Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47930 SU3adj1nf2 $q_1^2\tilde{q}_1^2$ + $ M_1q_2\tilde{q}_1$ + $ \phi_1^2X_1$ 1.455 1.6433 0.8854 [X:[1.3388], M:[0.9552], q:[0.4818, 0.5266], qb:[0.5182, 0.4896], phi:[0.3306]] [X:[[0, 0, 2]], M:[[-1, 1, -6]], q:[[-1, 0, 0], [0, -1, 6]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ q_1\tilde{q}_2$, $ \phi_1^3$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ X_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_1^2q_2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ \phi_1q_1q_2^2$, $ M_1^2$, $ M_1q_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ M_1\phi_1^3$, $ \phi_1^3q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ \phi_1^6$, $ q_1q_2\tilde{q}_2^2$, $ \phi_1^3q_1\tilde{q}_1$ . -3 t^2.87 + t^2.91 + t^2.98 + t^3. + t^3.05 + t^3.91 + t^3.99 + t^4.02 + t^4.04 + t^4.13 + t^4.9 + t^4.98 + t^5.03 + t^5.12 + t^5.46 + t^5.48 + t^5.57 + t^5.6 + t^5.73 + t^5.78 + t^5.83 + t^5.84 + t^5.89 + t^5.91 + t^5.95 + t^5.96 + t^5.98 - 3*t^6. + t^6.02 + t^6.05 - t^6.09 + t^6.1 - t^6.13 + t^6.45 + t^6.48 + t^6.56 + t^6.59 + t^6.77 + t^6.82 + 2*t^6.88 + 2*t^6.91 + t^6.93 + 2*t^6.96 + t^6.97 + 2*t^7.02 + 3*t^7.04 + t^7.07 - t^7.08 + t^7.09 + t^7.1 + t^7.18 + t^7.31 + t^7.38 - t^7.44 + t^7.45 + t^7.55 - t^7.56 + t^7.64 + t^7.72 + t^7.76 + 2*t^7.81 + t^7.87 + 3*t^7.9 + 3*t^7.95 + t^7.96 + t^7.98 + t^8.01 + 5*t^8.03 - t^8.07 + 2*t^8.08 + t^8.09 + t^8.12 + 2*t^8.17 + t^8.25 + t^8.38 + t^8.4 - t^8.41 + t^8.46 + t^8.48 + 2*t^8.51 - t^8.52 + t^8.53 - t^8.55 + t^8.6 + t^8.62 + 2*t^8.65 - t^8.66 - t^8.68 + t^8.69 + t^8.71 + t^8.74 + t^8.76 + 2*t^8.8 + t^8.82 + t^8.83 - 2*t^8.87 + t^8.88 + 3*t^8.89 - 4*t^8.91 + t^8.93 + 3*t^8.94 + t^8.95 + t^8.96 - t^8.98 + t^8.98/y^2 - t^3.99/y - t^4.98/y - t^6.86/y - t^6.91/y - t^6.97/y - t^6.99/y - t^7.04/y - t^7.85/y - t^7.9/y - t^7.96/y - t^7.98/y - t^8.03/y + t^8.78/y + t^8.84/y + t^8.87/y + (2*t^8.91)/y + t^8.96/y - t^3.99*y - t^4.98*y - t^6.86*y - t^6.91*y - t^6.97*y - t^6.99*y - t^7.04*y - t^7.85*y - t^7.9*y - t^7.96*y - t^7.98*y - t^8.03*y + t^8.78*y + t^8.84*y + t^8.87*y + 2*t^8.91*y + t^8.96*y + t^8.98*y^2 (g2*t^2.87)/(g1*g3^6) + (g2*t^2.91)/g1 + t^2.98/g3^3 + t^3. + g3^6*t^3.05 + (g2*t^3.91)/(g1*g3) + t^3.99/g3 + g3^2*t^4.02 + g3^5*t^4.04 + (g1*g3^5*t^4.13)/g2 + (g2*t^4.9)/(g1*g3^2) + t^4.98/g3^2 + g3^4*t^5.03 + (g1*g3^4*t^5.12)/g2 + (g3^5*t^5.46)/(g1^2*g2) + (g1*g2^2*t^5.48)/g3 + (g1^2*g2*t^5.57)/g3 + (g3^11*t^5.6)/(g1*g2^2) + (g2^2*t^5.73)/(g1^2*g3^12) + (g2^2*t^5.78)/(g1^2*g3^6) + (g2^2*t^5.83)/g1^2 + (g2*t^5.84)/(g1*g3^9) + (g2*t^5.89)/(g1*g3^3) + (g2*t^5.91)/g1 + t^5.95/g3^6 + (g2*g3^6*t^5.96)/g1 + t^5.98/g3^3 - 3*t^6. + g3^3*t^6.02 + g3^6*t^6.05 - (g1*t^6.09)/g2 + g3^12*t^6.1 - (g1*g3^6*t^6.13)/g2 + (g3^4*t^6.45)/(g1^2*g2) + (g1*g2^2*t^6.48)/g3^2 + (g1^2*g2*t^6.56)/g3^2 + (g3^10*t^6.59)/(g1*g2^2) + (g2^2*t^6.77)/(g1^2*g3^7) + (g2^2*t^6.82)/(g1^2*g3) + (2*g2*t^6.88)/(g1*g3^4) + (2*g2*t^6.91)/(g1*g3) + (g2*g3^2*t^6.93)/g1 + (2*g2*g3^5*t^6.96)/g1 + t^6.97/g3^4 + 2*g3^2*t^7.02 + 3*g3^5*t^7.04 + g3^8*t^7.07 - (g1*t^7.08)/(g2*g3) + g3^11*t^7.09 + (g1*g3^2*t^7.1)/g2 + (g1*g3^11*t^7.18)/g2 + t^7.31/(g1^3*g3^3) + (g2^3*t^7.38)/g3^3 - (g1*g2^2*t^7.44)/g3^6 + (g3^3*t^7.45)/(g1^2*g2) + (g1*g2^2*t^7.47)/g3^3 - (g3^6*t^7.47)/(g1^2*g2) + (g1^2*g2*t^7.55)/g3^3 - (g3^6*t^7.56)/(g1*g2^2) - g1^2*g2*t^7.58 + (g3^9*t^7.58)/(g1*g2^2) + (g1^3*t^7.64)/g3^3 + (g3^15*t^7.72)/g2^3 + (g2^2*t^7.76)/(g1^2*g3^8) + (2*g2^2*t^7.81)/(g1^2*g3^2) + (g2*t^7.87)/(g1*g3^5) + (3*g2*t^7.9)/(g1*g3^2) + (3*g2*g3^4*t^7.95)/g1 + t^7.96/g3^5 + t^7.98/g3^2 + g3*t^8.01 + 5*g3^4*t^8.03 - (g1*t^8.07)/(g2*g3^2) + 2*g3^10*t^8.08 + (g1*g3*t^8.09)/g2 + (g1*g3^4*t^8.12)/g2 + (2*g1*g3^10*t^8.17)/g2 + (g1^2*g3^10*t^8.25)/g2^2 + (g3^5*t^8.38)/g1^3 + (g2^3*t^8.4)/g3 - t^8.41/(g1^2*g2*g3) - (g1*g2^2*t^8.44)/g3^7 + (g3^2*t^8.44)/(g1^2*g2) + (g1*g2^2*t^8.46)/g3^4 + (g1*g2^2*t^8.48)/g3 + (2*g3^11*t^8.51)/(g1^2*g2) - (g1^2*g2*t^8.52)/g3^7 + g1*g2^2*g3^5*t^8.53 + (g1^2*g2*t^8.55)/g3^4 - (2*g3^5*t^8.55)/(g1*g2^2) - (g1^2*g2*t^8.57)/g3 + (g3^8*t^8.57)/(g1*g2^2) + (g2^3*t^8.6)/(g1^3*g3^18) + g1^2*g2*g3^5*t^8.62 + (g2^3*t^8.65)/(g1^3*g3^12) + (g3^17*t^8.65)/(g1*g2^2) - (g1^3*t^8.66)/g3 - (g3^11*t^8.68)/g2^3 + (g2^3*t^8.69)/(g1^3*g3^6) + (g2^2*t^8.71)/(g1^2*g3^15) + (g2^3*t^8.74)/g1^3 + (g2^2*t^8.76)/(g1^2*g3^9) + (2*g2^2*t^8.8)/(g1^2*g3^3) + (g2*t^8.82)/(g1*g3^12) + (g2^2*t^8.83)/g1^2 - (2*g2*t^8.87)/(g1*g3^6) + (g2^2*g3^6*t^8.88)/g1^2 + (3*g2*t^8.89)/(g1*g3^3) - (4*g2*t^8.91)/g1 + t^8.93/g3^9 + (3*g2*g3^3*t^8.94)/g1 + t^8.95/g3^6 + (g2*g3^6*t^8.96)/g1 - t^8.98/g3^3 + t^8.98/(g3^3*y^2) - t^3.99/(g3*y) - t^4.98/(g3^2*y) - (g2*t^6.86)/(g1*g3^7*y) - (g2*t^6.91)/(g1*g3*y) - t^6.97/(g3^4*y) - t^6.99/(g3*y) - (g3^5*t^7.04)/y - (g2*t^7.85)/(g1*g3^8*y) - (g2*t^7.9)/(g1*g3^2*y) - t^7.96/(g3^5*y) - t^7.98/(g3^2*y) - (g3^4*t^8.03)/y + (g2^2*t^8.78)/(g1^2*g3^6*y) + (g2*t^8.84)/(g1*g3^9*y) + (g2*t^8.87)/(g1*g3^6*y) + (2*g2*t^8.91)/(g1*y) + (g2*g3^6*t^8.96)/(g1*y) - (t^3.99*y)/g3 - (t^4.98*y)/g3^2 - (g2*t^6.86*y)/(g1*g3^7) - (g2*t^6.91*y)/(g1*g3) - (t^6.97*y)/g3^4 - (t^6.99*y)/g3 - g3^5*t^7.04*y - (g2*t^7.85*y)/(g1*g3^8) - (g2*t^7.9*y)/(g1*g3^2) - (t^7.96*y)/g3^5 - (t^7.98*y)/g3^2 - g3^4*t^8.03*y + (g2^2*t^8.78*y)/(g1^2*g3^6) + (g2*t^8.84*y)/(g1*g3^9) + (g2*t^8.87*y)/(g1*g3^6) + (2*g2*t^8.91*y)/g1 + (g2*g3^6*t^8.96*y)/g1 + (t^8.98*y^2)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47873 SU3adj1nf2 $q_1^2\tilde{q}_1^2$ 1.4741 1.6841 0.8753 [X:[], M:[], q:[0.5, 0.4923], qb:[0.5, 0.4923], phi:[0.3359]] t^2.02 + t^2.95 + 2*t^2.98 + t^3. + t^3.02 + t^3.96 + 2*t^3.98 + t^4.01 + t^4.03 + 2*t^4.97 + 4*t^4.99 + 2*t^5.02 + t^5.04 + 2*t^5.46 + 2*t^5.48 + t^5.91 + 2*t^5.93 + 4*t^5.95 + 2*t^5.98 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail