Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47878 SU3adj1nf2 ${}M_{1}\phi_{1}^{2}$ 1.4535 1.6445 0.8838 [M:[1.3239], q:[0.4929, 0.4929], qb:[0.4929, 0.4929], phi:[0.3381]] [M:[[2, 2, 2, 2]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ ${}\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ -4 4*t^2.957 + t^3.043 + 5*t^3.972 + 4*t^4.986 + 4*t^5.45 + 10*t^5.915 - 4*t^6. + t^6.085 + 4*t^6.464 + 20*t^6.929 - 2*t^7.014 + 4*t^7.479 + 26*t^7.943 - 2*t^8.028 + 16*t^8.408 - 12*t^8.493 + 20*t^8.872 - 7*t^8.957 - t^4.014/y - t^5.028/y - (4*t^6.972)/y - t^7.057/y - (4*t^7.986)/y - t^8.071/y + (6*t^8.915)/y - t^4.014*y - t^5.028*y - 4*t^6.972*y - t^7.057*y - 4*t^7.986*y - t^8.071*y + 6*t^8.915*y g1^6*g3^6*t^2.957 + g2^6*g3^6*t^2.957 + g1^6*g4^6*t^2.957 + g2^6*g4^6*t^2.957 + t^3.043/(g1^3*g2^3*g3^3*g4^3) + (g1^5*g3^5*t^3.972)/(g2*g4) + (g2^5*g3^5*t^3.972)/(g1*g4) + g1^2*g2^2*g3^2*g4^2*t^3.972 + (g1^5*g4^5*t^3.972)/(g2*g3) + (g2^5*g4^5*t^3.972)/(g1*g3) + (g1^4*g3^4*t^4.986)/(g2^2*g4^2) + (g2^4*g3^4*t^4.986)/(g1^2*g4^2) + (g1^4*g4^4*t^4.986)/(g2^2*g3^2) + (g2^4*g4^4*t^4.986)/(g1^2*g3^2) + (g1^11*g2^5*t^5.45)/(g3*g4) + (g1^5*g2^11*t^5.45)/(g3*g4) + (g3^11*g4^5*t^5.45)/(g1*g2) + (g3^5*g4^11*t^5.45)/(g1*g2) + g1^12*g3^12*t^5.915 + g1^6*g2^6*g3^12*t^5.915 + g2^12*g3^12*t^5.915 + g1^12*g3^6*g4^6*t^5.915 + 2*g1^6*g2^6*g3^6*g4^6*t^5.915 + g2^12*g3^6*g4^6*t^5.915 + g1^12*g4^12*t^5.915 + g1^6*g2^6*g4^12*t^5.915 + g2^12*g4^12*t^5.915 - 4*t^6. - (g1^6*t^6.)/g2^6 - (g2^6*t^6.)/g1^6 - (g3^6*t^6.)/g4^6 + (g1^3*g3^3*t^6.)/(g2^3*g4^3) + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (g1^3*g4^3*t^6.)/(g2^3*g3^3) + (g2^3*g4^3*t^6.)/(g1^3*g3^3) - (g4^6*t^6.)/g3^6 + t^6.085/(g1^6*g2^6*g3^6*g4^6) + (g1^10*g2^4*t^6.464)/(g3^2*g4^2) + (g1^4*g2^10*t^6.464)/(g3^2*g4^2) + (g3^10*g4^4*t^6.464)/(g1^2*g2^2) + (g3^4*g4^10*t^6.464)/(g1^2*g2^2) + (g1^11*g3^11*t^6.929)/(g2*g4) + (2*g1^5*g2^5*g3^11*t^6.929)/g4 + (g2^11*g3^11*t^6.929)/(g1*g4) + g1^8*g2^2*g3^8*g4^2*t^6.929 + g1^2*g2^8*g3^8*g4^2*t^6.929 + (2*g1^11*g3^5*g4^5*t^6.929)/g2 + 4*g1^5*g2^5*g3^5*g4^5*t^6.929 + (2*g2^11*g3^5*g4^5*t^6.929)/g1 + g1^8*g2^2*g3^2*g4^8*t^6.929 + g1^2*g2^8*g3^2*g4^8*t^6.929 + (g1^11*g4^11*t^6.929)/(g2*g3) + (2*g1^5*g2^5*g4^11*t^6.929)/g3 + (g2^11*g4^11*t^6.929)/(g1*g3) - (g3^5*t^7.014)/(g1*g2*g4^7) + (g1^2*g3^2*t^7.014)/(g2^4*g4^4) + (g2^2*g3^2*t^7.014)/(g1^4*g4^4) - (g1^5*t^7.014)/(g2^7*g3*g4) - (2*t^7.014)/(g1*g2*g3*g4) - (g2^5*t^7.014)/(g1^7*g3*g4) + (g1^2*g4^2*t^7.014)/(g2^4*g3^4) + (g2^2*g4^2*t^7.014)/(g1^4*g3^4) - (g4^5*t^7.014)/(g1*g2*g3^7) - (g1^6*g2^6*t^7.479)/g3^6 - (g1^6*g2^6*t^7.479)/g4^6 + (g1^15*t^7.479)/(g2^3*g3^3*g4^3) + (g1^9*g2^3*t^7.479)/(g3^3*g4^3) + (g1^3*g2^9*t^7.479)/(g3^3*g4^3) + (g2^15*t^7.479)/(g1^3*g3^3*g4^3) + (g3^15*t^7.479)/(g1^3*g2^3*g4^3) + (g3^9*g4^3*t^7.479)/(g1^3*g2^3) - (g3^6*g4^6*t^7.479)/g1^6 - (g3^6*g4^6*t^7.479)/g2^6 + (g3^3*g4^9*t^7.479)/(g1^3*g2^3) + (g4^15*t^7.479)/(g1^3*g2^3*g3^3) + (2*g1^10*g3^10*t^7.943)/(g2^2*g4^2) + (3*g1^4*g2^4*g3^10*t^7.943)/g4^2 + (2*g2^10*g3^10*t^7.943)/(g1^2*g4^2) + (3*g1^10*g3^4*g4^4*t^7.943)/g2^2 + 6*g1^4*g2^4*g3^4*g4^4*t^7.943 + (3*g2^10*g3^4*g4^4*t^7.943)/g1^2 + (2*g1^10*g4^10*t^7.943)/(g2^2*g3^2) + (3*g1^4*g2^4*g4^10*t^7.943)/g3^2 + (2*g2^10*g4^10*t^7.943)/(g1^2*g3^2) - (g3^4*t^8.028)/(g1^2*g2^2*g4^8) + (g1*g3*t^8.028)/(g2^5*g4^5) + (g2*g3*t^8.028)/(g1^5*g4^5) - (g1^4*t^8.028)/(g2^8*g3^2*g4^2) - (2*t^8.028)/(g1^2*g2^2*g3^2*g4^2) - (g2^4*t^8.028)/(g1^8*g3^2*g4^2) + (g1*g4*t^8.028)/(g2^5*g3^5) + (g2*g4*t^8.028)/(g1^5*g3^5) - (g4^4*t^8.028)/(g1^2*g2^2*g3^8) + (g1^17*g2^5*g3^5*t^8.408)/g4 + (2*g1^11*g2^11*g3^5*t^8.408)/g4 + (g1^5*g2^17*g3^5*t^8.408)/g4 + (g1^17*g2^5*g4^5*t^8.408)/g3 + (2*g1^11*g2^11*g4^5*t^8.408)/g3 + (g1^5*g2^17*g4^5*t^8.408)/g3 + (g1^5*g3^17*g4^5*t^8.408)/g2 + (g2^5*g3^17*g4^5*t^8.408)/g1 + (2*g1^5*g3^11*g4^11*t^8.408)/g2 + (2*g2^5*g3^11*g4^11*t^8.408)/g1 + (g1^5*g3^5*g4^17*t^8.408)/g2 + (g2^5*g3^5*g4^17*t^8.408)/g1 - (g1^11*t^8.493)/(g2*g3*g4^7) - (2*g1^5*g2^5*t^8.493)/(g3*g4^7) - (g2^11*t^8.493)/(g1*g3*g4^7) + (g1^8*g2^2*t^8.493)/(g3^4*g4^4) + (g1^2*g2^8*t^8.493)/(g3^4*g4^4) - (g1^11*t^8.493)/(g2*g3^7*g4) - (2*g1^5*g2^5*t^8.493)/(g3^7*g4) - (g2^11*t^8.493)/(g1*g3^7*g4) - (g3^11*t^8.493)/(g1*g2^7*g4) - (g3^11*t^8.493)/(g1^7*g2*g4) + (g3^8*g4^2*t^8.493)/(g1^4*g2^4) - (2*g3^5*g4^5*t^8.493)/(g1*g2^7) - (2*g3^5*g4^5*t^8.493)/(g1^7*g2) + (g3^2*g4^8*t^8.493)/(g1^4*g2^4) - (g4^11*t^8.493)/(g1*g2^7*g3) - (g4^11*t^8.493)/(g1^7*g2*g3) + g1^18*g3^18*t^8.872 + g1^12*g2^6*g3^18*t^8.872 + g1^6*g2^12*g3^18*t^8.872 + g2^18*g3^18*t^8.872 + g1^18*g3^12*g4^6*t^8.872 + 2*g1^12*g2^6*g3^12*g4^6*t^8.872 + 2*g1^6*g2^12*g3^12*g4^6*t^8.872 + g2^18*g3^12*g4^6*t^8.872 + g1^18*g3^6*g4^12*t^8.872 + 2*g1^12*g2^6*g3^6*g4^12*t^8.872 + 2*g1^6*g2^12*g3^6*g4^12*t^8.872 + g2^18*g3^6*g4^12*t^8.872 + g1^18*g4^18*t^8.872 + g1^12*g2^6*g4^18*t^8.872 + g1^6*g2^12*g4^18*t^8.872 + g2^18*g4^18*t^8.872 - 6*g1^6*g3^6*t^8.957 - (g1^12*g3^6*t^8.957)/g2^6 - 6*g2^6*g3^6*t^8.957 - (g2^12*g3^6*t^8.957)/g1^6 - (g1^6*g3^12*t^8.957)/g4^6 - (g2^6*g3^12*t^8.957)/g4^6 + (2*g1^9*g3^9*t^8.957)/(g2^3*g4^3) + (3*g1^3*g2^3*g3^9*t^8.957)/g4^3 + (2*g2^9*g3^9*t^8.957)/(g1^3*g4^3) + (3*g1^9*g3^3*g4^3*t^8.957)/g2^3 + 5*g1^3*g2^3*g3^3*g4^3*t^8.957 + (3*g2^9*g3^3*g4^3*t^8.957)/g1^3 - 6*g1^6*g4^6*t^8.957 - (g1^12*g4^6*t^8.957)/g2^6 - 6*g2^6*g4^6*t^8.957 - (g2^12*g4^6*t^8.957)/g1^6 + (2*g1^9*g4^9*t^8.957)/(g2^3*g3^3) + (3*g1^3*g2^3*g4^9*t^8.957)/g3^3 + (2*g2^9*g4^9*t^8.957)/(g1^3*g3^3) - (g1^6*g4^12*t^8.957)/g3^6 - (g2^6*g4^12*t^8.957)/g3^6 - t^4.014/(g1*g2*g3*g4*y) - t^5.028/(g1^2*g2^2*g3^2*g4^2*y) - (g1^5*g3^5*t^6.972)/(g2*g4*y) - (g2^5*g3^5*t^6.972)/(g1*g4*y) - (g1^5*g4^5*t^6.972)/(g2*g3*y) - (g2^5*g4^5*t^6.972)/(g1*g3*y) - t^7.057/(g1^4*g2^4*g3^4*g4^4*y) - (g1^4*g3^4*t^7.986)/(g2^2*g4^2*y) - (g2^4*g3^4*t^7.986)/(g1^2*g4^2*y) - (g1^4*g4^4*t^7.986)/(g2^2*g3^2*y) - (g2^4*g4^4*t^7.986)/(g1^2*g3^2*y) - t^8.071/(g1^5*g2^5*g3^5*g4^5*y) + (g1^6*g2^6*g3^12*t^8.915)/y + (g1^12*g3^6*g4^6*t^8.915)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.915)/y + (g2^12*g3^6*g4^6*t^8.915)/y + (g1^6*g2^6*g4^12*t^8.915)/y - (t^4.014*y)/(g1*g2*g3*g4) - (t^5.028*y)/(g1^2*g2^2*g3^2*g4^2) - (g1^5*g3^5*t^6.972*y)/(g2*g4) - (g2^5*g3^5*t^6.972*y)/(g1*g4) - (g1^5*g4^5*t^6.972*y)/(g2*g3) - (g2^5*g4^5*t^6.972*y)/(g1*g3) - (t^7.057*y)/(g1^4*g2^4*g3^4*g4^4) - (g1^4*g3^4*t^7.986*y)/(g2^2*g4^2) - (g2^4*g3^4*t^7.986*y)/(g1^2*g4^2) - (g1^4*g4^4*t^7.986*y)/(g2^2*g3^2) - (g2^4*g4^4*t^7.986*y)/(g1^2*g3^2) - (t^8.071*y)/(g1^5*g2^5*g3^5*g4^5) + g1^6*g2^6*g3^12*t^8.915*y + g1^12*g3^6*g4^6*t^8.915*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.915*y + g2^12*g3^6*g4^6*t^8.915*y + g1^6*g2^6*g4^12*t^8.915*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47866 SU3adj1nf2 ${}$ 1.4743 1.6854 0.8748 [q:[0.4934, 0.4934], qb:[0.4934, 0.4934], phi:[0.3377]] t^2.026 + 4*t^2.96 + t^3.04 + 4*t^3.974 + t^4.053 + 8*t^4.987 + t^5.066 + 4*t^5.454 + 10*t^5.921 - t^4.013/y - t^5.026/y - t^4.013*y - t^5.026*y detail