Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47930 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.455 | 1.6433 | 0.8854 | [X:[1.3388], M:[0.9552], q:[0.4818, 0.5266], qb:[0.5182, 0.4896], phi:[0.3306]] | [X:[[0, 0, 2]], M:[[-1, 1, -6]], q:[[-1, 0, 0], [0, -1, 6]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ | ${}$ | -3 | t^2.866 + t^2.914 + t^2.976 + t^3. + t^3.049 + t^3.906 + t^3.992 + t^4.016 + t^4.041 + t^4.126 + t^4.898 + t^4.984 + t^5.033 + t^5.118 + t^5.463 + t^5.484 + t^5.57 + t^5.597 + t^5.731 + t^5.78 + t^5.829 + t^5.841 + t^5.89 + t^5.914 + t^5.951 + t^5.963 + t^5.976 - 3*t^6. + t^6.024 + t^6.049 - t^6.086 + t^6.098 - t^6.134 + t^6.454 + t^6.476 + t^6.562 + t^6.589 + t^6.772 + t^6.821 + 2*t^6.882 + 2*t^6.906 + t^6.931 + 2*t^6.955 + t^6.967 + 2*t^7.016 + 3*t^7.041 + t^7.065 - t^7.077 + t^7.089 + t^7.102 + t^7.175 + t^7.312 + t^7.382 - t^7.444 + t^7.446 + t^7.468 - t^7.471 + t^7.554 - t^7.556 - t^7.578 + t^7.581 + t^7.639 + t^7.715 + t^7.764 + 2*t^7.813 + t^7.874 + 3*t^7.898 + 3*t^7.947 + t^7.959 + t^7.984 + t^8.008 + 5*t^8.033 - t^8.069 + 2*t^8.081 + t^8.094 + t^8.118 + 2*t^8.167 + t^8.253 + t^8.377 + t^8.399 - t^8.414 - t^8.436 + t^8.438 + t^8.46 + t^8.484 + 2*t^8.511 - t^8.521 + t^8.533 + t^8.546 - 2*t^8.548 - t^8.57 + t^8.573 + t^8.597 + t^8.619 + 2*t^8.646 - t^8.656 - t^8.683 + t^8.694 + t^8.707 + t^8.743 + t^8.756 + 2*t^8.804 + t^8.817 + t^8.829 - 2*t^8.866 + t^8.878 + 3*t^8.89 - 4*t^8.914 + t^8.927 + 3*t^8.939 + t^8.951 + t^8.963 - t^8.976 + t^8.976/y^2 - t^3.992/y - t^4.984/y - t^6.857/y - t^6.906/y - t^6.967/y - t^6.992/y - t^7.041/y - t^7.849/y - t^7.898/y - t^7.959/y - t^7.984/y - t^8.033/y + t^8.78/y + t^8.841/y + t^8.866/y + (2*t^8.914)/y + t^8.963/y - t^3.992*y - t^4.984*y - t^6.857*y - t^6.906*y - t^6.967*y - t^6.992*y - t^7.041*y - t^7.849*y - t^7.898*y - t^7.959*y - t^7.984*y - t^8.033*y + t^8.78*y + t^8.841*y + t^8.866*y + 2*t^8.914*y + t^8.963*y + t^8.976*y^2 | (g2*t^2.866)/(g1*g3^6) + (g2*t^2.914)/g1 + t^2.976/g3^3 + t^3. + g3^6*t^3.049 + (g2*t^3.906)/(g1*g3) + t^3.992/g3 + g3^2*t^4.016 + g3^5*t^4.041 + (g1*g3^5*t^4.126)/g2 + (g2*t^4.898)/(g1*g3^2) + t^4.984/g3^2 + g3^4*t^5.033 + (g1*g3^4*t^5.118)/g2 + (g3^5*t^5.463)/(g1^2*g2) + (g1*g2^2*t^5.484)/g3 + (g1^2*g2*t^5.57)/g3 + (g3^11*t^5.597)/(g1*g2^2) + (g2^2*t^5.731)/(g1^2*g3^12) + (g2^2*t^5.78)/(g1^2*g3^6) + (g2^2*t^5.829)/g1^2 + (g2*t^5.841)/(g1*g3^9) + (g2*t^5.89)/(g1*g3^3) + (g2*t^5.914)/g1 + t^5.951/g3^6 + (g2*g3^6*t^5.963)/g1 + t^5.976/g3^3 - 3*t^6. + g3^3*t^6.024 + g3^6*t^6.049 - (g1*t^6.086)/g2 + g3^12*t^6.098 - (g1*g3^6*t^6.134)/g2 + (g3^4*t^6.454)/(g1^2*g2) + (g1*g2^2*t^6.476)/g3^2 + (g1^2*g2*t^6.562)/g3^2 + (g3^10*t^6.589)/(g1*g2^2) + (g2^2*t^6.772)/(g1^2*g3^7) + (g2^2*t^6.821)/(g1^2*g3) + (2*g2*t^6.882)/(g1*g3^4) + (2*g2*t^6.906)/(g1*g3) + (g2*g3^2*t^6.931)/g1 + (2*g2*g3^5*t^6.955)/g1 + t^6.967/g3^4 + 2*g3^2*t^7.016 + 3*g3^5*t^7.041 + g3^8*t^7.065 - (g1*t^7.077)/(g2*g3) + g3^11*t^7.089 + (g1*g3^2*t^7.102)/g2 + (g1*g3^11*t^7.175)/g2 + t^7.312/(g1^3*g3^3) + (g2^3*t^7.382)/g3^3 - (g1*g2^2*t^7.444)/g3^6 + (g3^3*t^7.446)/(g1^2*g2) + (g1*g2^2*t^7.468)/g3^3 - (g3^6*t^7.471)/(g1^2*g2) + (g1^2*g2*t^7.554)/g3^3 - (g3^6*t^7.556)/(g1*g2^2) - g1^2*g2*t^7.578 + (g3^9*t^7.581)/(g1*g2^2) + (g1^3*t^7.639)/g3^3 + (g3^15*t^7.715)/g2^3 + (g2^2*t^7.764)/(g1^2*g3^8) + (2*g2^2*t^7.813)/(g1^2*g3^2) + (g2*t^7.874)/(g1*g3^5) + (3*g2*t^7.898)/(g1*g3^2) + (3*g2*g3^4*t^7.947)/g1 + t^7.959/g3^5 + t^7.984/g3^2 + g3*t^8.008 + 5*g3^4*t^8.033 - (g1*t^8.069)/(g2*g3^2) + 2*g3^10*t^8.081 + (g1*g3*t^8.094)/g2 + (g1*g3^4*t^8.118)/g2 + (2*g1*g3^10*t^8.167)/g2 + (g1^2*g3^10*t^8.253)/g2^2 + (g3^5*t^8.377)/g1^3 + (g2^3*t^8.399)/g3 - t^8.414/(g1^2*g2*g3) - (g1*g2^2*t^8.436)/g3^7 + (g3^2*t^8.438)/(g1^2*g2) + (g1*g2^2*t^8.46)/g3^4 + (g1*g2^2*t^8.484)/g3 + (2*g3^11*t^8.511)/(g1^2*g2) - (g1^2*g2*t^8.521)/g3^7 + g1*g2^2*g3^5*t^8.533 + (g1^2*g2*t^8.546)/g3^4 - (2*g3^5*t^8.548)/(g1*g2^2) - (g1^2*g2*t^8.57)/g3 + (g3^8*t^8.573)/(g1*g2^2) + (g2^3*t^8.597)/(g1^3*g3^18) + g1^2*g2*g3^5*t^8.619 + (g2^3*t^8.646)/(g1^3*g3^12) + (g3^17*t^8.646)/(g1*g2^2) - (g1^3*t^8.656)/g3 - (g3^11*t^8.683)/g2^3 + (g2^3*t^8.694)/(g1^3*g3^6) + (g2^2*t^8.707)/(g1^2*g3^15) + (g2^3*t^8.743)/g1^3 + (g2^2*t^8.756)/(g1^2*g3^9) + (2*g2^2*t^8.804)/(g1^2*g3^3) + (g2*t^8.817)/(g1*g3^12) + (g2^2*t^8.829)/g1^2 - (2*g2*t^8.866)/(g1*g3^6) + (g2^2*g3^6*t^8.878)/g1^2 + (3*g2*t^8.89)/(g1*g3^3) - (4*g2*t^8.914)/g1 + t^8.927/g3^9 + (3*g2*g3^3*t^8.939)/g1 + t^8.951/g3^6 + (g2*g3^6*t^8.963)/g1 - t^8.976/g3^3 + t^8.976/(g3^3*y^2) - t^3.992/(g3*y) - t^4.984/(g3^2*y) - (g2*t^6.857)/(g1*g3^7*y) - (g2*t^6.906)/(g1*g3*y) - t^6.967/(g3^4*y) - t^6.992/(g3*y) - (g3^5*t^7.041)/y - (g2*t^7.849)/(g1*g3^8*y) - (g2*t^7.898)/(g1*g3^2*y) - t^7.959/(g3^5*y) - t^7.984/(g3^2*y) - (g3^4*t^8.033)/y + (g2^2*t^8.78)/(g1^2*g3^6*y) + (g2*t^8.841)/(g1*g3^9*y) + (g2*t^8.866)/(g1*g3^6*y) + (2*g2*t^8.914)/(g1*y) + (g2*g3^6*t^8.963)/(g1*y) - (t^3.992*y)/g3 - (t^4.984*y)/g3^2 - (g2*t^6.857*y)/(g1*g3^7) - (g2*t^6.906*y)/(g1*g3) - (t^6.967*y)/g3^4 - (t^6.992*y)/g3 - g3^5*t^7.041*y - (g2*t^7.849*y)/(g1*g3^8) - (g2*t^7.898*y)/(g1*g3^2) - (t^7.959*y)/g3^5 - (t^7.984*y)/g3^2 - g3^4*t^8.033*y + (g2^2*t^8.78*y)/(g1^2*g3^6) + (g2*t^8.841*y)/(g1*g3^9) + (g2*t^8.866*y)/(g1*g3^6) + (2*g2*t^8.914*y)/g1 + (g2*g3^6*t^8.963*y)/g1 + (t^8.976*y^2)/g3^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
57617 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ | 1.4537 | 1.644 | 0.8843 | [X:[1.3275], M:[0.9913], q:[0.4912, 0.4999], qb:[0.5088, 0.4826], phi:[0.3362]] | t^2.92 + t^2.95 + t^2.97 + t^3. + t^3.03 + t^3.93 + t^3.96 + t^3.98 + t^4.01 + t^4.03 + t^4.94 + t^4.97 + t^5.02 + t^5.04 + t^5.43 + t^5.46 + t^5.48 + t^5.51 + t^5.84 + t^5.87 + 2*t^5.9 + t^5.92 + 3*t^5.95 + t^5.97 - 2*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail | |
57616 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ | 1.4533 | 1.6393 | 0.8865 | [X:[1.3387], M:[0.9919], q:[0.5, 0.5081], qb:[0.5, 0.5081], phi:[0.3306]] | 2*t^2.98 + t^3. + t^3.02 + t^3.05 + t^3.99 + 3*t^4.02 + t^4.04 + t^4.98 + 2*t^5.01 + t^5.03 + 2*t^5.52 + 2*t^5.54 + 3*t^5.95 - t^6. - t^3.99/y - t^4.98/y - t^3.99*y - t^4.98*y | detail | |
57622 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ | 1.4759 | 1.6848 | 0.876 | [X:[1.3387], M:[0.9553, 0.6693], q:[0.4818, 0.5265], qb:[0.5182, 0.4896], phi:[0.3307]] | t^2.01 + t^2.87 + t^2.91 + t^2.98 + t^3. + t^3.05 + t^3.91 + 2*t^4.02 + t^4.04 + t^4.13 + t^4.87 + t^4.9 + t^4.92 + 2*t^4.98 + t^5.01 + t^5.03 + t^5.06 + t^5.12 + t^5.46 + t^5.48 + t^5.57 + t^5.6 + t^5.73 + t^5.78 + t^5.83 + t^5.84 + t^5.89 + 2*t^5.91 + t^5.95 + t^5.96 + t^5.98 - 3*t^6. - t^3.99/y - t^4.98/y - t^6./y - t^3.99*y - t^4.98*y - t^6.*y | detail | |
57619 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.455 | 1.6468 | 0.8836 | [X:[1.3281], M:[0.9714, 0.9922], q:[0.4816, 0.5103], qb:[0.5184, 0.4741], phi:[0.3359]] | t^2.87 + t^2.91 + t^2.95 + t^2.98 + t^3. + t^3.87 + t^3.96 + t^3.98 + t^4.01 + t^4.09 + t^4.88 + t^4.97 + t^5.02 + t^5.1 + t^5.41 + t^5.43 + t^5.51 + t^5.54 + t^5.73 + t^5.78 + t^5.82 + t^5.83 + t^5.84 + t^5.87 + t^5.89 + t^5.91 + t^5.93 + 2*t^5.95 + t^5.98 - 3*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail | |
57618 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ | 1.4548 | 1.6393 | 0.8875 | [X:[1.3497], M:[0.9755, 0.9755], q:[0.5, 0.5245], qb:[0.5, 0.5245], phi:[0.3252]] | 3*t^2.93 + t^3. + t^3.15 + t^3.98 + 3*t^4.05 + t^4.12 + t^4.95 + 2*t^5.02 + t^5.1 + 2*t^5.55 + 2*t^5.62 + 6*t^5.85 + t^5.93 - 3*t^6. - t^3.98/y - t^4.95/y - t^3.98*y - t^4.95*y | detail | |
57614 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ | 1.4493 | 1.6336 | 0.8871 | [X:[1.3566], M:[0.9102], q:[0.4996, 0.5894], qb:[0.5004, 0.4804], phi:[0.3217]] | t^2.73 + t^2.9 + t^2.94 + t^3. + t^3.21 + t^3.91 + t^3.97 + t^4.07 + t^4.17 + t^4.23 + t^4.87 + t^4.93 + t^5.14 + t^5.2 + t^5.35 + t^5.41 + t^5.46 + t^5.63 + t^5.67 + t^5.73 + t^5.79 + t^5.84 + t^5.88 + t^5.9 + t^5.94 - 2*t^6. - t^3.97/y - t^4.93/y - t^3.97*y - t^4.93*y | detail | |
