Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47922 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ | 1.4533 | 1.6428 | 0.8846 | [M:[1.328], q:[0.5, 0.492], qb:[0.5, 0.492], phi:[0.336]] | [M:[[2, 0, 2]], q:[[0, -1, 0], [6, 0, 0]], qb:[[0, 1, 0], [0, 0, 6]], phi:[[-1, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | -1 | t^2.952 + 2*t^2.976 + t^3. + t^3.024 + t^3.96 + 3*t^3.984 + t^4.008 + t^4.968 + 2*t^4.992 + t^5.016 + 2*t^5.46 + 2*t^5.484 + t^5.904 + 2*t^5.928 + 4*t^5.952 + t^5.976 - t^6. - t^6.024 + t^6.048 + 2*t^6.468 + 2*t^6.492 + t^6.912 + 5*t^6.936 + 8*t^6.96 + 4*t^6.984 + t^7.008 - t^7.032 + 2*t^7.452 + 2*t^7.524 + 2*t^7.92 + 6*t^7.944 + 10*t^7.968 + 5*t^7.992 + 2*t^8.016 - t^8.04 + 2*t^8.412 + 6*t^8.436 + 4*t^8.46 - 2*t^8.484 - 4*t^8.508 - 2*t^8.532 + t^8.856 + 2*t^8.88 + 4*t^8.904 + 6*t^8.928 + 2*t^8.952 - t^8.976 - t^4.008/y - t^5.016/y - t^6.96/y - (2*t^6.984)/y - t^7.008/y - t^7.032/y - t^7.968/y - (2*t^7.992)/y - t^8.016/y - t^8.04/y + (2*t^8.928)/y + (2*t^8.952)/y + (2*t^8.976)/y - t^4.008*y - t^5.016*y - t^6.96*y - 2*t^6.984*y - t^7.008*y - t^7.032*y - t^7.968*y - 2*t^7.992*y - t^8.016*y - t^8.04*y + 2*t^8.928*y + 2*t^8.952*y + 2*t^8.976*y | g1^6*g3^6*t^2.952 + g1^6*g2*t^2.976 + (g3^6*t^2.976)/g2 + t^3. + t^3.024/(g1^3*g3^3) + g1^5*g3^5*t^3.96 + (g1^5*g2*t^3.984)/g3 + g1^2*g3^2*t^3.984 + (g3^5*t^3.984)/(g1*g2) + t^4.008/(g1*g3) + g1^4*g3^4*t^4.968 + (g1^4*g2*t^4.992)/g3^2 + (g3^4*t^4.992)/(g1^2*g2) + t^5.016/(g1^2*g3^2) + (g1^11*t^5.46)/(g2*g3) + (g2*g3^11*t^5.46)/g1 + (g1^5*t^5.484)/(g2^2*g3) + (g2^2*g3^5*t^5.484)/g1 + g1^12*g3^12*t^5.904 + g1^12*g2*g3^6*t^5.928 + (g1^6*g3^12*t^5.928)/g2 + g1^12*g2^2*t^5.952 + 2*g1^6*g3^6*t^5.952 + (g3^12*t^5.952)/g2^2 + g1^3*g3^3*t^5.976 - 3*t^6. + (g1^3*g2*t^6.)/g3^3 + (g3^3*t^6.)/(g1^3*g2) - t^6.024/(g1^6*g2) - (g2*t^6.024)/g3^6 + t^6.024/(g1^3*g3^3) + t^6.048/(g1^6*g3^6) + (g1^10*t^6.468)/(g2*g3^2) + (g2*g3^10*t^6.468)/g1^2 + (g1^4*t^6.492)/(g2^2*g3^2) + (g2^2*g3^4*t^6.492)/g1^2 + g1^11*g3^11*t^6.912 + 2*g1^11*g2*g3^5*t^6.936 + g1^8*g3^8*t^6.936 + (2*g1^5*g3^11*t^6.936)/g2 + (g1^11*g2^2*t^6.96)/g3 + g1^8*g2*g3^2*t^6.96 + 4*g1^5*g3^5*t^6.96 + (g1^2*g3^8*t^6.96)/g2 + (g3^11*t^6.96)/(g1*g2^2) + (g1^5*g2*t^6.984)/g3 + 2*g1^2*g3^2*t^6.984 + (g3^5*t^6.984)/(g1*g2) + (g1^2*g2*t^7.008)/g3^4 - t^7.008/(g1*g3) + (g3^2*t^7.008)/(g1^4*g2) - (g2*t^7.032)/(g1*g3^7) + t^7.032/(g1^4*g3^4) - t^7.032/(g1^7*g2*g3) + (g1^15*t^7.452)/g3^3 + (g3^15*t^7.452)/g1^3 - (g1^6*t^7.476)/g2^2 + (g1^9*t^7.476)/(g2*g3^3) - g2^2*g3^6*t^7.476 + (g2*g3^9*t^7.476)/g1^3 - (g1^6*t^7.5)/(g2*g3^6) + (g1^3*t^7.5)/(g2^2*g3^3) + (g2^2*g3^3*t^7.5)/g1^3 - (g2*g3^6*t^7.5)/g1^6 + t^7.524/(g1^3*g2^3*g3^3) + (g2^3*t^7.524)/(g1^3*g3^3) + 