Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47898 SU3adj1nf2 $q_1^2\tilde{q}_1^2$ + $ \phi_1^5$ + $ q_2\tilde{q}_2X_1$ 1.3298 1.5548 0.8553 [X:[1.4], M:[], q:[0.5, 0.3], qb:[0.5, 0.3], phi:[0.4]] [X:[[0, 0]], M:[], q:[[-1, 0], [0, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2 {a: 5319/4000, c: 6219/4000, X1: 7/5, q1: 1/2, q2: 3/10, qb1: 1/2, qb2: 3/10, phi1: 2/5}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1^2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1^3$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ X_1$, $ \phi_1q_1q_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1^4$, $ \phi_1^2q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1^2q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ \phi_1q_1^2q_2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1^3q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1q_2\tilde{q}_2^2$, $ \phi_1q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1q_2\tilde{q}_2^2$, $ \phi_1^2q_1q_2^2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2^2$ $2\phi_1^3q_2\tilde{q}_1$, $ \phi_1q_2^2\tilde{q}_1^2$, $ 2\phi_1^3q_1\tilde{q}_2$, $ 3\phi_1q_1q_2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1^2\tilde{q}_2^2$, $ \phi_1^2q_2^2\tilde{q}_2^2$ 8 3*t^2.4 + 2*t^3. + 3*t^3.6 + 3*t^4.2 + 2*t^4.5 + 8*t^4.8 + 2*t^5.1 + 5*t^5.4 + 2*t^5.7 + 8*t^6. + 4*t^6.3 + 10*t^6.6 + 6*t^6.9 + 22*t^7.2 + 8*t^7.5 + 16*t^7.8 + 8*t^8.1 + 20*t^8.4 + 12*t^8.7 - t^4.2/y - t^5.4/y - (3*t^6.6)/y - t^7.2/y + (3*t^8.4)/y - t^4.2*y - t^5.4*y - 3*t^6.6*y - t^7.2*y + 3*t^8.4*y t^2.4 + (g1*t^2.4)/g2 + (g2*t^2.4)/g1 + 2*t^3. + t^3.6 + (g1*t^3.6)/g2 + (g2*t^3.6)/g1 + 3*t^4.2 + t^4.5/(g1*g2^2) + g1*g2^2*t^4.5 + 2*t^4.8 + (g1^2*t^4.8)/g2^2 + (2*g1*t^4.8)/g2 + (2*g2*t^4.8)/g1 + (g2^2*t^4.8)/g1^2 + t^5.1/(g1^2*g2) + g1^2*g2*t^5.1 + 3*t^5.4 + (g1*t^5.4)/g2 + (g2*t^5.4)/g1 + t^5.7/(g1*g2^2) + g1*g2^2*t^5.7 + 2*t^6. + (g1^2*t^6.)/g2^2 + (2*g1*t^6.)/g2 + (2*g2*t^6.)/g1 + (g2^2*t^6.)/g1^2 + t^6.3/g2^3 + t^6.3/(g1^2*g2) + g1^2*g2*t^6.3 + g2^3*t^6.3 + 4*t^6.6 + (3*g1*t^6.6)/g2 + (3*g2*t^6.6)/g1 + t^6.9/g2^3 + (2*t^6.9)/(g1*g2^2) + 2*g1*g2^2*t^6.9 + g2^3*t^6.9 + 8*t^7.2 + (g1^3*t^7.2)/g2^3 + (3*g1^2*t^7.2)/g2^2 + (3*g1*t^7.2)/g2 + (3*g2*t^7.2)/g1 + (3*g2^2*t^7.2)/g1^2 + (g2^3*t^7.2)/g1^3 + t^7.5/g1^3 + g1^3*t^7.5 + t^7.5/(g1*g2^2) + (2*t^7.5)/(g1^2*g2) + 2*g1^2*g2*t^7.5 + g1*g2^2*t^7.5 + 4*t^7.8 + (g1^2*t^7.8)/g2^2 + (5*g1*t^7.8)/g2 + (5*g2*t^7.8)/g1 + (g2^2*t^7.8)/g1^2 + t^8.1/g1^3 + g1^3*t^8.1 + t^8.1/g2^3 + t^8.1/(g1*g2^2) + t^8.1/(g1^2*g2) + g1^2*g2*t^8.1 + g1*g2^2*t^8.1 + g2^3*t^8.1 + 10*t^8.4 + (g1^3*t^8.4)/g2^3 + (3*g1^2*t^8.4)/g2^2 + (g1*t^8.4)/g2 + (g2*t^8.4)/g1 + (3*g2^2*t^8.4)/g1^2 + (g2^3*t^8.4)/g1^3 + t^8.7/g1^3 + g1^3*t^8.7 + (g1*t^8.7)/g2^4 + (3*t^8.7)/(g1*g2^2) + t^8.7/(g1^2*g2) + g1^2*g2*t^8.7 + 3*g1*g2^2*t^8.7 + (g2^4*t^8.7)/g1 - t^4.2/y - t^5.4/y - t^6.6/y - (g1*t^6.6)/(g2*y) - (g2*t^6.6)/(g1*y) - t^7.2/y - t^8.4/y + (2*g1*t^8.4)/(g2*y) + (2*g2*t^8.4)/(g1*y) - t^4.2*y - t^5.4*y - t^6.6*y - (g1*t^6.6*y)/g2 - (g2*t^6.6*y)/g1 - t^7.2*y - t^8.4*y + (2*g1*t^8.4*y)/g2 + (2*g2*t^8.4*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47873 SU3adj1nf2 $q_1^2\tilde{q}_1^2$ 1.4741 1.6841 0.8753 [X:[], M:[], q:[0.5, 0.4923], qb:[0.5, 0.4923], phi:[0.3359]] t^2.02 + t^2.95 + 2*t^2.98 + t^3. + t^3.02 + t^3.96 + 2*t^3.98 + t^4.01 + t^4.03 + 2*t^4.97 + 4*t^4.99 + 2*t^5.02 + t^5.04 + 2*t^5.46 + 2*t^5.48 + t^5.91 + 2*t^5.93 + 4*t^5.95 + 2*t^5.98 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail