Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47878 | SU3adj1nf2 | $M_1\phi_1^2$ | 1.4535 | 1.6445 | 0.8838 | [X:[], M:[1.3239], q:[0.4929, 0.4929], qb:[0.4929, 0.4929], phi:[0.3381]] | [X:[], M:[[2, 2, 2, 2]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$q_1\tilde{q}_1$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1^3$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ M_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1q_1^2q_2$, $ \phi_1q_1q_2^2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ q_1^2\tilde{q}_1^2$, $ q_1q_2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ q_1^2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$ | $\phi_1^3q_1\tilde{q}_1$, $ \phi_1^3q_2\tilde{q}_1$, $ \phi_1^3q_1\tilde{q}_2$, $ \phi_1^3q_2\tilde{q}_2$ | -4 | 4*t^2.96 + t^3.04 + 5*t^3.97 + 4*t^4.99 + 4*t^5.45 + 10*t^5.91 - 4*t^6. + t^6.09 + 4*t^6.46 + 20*t^6.93 - 2*t^7.01 + 4*t^7.48 + 26*t^7.94 - 2*t^8.03 + 16*t^8.41 - 12*t^8.49 + 20*t^8.87 - 7*t^8.96 - t^4.01/y - t^5.03/y - (4*t^6.97)/y - t^7.06/y - (4*t^7.99)/y - t^8.07/y + (6*t^8.91)/y - t^4.01*y - t^5.03*y - 4*t^6.97*y - t^7.06*y - 4*t^7.99*y - t^8.07*y + 6*t^8.91*y | g1^6*g3^6*t^2.96 + g2^6*g3^6*t^2.96 + g1^6*g4^6*t^2.96 + g2^6*g4^6*t^2.96 + t^3.04/(g1^3*g2^3*g3^3*g4^3) + (g1^5*g3^5*t^3.97)/(g2*g4) + (g2^5*g3^5*t^3.97)/(g1*g4) + g1^2*g2^2*g3^2*g4^2*t^3.97 + (g1^5*g4^5*t^3.97)/(g2*g3) + (g2^5*g4^5*t^3.97)/(g1*g3) + (g1^4*g3^4*t^4.99)/(g2^2*g4^2) + (g2^4*g3^4*t^4.99)/(g1^2*g4^2) + (g1^4*g4^4*t^4.99)/(g2^2*g3^2) + (g2^4*g4^4*t^4.99)/(g1^2*g3^2) + (g1^11*g2^5*t^5.45)/(g3*g4) + (g1^5*g2^11*t^5.45)/(g3*g4) + (g3^11*g4^5*t^5.45)/(g1*g2) + (g3^5*g4^11*t^5.45)/(g1*g2) + g1^12*g3^12*t^5.91 + g1^6*g2^6*g3^12*t^5.91 + g2^12*g3^12*t^5.91 + g1^12*g3^6*g4^6*t^5.91 + 2*g1^6*g2^6*g3^6*g4^6*t^5.91 + g2^12*g3^6*g4^6*t^5.91 + g1^12*g4^12*t^5.91 + g1^6*g2^6*g4^12*t^5.91 + g2^12*g4^12*t^5.91 - 4*t^6. - (g1^6*t^6.)/g2^6 - (g2^6*t^6.)/g1^6 - (g3^6*t^6.)/g4^6 + (g1^3*g3^3*t^6.)/(g2^3*g4^3) + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (g1^3*g4^3*t^6.)/(g2^3*g3^3) + (g2^3*g4^3*t^6.)/(g1^3*g3^3) - (g4^6*t^6.)/g3^6 + t^6.09/(g1^6*g2^6*g3^6*g4^6) + (g1^10*g2^4*t^6.46)/(g3^2*g4^2) + (g1^4*g2^10*t^6.46)/(g3^2*g4^2) + (g3^10*g4^4*t^6.46)/(g1^2*g2^2) + (g3^4*g4^10*t^6.46)/(g1^2*g2^2) + (g1^11*g3^11*t^6.93)/(g2*g4) + (2*g1^5*g2^5*g3^11*t^6.93)/g4 + (g2^11*g3^11*t^6.93)/(g1*g4) + g1^8*g2^2*g3^8*g4^2*t^6.93 + g1^2*g2^8*g3^8*g4^2*t^6.93 + (2*g1^11*g3^5*g4^5*t^6.93)/g2 + 4*g1^5*g2^5*g3^5*g4^5*t^6.93 + (2*g2^11*g3^5*g4^5*t^6.93)/g1 + g1^8*g2^2*g3^2*g4^8*t^6.93 + g1^2*g2^8*g3^2*g4^8*t^6.93 + (g1^11*g4^11*t^6.93)/(g2*g3) + (2*g1^5*g2^5*g4^11*t^6.93)/g3 + (g2^11*g4^11*t^6.93)/(g1*g3) - (g3^5*t^7.01)/(g1*g2*g4^7) + (g1^2*g3^2*t^7.01)/(g2^4*g4^4) + (g2^2*g3^2*t^7.01)/(g1^4*g4^4) - (g1^5*t^7.01)/(g2^7*g3*g4) - (2*t^7.01)/(g1*g2*g3*g4) - (g2^5*t^7.01)/(g1^7*g3*g4) + (g1^2*g4^2*t^7.01)/(g2^4*g3^4) + (g2^2*g4^2*t^7.01)/(g1^4*g3^4) - (g4^5*t^7.01)/(g1*g2*g3^7) - (g1^6*g2^6*t^7.48)/g3^6 - (g1^6*g2^6*t^7.48)/g4^6 + (g1^15*t^7.48)/(g2^3*g3^3*g4^3) + (g1^9*g2^3*t^7.48)/(g3^3*g4^3) + (g1^3*g2^9*t^7.48)/(g3^3*g4^3) + (g2^15*t^7.48)/(g1^3*g3^3*g4^3) + (g3^15*t^7.48)/(g1^3*g2^3*g4^3) + (g3^9*g4^3*t^7.48)/(g1^3*g2^3) - (g3^6*g4^6*t^7.48)/g1^6 - (g3^6*g4^6*t^7.48)/g2^6 + (g3^3*g4^9*t^7.48)/(g1^3*g2^3) + (g4^15*t^7.48)/(g1^3*g2^3*g3^3) + (2*g1^10*g3^10*t^7.94)/(g2^2*g4^2) + (3*g1^4*g2^4*g3^10*t^7.94)/g4^2 + (2*g2^10*g3^10*t^7.94)/(g1^2*g4^2) + (3*g1^10*g3^4*g4^4*t^7.94)/g2^2 + 6*g1^4*g2^4*g3^4*g4^4*t^7.94 + (3*g2^10*g3^4*g4^4*t^7.94)/g1^2 + (2*g1^10*g4^10*t^7.94)/(g2^2*g3^2) + (3*g1^4*g2^4*g4^10*t^7.94)/g3^2 + (2*g2^10*g4^10*t^7.94)/(g1^2*g3^2) - (g3^4*t^8.03)/(g1^2*g2^2*g4^8) + (g1*g3*t^8.03)/(g2^5*g4^5) + (g2*g3*t^8.03)/(g1^5*g4^5) - (g1^4*t^8.03)/(g2^8*g3^2*g4^2) - (2*t^8.03)/(g1^2*g2^2*g3^2*g4^2) - (g2^4*t^8.03)/(g1^8*g3^2*g4^2) + (g1*g4*t^8.03)/(g2^5*g3^5) + (g2*g4*t^8.03)/(g1^5*g3^5) - (g4^4*t^8.03)/(g1^2*g2^2*g3^8) + (g1^17*g2^5*g3^5*t^8.41)/g4 + (2*g1^11*g2^11*g3^5*t^8.41)/g4 + (g1^5*g2^17*g3^5*t^8.41)/g4 + (g1^17*g2^5*g4^5*t^8.41)/g3 + (2*g1^11*g2^11*g4^5*t^8.41)/g3 + (g1^5*g2^17*g4^5*t^8.41)/g3 + (g1^5*g3^17*g4^5*t^8.41)/g2 + (g2^5*g3^17*g4^5*t^8.41)/g1 + (2*g1^5*g3^11*g4^11*t^8.41)/g2 + (2*g2^5*g3^11*g4^11*t^8.41)/g1 + (g1^5*g3^5*g4^17*t^8.41)/g2 + (g2^5*g3^5*g4^17*t^8.41)/g1 - (g1^11*t^8.49)/(g2*g3*g4^7) - (2*g1^5*g2^5*t^8.49)/(g3*g4^7) - (g2^11*t^8.49)/(g1*g3*g4^7) + (g1^8*g2^2*t^8.49)/(g3^4*g4^4) + (g1^2*g2^8*t^8.49)/(g3^4*g4^4) - (g1^11*t^8.49)/(g2*g3^7*g4) - (2*g1^5*g2^5*t^8.49)/(g3^7*g4) - (g2^11*t^8.49)/(g1*g3^7*g4) - (g3^11*t^8.49)/(g1*g2^7*g4) - (g3^11*t^8.49)/(g1^7*g2*g4) + (g3^8*g4^2*t^8.49)/(g1^4*g2^4) - (2*g3^5*g4^5*t^8.49)/(g1*g2^7) - (2*g3^5*g4^5*t^8.49)/(g1^7*g2) + (g3^2*g4^8*t^8.49)/(g1^4*g2^4) - (g4^11*t^8.49)/(g1*g2^7*g3) - (g4^11*t^8.49)/(g1^7*g2*g3) + g1^18*g3^18*t^8.87 + g1^12*g2^6*g3^18*t^8.87 + g1^6*g2^12*g3^18*t^8.87 + g2^18*g3^18*t^8.87 + g1^18*g3^12*g4^6*t^8.87 + 2*g1^12*g2^6*g3^12*g4^6*t^8.87 + 2*g1^6*g2^12*g3^12*g4^6*t^8.87 + g2^18*g3^12*g4^6*t^8.87 + g1^18*g3^6*g4^12*t^8.87 + 2*g1^12*g2^6*g3^6*g4^12*t^8.87 + 2*g1^6*g2^12*g3^6*g4^12*t^8.87 + g2^18*g3^6*g4^12*t^8.87 + g1^18*g4^18*t^8.87 + g1^12*g2^6*g4^18*t^8.87 + g1^6*g2^12*g4^18*t^8.87 + g2^18*g4^18*t^8.87 - 6*g1^6*g3^6*t^8.96 - (g1^12*g3^6*t^8.96)/g2^6 - 6*g2^6*g3^6*t^8.96 - (g2^12*g3^6*t^8.96)/g1^6 - (g1^6*g3^12*t^8.96)/g4^6 - (g2^6*g3^12*t^8.96)/g4^6 + (2*g1^9*g3^9*t^8.96)/(g2^3*g4^3) + (3*g1^3*g2^3*g3^9*t^8.96)/g4^3 + (2*g2^9*g3^9*t^8.96)/(g1^3*g4^3) + (3*g1^9*g3^3*g4^3*t^8.96)/g2^3 + 5*g1^3*g2^3*g3^3*g4^3*t^8.96 + (3*g2^9*g3^3*g4^3*t^8.96)/g1^3 - 6*g1^6*g4^6*t^8.96 - (g1^12*g4^6*t^8.96)/g2^6 - 6*g2^6*g4^6*t^8.96 - (g2^12*g4^6*t^8.96)/g1^6 + (2*g1^9*g4^9*t^8.96)/(g2^3*g3^3) + (3*g1^3*g2^3*g4^9*t^8.96)/g3^3 + (2*g2^9*g4^9*t^8.96)/(g1^3*g3^3) - (g1^6*g4^12*t^8.96)/g3^6 - (g2^6*g4^12*t^8.96)/g3^6 - t^4.01/(g1*g2*g3*g4*y) - t^5.03/(g1^2*g2^2*g3^2*g4^2*y) - (g1^5*g3^5*t^6.97)/(g2*g4*y) - (g2^5*g3^5*t^6.97)/(g1*g4*y) - (g1^5*g4^5*t^6.97)/(g2*g3*y) - (g2^5*g4^5*t^6.97)/(g1*g3*y) - t^7.06/(g1^4*g2^4*g3^4*g4^4*y) - (g1^4*g3^4*t^7.99)/(g2^2*g4^2*y) - (g2^4*g3^4*t^7.99)/(g1^2*g4^2*y) - (g1^4*g4^4*t^7.99)/(g2^2*g3^2*y) - (g2^4*g4^4*t^7.99)/(g1^2*g3^2*y) - t^8.07/(g1^5*g2^5*g3^5*g4^5*y) + (g1^6*g2^6*g3^12*t^8.91)/y + (g1^12*g3^6*g4^6*t^8.91)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.91)/y + (g2^12*g3^6*g4^6*t^8.91)/y + (g1^6*g2^6*g4^12*t^8.91)/y - (t^4.01*y)/(g1*g2*g3*g4) - (t^5.03*y)/(g1^2*g2^2*g3^2*g4^2) - (g1^5*g3^5*t^6.97*y)/(g2*g4) - (g2^5*g3^5*t^6.97*y)/(g1*g4) - (g1^5*g4^5*t^6.97*y)/(g2*g3) - (g2^5*g4^5*t^6.97*y)/(g1*g3) - (t^7.06*y)/(g1^4*g2^4*g3^4*g4^4) - (g1^4*g3^4*t^7.99*y)/(g2^2*g4^2) - (g2^4*g3^4*t^7.99*y)/(g1^2*g4^2) - (g1^4*g4^4*t^7.99*y)/(g2^2*g3^2) - (g2^4*g4^4*t^7.99*y)/(g1^2*g3^2) - (t^8.07*y)/(g1^5*g2^5*g3^5*g4^5) + g1^6*g2^6*g3^12*t^8.91*y + g1^12*g3^6*g4^6*t^8.91*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.91*y + g2^12*g3^6*g4^6*t^8.91*y + g1^6*g2^6*g4^12*t^8.91*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47866 | SU3adj1nf2 | . | 1.4743 | 1.6854 | 0.8748 | [X:[], M:[], q:[0.4934, 0.4934], qb:[0.4934, 0.4934], phi:[0.3377]] | t^2.03 + 4*t^2.96 + t^3.04 + 4*t^3.97 + t^4.05 + 8*t^4.99 + t^5.07 + 4*t^5.45 + 10*t^5.92 - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y | detail |