2*g1^10*g3^10*t^7.92 + 3*g1^10*g2*g3^4*t^7.944 + (3*g1^4*g3^10*t^7.944)/g2 + (2*g1^10*g2^2*t^7.968)/g3^2 + 6*g1^4*g3^4*t^7.968 + (2*g3^10*t^7.968)/(g1^2*g2^2) + (2*g1^4*g2*t^7.992)/g3^2 + g1*g3*t^7.992 + (2*g3^4*t^7.992)/(g1^2*g2) + (g1*g2*t^8.016)/g3^5 + (g3*t^8.016)/(g1^5*g2) - (g2*t^8.04)/(g1^2*g3^8) + t^8.04/(g1^5*g3^5) - t^8.04/(g1^8*g2*g3^2) + (g1^17*g3^5*t^8.412)/g2 + g1^5*g2*g3^17*t^8.412 + (g1^17*t^8.436)/g3 + (2*g1^11*g3^5*t^8.436)/g2^2 + 2*g1^5*g2^2*g3^11*t^8.436 + (g3^17*t^8.436)/g1 + (g1^11*t^8.46)/(g2*g3) + (g1^5*g3^5*t^8.46)/g2^3 + g1^5*g2^3*g3^5*t^8.46 + (g2*g3^11*t^8.46)/g1 - (g1^11*t^8.484)/g3^7 + (g1^8*t^8.484)/(g2*g3^4) - (g1^5*t^8.484)/(g2^2*g3) - (g2^2*g3^5*t^8.484)/g1 + (g2*g3^8*t^8.484)/g1^4 - (g3^11*t^8.484)/g1^7 - (2*g1^5*t^8.508)/(g2*g3^7) + (g1^2*t^8.508)/(g2^2*g3^4) - t^8.508/(g1*g2^3*g3) - (g2^3*t^8.508)/(g1*g3) + (g2^2*g3^2*t^8.508)/g1^4 - (2*g2*g3^5*t^8.508)/g1^7 - t^8.532/(g1*g2^2*g3^7) - (g2^2*t^8.532)/(g1^7*g3) + g1^18*g3^18*t^8.856 + g1^18*g2*g3^12*t^8.88 + (g1^12*g3^18*t^8.88)/g2 + g1^18*g2^2*g3^6*t^8.904 + 2*g1^12*g3^12*t^8.904 + (g1^6*g3^18*t^8.904)/g2^2 + g1^18*g2^3*t^8.928 + g1^12*g2*g3^6*t^8.928 + 2*g1^9*g3^9*t^8.928 + (g1^6*g3^12*t^8.928)/g2 + (g3^18*t^8.928)/g2^3 + 3*g1^9*g2*g3^3*t^8.952 - 4*g1^6*g3^6*t^8.952 + (3*g1^3*g3^9*t^8.952)/g2 - 5*g1^6*g2*t^8.976 + (2*g1^9*g2^2*t^8.976)/g3^3 + 5*g1^3*g3^3*t^8.976 - (5*g3^6*t^8.976)/g2 + (2*g3^9*t^8.976)/(g1^3*g2^2) - t^4.008/(g1*g3*y) - t^5.016/(g1^2*g3^2*y) - (g1^5*g3^5*t^6.96)/y - (g1^5*g2*t^6.984)/(g3*y) - (g3^5*t^6.984)/(g1*g2*y) - t^7.008/(g1*g3*y) - t^7.032/(g1^4*g3^4*y) - (g1^4*g3^4*t^7.968)/y - (g1^4*g2*t^7.992)/(g3^2*y) - (g3^4*t^7.992)/(g1^2*g2*y) - t^8.016/(g1^2*g3^2*y) - t^8.04/(g1^5*g3^5*y) + (g1^12*g2*g3^6*t^8.928)/y + (g1^6*g3^12*t^8.928)/(g2*y) + (2*g1^6*g3^6*t^8.952)/y + (g1^6*g2*t^8.976)/y + (g3^6*t^8.976)/(g2*y) - (t^4.008*y)/(g1*g3) - (t^5.016*y)/(g1^2*g3^2) - g1^5*g3^5*t^6.96*y - (g1^5*g2*t^6.984*y)/g3 - (g3^5*t^6.984*y)/(g1*g2) - (t^7.008*y)/(g1*g3) - (t^7.032*y)/(g1^4*g3^4) - g1^4*g3^4*t^7.968*y - (g1^4*g2*t^7.992*y)/g3^2 - (g3^4*t^7.992*y)/(g1^2*g2) - (t^8.016*y)/(g1^2*g3^2) - (t^8.04*y)/(g1^5*g3^5) + g1^12*g2*g3^6*t^8.928*y + (g1^6*g3^12*t^8.928*y)/g2 + 2*g1^6*g3^6*t^8.952*y + g1^6*g2*t^8.976*y + (g3^6*t^8.976*y)/g2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47873 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ | 1.4741 | 1.6841 | 0.8753 | [q:[0.5, 0.4923], qb:[0.5, 0.4923], phi:[0.3359]] | t^2.015 + t^2.954 + 2*t^2.977 + t^3. + t^3.023 + t^3.962 + 2*t^3.985 + t^4.008 + t^4.031 + 2*t^4.969 + 4*t^4.992 + 2*t^5.015 + t^5.038 + 2*t^5.462 + 2*t^5.485 + t^5.908 + 2*t^5.931 + 4*t^5.954 + 2*t^5.977 + t^6. - t^4.008/y - t^5.015/y - t^4.008*y - t^5.015*y | detail |