57609 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ | 1.0562 | 1.1652 | 0.9064 | [X:[1.5015], M:[1.2463], q:[0.6652, 0.4189], qb:[0.3348, 1.0856], phi:[0.2493]] | t^2.24 + t^3. + t^3.01 + t^3.74 + t^3.76 + t^4.49 + t^4.5 + t^4.51 + 2*t^5.25 + 2*t^5.26 + t^5.98 - t^6. - t^3.75/y - t^4.5/y - t^5.99/y - t^3.75*y - t^4.5*y - t^5.99*y | detail | |
57612 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 1.4452 | 1.6256 | 0.889 | [X:[1.3612], M:[0.9465], q:[0.4599, 0.5135], qb:[0.5401, 0.5703], phi:[0.3194]] | t^2.84 + t^2.87 + t^3. + t^3.09 + t^3.25 + t^3.96 + t^4.05 + t^4.08 + t^4.12 + t^4.21 + t^4.92 + t^5.01 + t^5.08 + t^5.17 + t^5.26 + t^5.42 + t^5.68 + t^5.71 + t^5.75 + t^5.87 + t^5.93 + t^5.96 - 2*t^6. - t^3.96/y - t^4.92/y - t^3.96*y - t^4.92*y | detail | |
57613 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | 1.4453 | 1.6323 | 0.8855 | [X:[1.3487], M:[0.916], q:[0.4293, 0.5133], qb:[0.5707, 0.5329], phi:[0.3256]] | t^2.75 + t^2.89 + t^2.93 + t^3. + t^3.14 + t^3.86 + t^3.98 + t^4.05 + t^4.12 + t^4.23 + t^4.84 + t^4.95 + 2*t^5.09 + t^5.21 + t^5.34 + t^5.5 + t^5.63 + t^5.68 + t^5.77 + t^5.82 + t^5.86 + 2*t^5.89 + t^5.93 - 2*t^6. - t^3.98/y - t^4.95/y - t^3.98*y - t^4.95*y | detail | |
57610 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$ | 1.3051 | 1.4597 | 0.8941 | [X:[1.3819], M:[1.2363], q:[0.6424, 0.4061], qb:[0.3576, 0.7395], phi:[0.3091]] | t^2.78 + t^3. + t^3.22 + t^3.44 + t^3.71 + t^3.93 + 3*t^4.15 + t^4.36 + t^5.07 + 2*t^5.29 + t^5.56 + t^6. - t^3.93/y - t^4.85/y - t^3.93*y - t^4.85*y | detail | |
57611 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$ | 1.3056 | 1.4474 | 0.902 | [X:[1.5], M:[0.7307], q:[0.4936, 0.7629], qb:[0.5064, 0.7371], phi:[0.25]] | t^2.19 + t^2.25 + t^3. + t^3.69 + t^3.75 + t^4.38 + 2*t^4.44 + 4*t^4.5 + t^4.56 + t^5.19 + 2*t^5.25 + t^5.88 + t^5.94 + t^6. - t^3.75/y - t^4.5/y - t^5.94/y - t^6./y - t^3.75*y - t^4.5*y - t^5.94*y - t^6.*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47873 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ | 1.4741 | 1.6841 | 0.8753 | [q:[0.5, 0.4923], qb:[0.5, 0.4923], phi:[0.3359]] | t^2.015 + t^2.954 + 2*t^2.977 + t^3. + t^3.023 + t^3.962 + 2*t^3.985 + t^4.008 + t^4.031 + 2*t^4.969 + 4*t^4.992 + 2*t^5.015 + t^5.038 + 2*t^5.462 + 2*t^5.485 + t^5.908 + 2*t^5.931 + 4*t^5.954 + 2*t^5.977 + t^6. - t^4.008/y - t^5.015/y - t^4.008*y - t^5.015*y | detail |