3 + 9*g1^3*g3^3*t^8.977 - (6*g3^6*t^8.977)/g2 + (3*g3^9*t^8.977)/(g1^3*g2^2) - t^4.008/(g1*g3*y) - t^5.015/(g1^2*g3^2*y) - t^6.023/(g1^3*g3^3*y) - (g1^5*g3^5*t^6.962)/y - (g1^5*g2*t^6.985)/(g3*y) - (g3^5*t^6.985)/(g1*g2*y) - t^7.008/(g1*g3*y) - (2*t^7.031)/(g1^4*g3^4*y) + (g1*g3*t^7.992)/y - t^8.038/(g1^5*g3^5*y) + (g1^12*g2*g3^6*t^8.931)/y + (g1^6*g3^12*t^8.931)/(g2*y) + (2*g1^6*g3^6*t^8.954)/y + (g1^6*g2*t^8.977)/y + (g3^6*t^8.977)/(g2*y) - (t^4.008*y)/(g1*g3) - (t^5.015*y)/(g1^2*g3^2) - (t^6.023*y)/(g1^3*g3^3) - g1^5*g3^5*t^6.962*y - (g1^5*g2*t^6.985*y)/g3 - (g3^5*t^6.985*y)/(g1*g2) - (t^7.008*y)/(g1*g3) - (2*t^7.031*y)/(g1^4*g3^4) + g1*g3*t^7.992*y - (t^8.038*y)/(g1^5*g3^5) + g1^12*g2*g3^6*t^8.931*y + (g1^6*g3^12*t^8.931*y)/g2 + 2*g1^6*g3^6*t^8.954*y + g1^6*g2*t^8.977*y + (g3^6*t^8.977*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47900 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ 1.495 1.7254 0.8664 [M:[0.6707], q:[0.4996, 0.493], qb:[0.5004, 0.4921], phi:[0.3358]] t^2.012 + t^2.015 + t^2.955 + t^2.975 + t^2.98 + t^3. + t^3.022 + t^3.963 + t^3.982 + t^4.007 + t^4.024 + t^4.027 + t^4.03 + t^4.968 + 2*t^4.97 + t^4.987 + 2*t^4.99 + t^4.993 + 2*t^4.995 + t^5.012 + 2*t^5.015 + t^5.035 + t^5.037 + t^5.462 + t^5.464 + t^5.484 + t^5.486 + t^5.911 + t^5.93 + t^5.936 + t^5.95 + 2*t^5.955 + t^5.961 + t^5.975 + 2*t^5.978 + t^5.995 + 2*t^5.997 - 3*t^6. - t^4.007/y - t^5.015/y - t^4.007*y - t^5.015*y detail
47914 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4949 1.7247 0.8668 [M:[0.6769], q:[0.5, 0.4939], qb:[0.5, 0.4939], phi:[0.3354]] t^2.012 + t^2.031 + t^2.963 + 2*t^2.982 + t^3. + t^3.018 + 2*t^3.988 + t^4.006 + t^4.025 + t^4.043 + t^4.061 + 2*t^4.975 + 5*t^4.994 + 4*t^5.012 + 2*t^5.031 + t^5.049 + 2*t^5.469 + 2*t^5.488 + t^5.926 + 2*t^5.945 + 4*t^5.963 + t^5.982 + t^6. - t^4.006/y - t^5.012/y - t^4.006*y - t^5.012*y detail
47922 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ 1.4533 1.6428 0.8846 [M:[1.328], q:[0.5, 0.492], qb:[0.5, 0.492], phi:[0.336]] t^2.952 + 2*t^2.976 + t^3. + t^3.024 + t^3.96 + 3*t^3.984 + t^4.008 + t^4.968 + 2*t^4.992 + t^5.016 + 2*t^5.46 + 2*t^5.484 + t^5.904 + 2*t^5.928 + 4*t^5.952 + t^5.976 - t^6. - t^4.008/y - t^5.016/y - t^4.008*y - t^5.016*y detail
47930 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ 1.455 1.6433 0.8854 [X:[1.3388], M:[0.9552], q:[0.4818, 0.5266], qb:[0.5182, 0.4896], phi:[0.3306]] t^2.866 + t^2.914 + t^2.976 + t^3. + t^3.049 + t^3.906 + t^3.992 + t^4.016 + t^4.041 + t^4.126 + t^4.898 + t^4.984 + t^5.033 + t^5.118 + t^5.463 + t^5.484 + t^5.57 + t^5.597 + t^5.731 + t^5.78 + t^5.829 + t^5.841 + t^5.89 + t^5.914 + t^5.951 + t^5.963 + t^5.976 - 3*t^6. - t^3.992/y - t^4.984/y - t^3.992*y - t^4.984*y detail
47923 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4548 1.6393 0.8875 [X:[1.3494], M:[0.9519], q:[0.5, 0.524], qb:[0.5, 0.524], phi:[0.3253]] t^2.856 + t^2.928 + t^3. + 2*t^3.072 + t^3.976 + 3*t^4.048 + t^4.12 + t^4.952 + 2*t^5.024 + t^5.096 + 2*t^5.548 + 2*t^5.62 + t^5.712 + t^5.784 + 2*t^5.856 + t^5.928 - t^6. - t^3.976/y - t^4.952/y - t^3.976*y - t^4.952*y detail
47937 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ 1.0755 1.2031 0.8939 [X:[1.493], q:[0.3263, 1.0728], qb:[0.6737, 0.4062], phi:[0.2535]] t^2.198 + t^2.281 + t^2.958 + t^3. + t^3.719 + t^4.395 + t^4.437 + 2*t^4.479 + t^4.563 + t^5.156 + t^5.198 + 2*t^5.219 + 2*t^5.24 + 2*t^5.916 + 2*t^5.937 + t^5.958 - t^6. - t^3.76/y - t^4.521/y - t^5.958/y - t^3.76*y - t^4.521*y - t^5.958*y detail
47903 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{3}X_{2}$ 1.0579 1.1204 0.9442 [X:[1.6, 1.4], q:[0.5, 0.9], qb:[0.5, 0.9], phi:[0.2]] t^3. + t^3.6 + 4*t^4.2 + t^4.8 + t^5.4 - 4*t^6. - t^3.6/y - t^4.2/y - t^3.6*y - t^4.2*y detail {a: 8463/8000, c: 8963/8000, X1: 8/5, X2: 7/5, q1: 1/2, q2: 9/10, qb1: 1/2, qb2: 9/10, phi1: 1/5}
47950 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ 1.3239 1.4959 0.885 [X:[1.3746], q:[0.354, 0.7285], qb:[0.646, 0.3952], phi:[0.3127]] t^2.247 + t^2.814 + t^3. + t^3.186 + t^3.371 + t^3.938 + 3*t^4.124 + t^4.309 + t^4.495 + 2*t^5.062 + 3*t^5.247 + t^5.433 + t^5.619 + t^5.629 + t^6. - t^3.938/y - t^4.876/y - t^3.938*y - t^4.876*y detail
47898 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}^{5}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ 1.3298 1.5548 0.8553 [X:[1.4], q:[0.5, 0.3], qb:[0.5, 0.3], phi:[0.4]] 3*t^2.4 + 2*t^3. + 3*t^3.6 + 3*t^4.2 + 2*t^4.5 + 8*t^4.8 + 2*t^5.1 + 5*t^5.4 + 2*t^5.7 + 8*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 5319/4000, c: 6219/4000, X1: 7/5, q1: 1/2, q2: 3/10, qb1: 1/2, qb2: 3/10, phi1: 2/5}
47883 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4532 1.6411 0.8855 [X:[1.3322], q:[0.4975, 0.5008], qb:[0.5025, 0.4959], phi:[0.3339]] t^2.98 + t^2.99 + t^3. + t^3.005 + t^3.01 + t^3.982 + t^3.992 + t^3.997 + t^4.002 + t^4.011 + t^4.984 + t^4.993 + t^5.003 + t^5.013 + t^5.484 + t^5.489 + t^5.499 + t^5.504 + t^5.961 + t^5.971 + t^5.98 + t^5.985 + t^5.99 + t^5.995 - 2*t^6. - t^4.002/y - t^5.003/y - t^4.002*y - t^5.003*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47866 SU3adj1nf2 ${}$ 1.4743 1.6854 0.8748 [q:[0.4934, 0.4934], qb:[0.4934, 0.4934], phi:[0.3377]] t^2.026 + 4*t^2.96 + t^3.04 + 4*t^3.974 + t^4.053 + 8*t^4.987 + t^5.066 + 4*t^5.454 + 10*t^5.921 - t^4.013/y - t^5.026/y - t^4.013*y - t^5.026*y detail