Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47883 | SU3adj1nf2 | $q_1^2\tilde{q}_1^2$ + $ q_2^2\tilde{q}_1\tilde{q}_2$ + $ \phi_1^2X_1$ | 1.4532 | 1.6411 | 0.8855 | [X:[1.3322], M:[], q:[0.4975, 0.5008], qb:[0.5025, 0.4959], phi:[0.3339]] | [X:[[0, 2]], M:[], q:[[-1, 12], [-1, 6]], qb:[[1, -12], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1^3$, $ q_1\tilde{q}_1$, $ \phi_1^3$, $ q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ X_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1q_1^2q_2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ \phi_1q_1q_2^2$, $ q_1^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ \phi_1^3q_1\tilde{q}_2$ | $\phi_1^3q_1\tilde{q}_1$, $ \phi_1^3q_2\tilde{q}_2$ | 0 | t^2.98 + t^2.99 + 2*t^3. + t^3.01 + t^3.98 + t^3.99 + 2*t^4. + t^4.01 + t^4.98 + t^4.99 + t^5. + t^5.01 + t^5.48 + t^5.49 + 2*t^5.5 + t^5.96 + t^5.97 + t^5.98 + 2*t^5.99 + 2*t^6.01 + 2*t^6.49 + t^6.5 + t^6.51 + t^6.96 + 2*t^6.97 + 3*t^6.98 + 5*t^6.99 + 3*t^7. + 3*t^7.01 + t^7.02 + t^7.47 + t^7.48 + t^7.51 + t^7.53 + 2*t^7.96 + 3*t^7.97 + 4*t^7.98 + 6*t^7.99 + 4*t^8. + 3*t^8.01 + 2*t^8.02 + t^8.46 + t^8.47 + 2*t^8.48 + 2*t^8.49 - 2*t^8.52 + t^8.94 + t^8.95 + t^8.96 + 3*t^8.97 + 2*t^8.99 - t^4./y - t^5./y - t^6.98/y - t^6.99/y - t^7./y - (2*t^7.01)/y - t^7.98/y - t^7.99/y - t^8./y - (2*t^8.01)/y + t^8.97/y + t^8.98/y + (2*t^8.99)/y - t^4.*y - t^5.*y - t^6.98*y - t^6.99*y - t^7.*y - 2*t^7.01*y - t^7.98*y - t^7.99*y - t^8.*y - 2*t^8.01*y + t^8.97*y + t^8.98*y + 2*t^8.99*y | g2^12*t^2.98 + g2^6*t^2.99 + t^3. + t^3./g2^3 + t^3.01/g2^6 + g2^11*t^3.98 + g2^5*t^3.99 + t^4./g2 + g2^2*t^4. + t^4.01/g2^7 + g2^10*t^4.98 + g2^4*t^4.99 + t^5./g2^2 + t^5.01/g2^8 + (g1^3*t^5.48)/g2^13 + (g2^29*t^5.49)/g1^3 + (g1^3*t^5.5)/g2^25 + (g2^23*t^5.5)/g1^3 + g2^24*t^5.96 + g2^18*t^5.97 + g2^12*t^5.98 + g2^6*t^5.99 + g2^9*t^5.99 - 2*t^6. + t^6./g2^3 + g2^3*t^6. + t^6.01/g2^9 + t^6.01/g2^6 + (g1^3*t^6.49)/g2^14 + (g2^28*t^6.49)/g1^3 + (g2^22*t^6.5)/g1^3 + (g1^3*t^6.51)/g2^26 + g2^23*t^6.96 + 2*g2^17*t^6.97 + 2*g2^11*t^6.98 + g2^14*t^6.98 + 3*g2^5*t^6.99 + 2*g2^8*t^6.99 + t^7./g2 + 2*g2^2*t^7. + t^7.01/g2^7 + (2*t^7.01)/g2^4 + t^7.02/g2^10 + (g1^3*t^7.47)/g2^3 + (g2^33*t^7.48)/g1^3 - (g1^3*t^7.49)/g2^18 + (g1^3*t^7.49)/g2^15 + (g2^27*t^7.49)/g1^3 - (g2^30*t^7.49)/g1^3 - (g1^3*t^7.5)/g2^24 + (g2^21*t^7.5)/g1^3 + (g1^3*t^7.51)/g2^27 + (g2^15*t^7.51)/g1^3 - (g2^18*t^7.51)/g1^3 + (g1^3*t^7.53)/g2^39 + 2*g2^22*t^7.96 + 3*g2^16*t^7.97 + 4*g2^10*t^7.98 + 5*g2^4*t^7.99 + g2^7*t^7.99 + (3*t^8.)/g2^2 + g2*t^8. + (2*t^8.01)/g2^8 + t^8.01/g2^5 + t^8.02/g2^14 + t^8.02/g2^11 + (g1^3*t^8.46)/g2 + (g2^41*t^8.47)/g1^3 + (g1^3*t^8.48)/g2^13 + (g2^35*t^8.48)/g1^3 + (g1^3*t^8.49)/g2^16 + (g2^26*t^8.49)/g1^3 - (g1^3*t^8.5)/g2^25 + (g2^20*t^8.5)/g1^3 + (g1^3*t^8.51)/g2^28 - (g2^17*t^8.51)/g1^3 - (g1^3*t^8.52)/g2^37 - (g2^11*t^8.52)/g1^3 + g2^36*t^8.94 + g2^30*t^8.95 + g2^24*t^8.96 + g2^18*t^8.97 + 2*g2^21*t^8.97 - 3*g2^12*t^8.98 + 3*g2^15*t^8.98 - 2*g2^6*t^8.99 + 4*g2^9*t^8.99 - t^4./(g2*y) - t^5./(g2^2*y) - (g2^11*t^6.98)/y - (g2^5*t^6.99)/y - t^7./(g2*y) - t^7.01/(g2^7*y) - t^7.01/(g2^4*y) - (g2^10*t^7.98)/y - (g2^4*t^7.99)/y - t^8./(g2^2*y) - t^8.01/(g2^8*y) - t^8.01/(g2^5*y) + (g2^18*t^8.97)/y + (g2^12*t^8.98)/y + (2*g2^6*t^8.99)/y - (t^4.*y)/g2 - (t^5.*y)/g2^2 - g2^11*t^6.98*y - g2^5*t^6.99*y - (t^7.*y)/g2 - (t^7.01*y)/g2^7 - (t^7.01*y)/g2^4 - g2^10*t^7.98*y - g2^4*t^7.99*y - (t^8.*y)/g2^2 - (t^8.01*y)/g2^8 - (t^8.01*y)/g2^5 + g2^18*t^8.97*y + g2^12*t^8.98*y + 2*g2^6*t^8.99*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47873 | SU3adj1nf2 | $q_1^2\tilde{q}_1^2$ | 1.4741 | 1.6841 | 0.8753 | [X:[], M:[], q:[0.5, 0.4923], qb:[0.5, 0.4923], phi:[0.3359]] | t^2.02 + t^2.95 + 2*t^2.98 + t^3. + t^3.02 + t^3.96 + 2*t^3.98 + t^4.01 + t^4.03 + 2*t^4.97 + 4*t^4.99 + 2*t^5.02 + t^5.04 + 2*t^5.46 + 2*t^5.48 + t^5.91 + 2*t^5.93 + 4*t^5.95 + 2*t^5.98 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |