Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46084 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ 0.7102 0.9149 0.7762 [M:[0.6964, 0.6964, 0.6891, 0.6854, 0.6891], q:[0.4768, 0.8268], qb:[0.8268, 0.4841], phi:[0.3464]] [M:[[-4, -3, 1], [-3, -4, 1], [0, -1, -1], [1, 1, -2], [-1, 0, -1]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{5}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{5}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}\phi_{1}q_{1}^{2}$, ${ }M_{3}\phi_{1}q_{1}^{2}$, ${ }M_{5}\phi_{1}q_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}^{2}$, ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{2}$ ${}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ -2 t^2.056 + 2*t^2.067 + t^2.078 + 2*t^2.089 + t^2.883 + t^3.9 + t^3.922 + t^4.112 + 2*t^4.123 + 4*t^4.134 + 4*t^4.145 + 5*t^4.156 + 2*t^4.167 + 3*t^4.178 + t^4.939 + 2*t^4.95 + 2*t^4.961 + 2*t^4.972 + t^5.766 + t^5.956 + 2*t^5.967 + t^5.978 + 2*t^5.989 - 2*t^6. - t^6.022 + t^6.168 + 2*t^6.179 + 4*t^6.19 + 8*t^6.201 + 8*t^6.212 + 10*t^6.223 + 8*t^6.234 + 8*t^6.246 + 3*t^6.257 + 4*t^6.268 + t^6.783 + t^6.805 + t^6.995 + 2*t^7.006 + 4*t^7.017 + 4*t^7.028 + 4*t^7.039 + 2*t^7.05 + 2*t^7.061 + t^7.8 + t^7.822 - t^7.866 + t^8.012 + 2*t^8.023 + 4*t^8.034 + 2*t^8.045 + t^8.056 - 6*t^8.067 - 3*t^8.078 - 8*t^8.089 - 2*t^8.1 - 2*t^8.111 + t^8.225 + 2*t^8.236 + 4*t^8.247 + 8*t^8.258 + 13*t^8.269 + 14*t^8.28 + 19*t^8.291 + 16*t^8.302 + 17*t^8.313 + 12*t^8.324 + 11*t^8.335 + 4*t^8.346 + 5*t^8.357 + t^8.648 + t^8.839 + 2*t^8.85 + t^8.861 - 3*t^8.883 - 2*t^8.894 - 2*t^8.905 - t^4.039/y - t^6.095/y - (2*t^6.106)/y - t^6.117/y - (2*t^6.128)/y + (2*t^7.123)/y + (2*t^7.134)/y + (4*t^7.145)/y + (4*t^7.156)/y + (2*t^7.167)/y + t^7.178/y + t^7.939/y + (4*t^7.95)/y + (2*t^7.961)/y + (4*t^7.972)/y + t^7.983/y - t^8.151/y - (2*t^8.162)/y - (4*t^8.173)/y - (4*t^8.184)/y - (5*t^8.195)/y - (2*t^8.206)/y - (3*t^8.217)/y + t^8.956/y + (2*t^8.967)/y + (2*t^8.978)/y + (4*t^8.989)/y - t^4.039*y - t^6.095*y - 2*t^6.106*y - t^6.117*y - 2*t^6.128*y + 2*t^7.123*y + 2*t^7.134*y + 4*t^7.145*y + 4*t^7.156*y + 2*t^7.167*y + t^7.178*y + t^7.939*y + 4*t^7.95*y + 2*t^7.961*y + 4*t^7.972*y + t^7.983*y - t^8.151*y - 2*t^8.162*y - 4*t^8.173*y - 4*t^8.184*y - 5*t^8.195*y - 2*t^8.206*y - 3*t^8.217*y + t^8.956*y + 2*t^8.967*y + 2*t^8.978*y + 4*t^8.989*y (g1*g2*t^2.056)/g3^2 + t^2.067/(g1*g3) + t^2.067/(g2*g3) + t^2.078/(g1^2*g2^2) + (g3*t^2.089)/(g1^3*g2^4) + (g3*t^2.089)/(g1^4*g2^3) + g1^3*g2^3*t^2.883 + (g1^5*g2^5*t^3.9)/g3^2 + g1^2*g2^2*t^3.922 + (g1^2*g2^2*t^4.112)/g3^4 + (g1*t^4.123)/g3^3 + (g2*t^4.123)/g3^3 + t^4.134/(g1^2*g3^2) + t^4.134/(g2^2*g3^2) + (2*t^4.134)/(g1*g2*g3^2) + (2*t^4.145)/(g1^2*g2^3*g3) + (2*t^4.145)/(g1^3*g2^2*g3) + t^4.156/(g1^3*g2^5) + (3*t^4.156)/(g1^4*g2^4) + t^4.156/(g1^5*g2^3) + (g3*t^4.167)/(g1^5*g2^6) + (g3*t^4.167)/(g1^6*g2^5) + (g3^2*t^4.178)/(g1^6*g2^8) + (g3^2*t^4.178)/(g1^7*g2^7) + (g3^2*t^4.178)/(g1^8*g2^6) + (g1^4*g2^4*t^4.939)/g3^2 + (g1^3*g2^2*t^4.95)/g3 + (g1^2*g2^3*t^4.95)/g3 + 2*g1*g2*t^4.961 + (g3*t^4.972)/g1 + (g3*t^4.972)/g2 + g1^6*g2^6*t^5.766 + (g1^6*g2^6*t^5.956)/g3^4 + (g1^5*g2^4*t^5.967)/g3^3 + (g1^4*g2^5*t^5.967)/g3^3 + (g1^3*g2^3*t^5.978)/g3^2 + (g1^2*g2*t^5.989)/g3 + (g1*g2^2*t^5.989)/g3 - 2*t^6. - (g3^2*t^6.022)/(g1^3*g2^3) + (g1^3*g2^3*t^6.168)/g3^6 + (g1^2*g2*t^6.179)/g3^5 + (g1*g2^2*t^6.179)/g3^5 + (2*t^6.19)/g3^4 + (g1*t^6.19)/(g2*g3^4) + (g2*t^6.19)/(g1*g3^4) + t^6.201/(g1^3*g3^3) + t^6.201/(g2^3*g3^3) + (3*t^6.201)/(g1*g2^2*g3^3) + (3*t^6.201)/(g1^2*g2*g3^3) + (2*t^6.212)/(g1^2*g2^4*g3^2) + (4*t^6.212)/(g1^3*g2^3*g3^2) + (2*t^6.212)/(g1^4*g2^2*g3^2) + t^6.223/(g1^3*g2^6*g3) + (4*t^6.223)/(g1^4*g2^5*g3) + (4*t^6.223)/(g1^5*g2^4*g3) + t^6.223/(g1^6*g2^3*g3) + (2*t^6.234)/(g1^5*g2^7) + (4*t^6.234)/(g1^6*g2^6) + (2*t^6.234)/(g1^7*g2^5) + (g3*t^6.246)/(g1^6*g2^9) + (3*g3*t^6.246)/(g1^7*g2^8) + (3*g3*t^6.246)/(g1^8*g2^7) + (g3*t^6.246)/(g1^9*g2^6) + (g3^2*t^6.257)/(g1^8*g2^10) + (g3^2*t^6.257)/(g1^9*g2^9) + (g3^2*t^6.257)/(g1^10*g2^8) + (g3^3*t^6.268)/(g1^9*g2^12) + (g3^3*t^6.268)/(g1^10*g2^11) + (g3^3*t^6.268)/(g1^11*g2^10) + (g3^3*t^6.268)/(g1^12*g2^9) + (g1^8*g2^8*t^6.783)/g3^2 + g1^5*g2^5*t^6.805 + (g1^5*g2^5*t^6.995)/g3^4 + (g1^4*g2^3*t^7.006)/g3^3 + (g1^3*g2^4*t^7.006)/g3^3 + (g1^3*g2*t^7.017)/g3^2 + (2*g1^2*g2^2*t^7.017)/g3^2 + (g1*g2^3*t^7.017)/g3^2 + (2*g1*t^7.028)/g3 + (2*g2*t^7.028)/g3 + t^7.039/g1^2 + t^7.039/g2^2 + (2*t^7.039)/(g1*g2) + (g3*t^7.05)/(g1^2*g2^3) + (g3*t^7.05)/(g1^3*g2^2) + (g3^2*t^7.061)/(g1^3*g2^5) + (g3^2*t^7.061)/(g1^5*g2^3) + (g1^10*g2^10*t^7.8)/g3^4 + (g1^7*g2^7*t^7.822)/g3^2 - g1*g2*g3^2*t^7.866 + (g1^7*g2^7*t^8.012)/g3^6 + (g1^6*g2^5*t^8.023)/g3^5 + (g1^5*g2^6*t^8.023)/g3^5 + (g1^5*g2^3*t^8.034)/g3^4 + (2*g1^4*g2^4*t^8.034)/g3^4 + (g1^3*g2^5*t^8.034)/g3^4 + (g1^3*g2^2*t^8.045)/g3^3 + (g1^2*g2^3*t^8.045)/g3^3 + (g1^2*t^8.056)/g3^2 - (g1*g2*t^8.056)/g3^2 + (g2^2*t^8.056)/g3^2 - (3*t^8.067)/(g1*g3) - (3*t^8.067)/(g2*g3) - (3*t^8.078)/(g1^2*g2^2) - (4*g3*t^8.089)/(g1^3*g2^4) - (4*g3*t^8.089)/(g1^4*g2^3) - (2*g3^2*t^8.1)/(g1^5*g2^5) - (g3^3*t^8.111)/(g1^6*g2^7) - (g3^3*t^8.111)/(g1^7*g2^6) + (g1^4*g2^4*t^8.225)/g3^8 + (g1^3*g2^2*t^8.236)/g3^7 + (g1^2*g2^3*t^8.236)/g3^7 + (g1^2*t^8.247)/g3^6 + (2*g1*g2*t^8.247)/g3^6 + (g2^2*t^8.247)/g3^6 + (3*t^8.258)/(g1*g3^5) + (g1*t^8.258)/(g2^2*g3^5) + (3*t^8.258)/(g2*g3^5) + (g2*t^8.258)/(g1^2*g3^5) + t^8.269/(g1^4*g3^4) + t^8.269/(g2^4*g3^4) + (3*t^8.269)/(g1*g2^3*g3^4) + (5*t^8.269)/(g1^2*g2^2*g3^4) + (3*t^8.269)/(g1^3*g2*g3^4) + (2*t^8.28)/(g1^2*g2^5*g3^3) + (5*t^8.28)/(g1^3*g2^4*g3^3) + (5*t^8.28)/(g1^4*g2^3*g3^3) + (2*t^8.28)/(g1^5*g2^2*g3^3) + t^8.291/(g1^3*g2^7*g3^2) + (5*t^8.291)/(g1^4*g2^6*g3^2) + (7*t^8.291)/(g1^5*g2^5*g3^2) + (5*t^8.291)/(g1^6*g2^4*g3^2) + t^8.291/(g1^7*g2^3*g3^2) + (2*t^8.302)/(g1^5*g2^8*g3) + (6*t^8.302)/(g1^6*g2^7*g3) + (6*t^8.302)/(g1^7*g2^6*g3) + (2*t^8.302)/(g1^8*g2^5*g3) + t^8.313/(g1^6*g2^10) + (4*t^8.313)/(g1^7*g2^9) + (7*t^8.313)/(g1^8*g2^8) + (4*t^8.313)/(g1^9*g2^7) + t^8.313/(g1^10*g2^6) + (2*g3*t^8.324)/(g1^8*g2^11) + (4*g3*t^8.324)/(g1^9*g2^10) + (4*g3*t^8.324)/(g1^10*g2^9) + (2*g3*t^8.324)/(g1^11*g2^8) + (g3^2*t^8.335)/(g1^9*g2^13) + (3*g3^2*t^8.335)/(g1^10*g2^12) + (3*g3^2*t^8.335)/(g1^11*g2^11) + (3*g3^2*t^8.335)/(g1^12*g2^10) + (g3^2*t^8.335)/(g1^13*g2^9) + (g3^3*t^8.346)/(g1^11*g2^14) + (g3^3*t^8.346)/(g1^12*g2^13) + (g3^3*t^8.346)/(g1^13*g2^12) + (g3^3*t^8.346)/(g1^14*g2^11) + (g3^4*t^8.357)/(g1^12*g2^16) + (g3^4*t^8.357)/(g1^13*g2^15) + (g3^4*t^8.357)/(g1^14*g2^14) + (g3^4*t^8.357)/(g1^15*g2^13) + (g3^4*t^8.357)/(g1^16*g2^12) + g1^9*g2^9*t^8.648 + (g1^9*g2^9*t^8.839)/g3^4 + (g1^8*g2^7*t^8.85)/g3^3 + (g1^7*g2^8*t^8.85)/g3^3 + (g1^6*g2^6*t^8.861)/g3^2 - 3*g1^3*g2^3*t^8.883 - g1^2*g2*g3*t^8.894 - g1*g2^2*g3*t^8.894 - 2*g3^2*t^8.905 - t^4.039/(g1*g2*y) - t^6.095/(g3^2*y) - t^6.106/(g1*g2^2*g3*y) - t^6.106/(g1^2*g2*g3*y) - t^6.117/(g1^3*g2^3*y) - (g3*t^6.128)/(g1^4*g2^5*y) - (g3*t^6.128)/(g1^5*g2^4*y) + (g1*t^7.123)/(g3^3*y) + (g2*t^7.123)/(g3^3*y) + (2*t^7.134)/(g1*g2*g3^2*y) + (2*t^7.145)/(g1^2*g2^3*g3*y) + (2*t^7.145)/(g1^3*g2^2*g3*y) + t^7.156/(g1^3*g2^5*y) + (2*t^7.156)/(g1^4*g2^4*y) + t^7.156/(g1^5*g2^3*y) + (g3*t^7.167)/(g1^5*g2^6*y) + (g3*t^7.167)/(g1^6*g2^5*y) + (g3^2*t^7.178)/(g1^7*g2^7*y) + (g1^4*g2^4*t^7.939)/(g3^2*y) + (2*g1^3*g2^2*t^7.95)/(g3*y) + (2*g1^2*g2^3*t^7.95)/(g3*y) + (2*g1*g2*t^7.961)/y + (2*g3*t^7.972)/(g1*y) + (2*g3*t^7.972)/(g2*y) + (g3^2*t^7.983)/(g1^2*g2^2*y) - (g1*g2*t^8.151)/(g3^4*y) - t^8.162/(g1*g3^3*y) - t^8.162/(g2*g3^3*y) - t^8.173/(g1*g2^3*g3^2*y) - (2*t^8.173)/(g1^2*g2^2*g3^2*y) - t^8.173/(g1^3*g2*g3^2*y) - (2*t^8.184)/(g1^3*g2^4*g3*y) - (2*t^8.184)/(g1^4*g2^3*g3*y) - t^8.195/(g1^4*g2^6*y) - (3*t^8.195)/(g1^5*g2^5*y) - t^8.195/(g1^6*g2^4*y) - (g3*t^8.206)/(g1^6*g2^7*y) - (g3*t^8.206)/(g1^7*g2^6*y) - (g3^2*t^8.217)/(g1^7*g2^9*y) - (g3^2*t^8.217)/(g1^8*g2^8*y) - (g3^2*t^8.217)/(g1^9*g2^7*y) + (g1^6*g2^6*t^8.956)/(g3^4*y) + (g1^5*g2^4*t^8.967)/(g3^3*y) + (g1^4*g2^5*t^8.967)/(g3^3*y) + (2*g1^3*g2^3*t^8.978)/(g3^2*y) + (2*g1^2*g2*t^8.989)/(g3*y) + (2*g1*g2^2*t^8.989)/(g3*y) - (t^4.039*y)/(g1*g2) - (t^6.095*y)/g3^2 - (t^6.106*y)/(g1*g2^2*g3) - (t^6.106*y)/(g1^2*g2*g3) - (t^6.117*y)/(g1^3*g2^3) - (g3*t^6.128*y)/(g1^4*g2^5) - (g3*t^6.128*y)/(g1^5*g2^4) + (g1*t^7.123*y)/g3^3 + (g2*t^7.123*y)/g3^3 + (2*t^7.134*y)/(g1*g2*g3^2) + (2*t^7.145*y)/(g1^2*g2^3*g3) + (2*t^7.145*y)/(g1^3*g2^2*g3) + (t^7.156*y)/(g1^3*g2^5) + (2*t^7.156*y)/(g1^4*g2^4) + (t^7.156*y)/(g1^5*g2^3) + (g3*t^7.167*y)/(g1^5*g2^6) + (g3*t^7.167*y)/(g1^6*g2^5) + (g3^2*t^7.178*y)/(g1^7*g2^7) + (g1^4*g2^4*t^7.939*y)/g3^2 + (2*g1^3*g2^2*t^7.95*y)/g3 + (2*g1^2*g2^3*t^7.95*y)/g3 + 2*g1*g2*t^7.961*y + (2*g3*t^7.972*y)/g1 + (2*g3*t^7.972*y)/g2 + (g3^2*t^7.983*y)/(g1^2*g2^2) - (g1*g2*t^8.151*y)/g3^4 - (t^8.162*y)/(g1*g3^3) - (t^8.162*y)/(g2*g3^3) - (t^8.173*y)/(g1*g2^3*g3^2) - (2*t^8.173*y)/(g1^2*g2^2*g3^2) - (t^8.173*y)/(g1^3*g2*g3^2) - (2*t^8.184*y)/(g1^3*g2^4*g3) - (2*t^8.184*y)/(g1^4*g2^3*g3) - (t^8.195*y)/(g1^4*g2^6) - (3*t^8.195*y)/(g1^5*g2^5) - (t^8.195*y)/(g1^6*g2^4) - (g3*t^8.206*y)/(g1^6*g2^7) - (g3*t^8.206*y)/(g1^7*g2^6) - (g3^2*t^8.217*y)/(g1^7*g2^9) - (g3^2*t^8.217*y)/(g1^8*g2^8) - (g3^2*t^8.217*y)/(g1^9*g2^7) + (g1^6*g2^6*t^8.956*y)/g3^4 + (g1^5*g2^4*t^8.967*y)/g3^3 + (g1^4*g2^5*t^8.967*y)/g3^3 + (2*g1^3*g2^3*t^8.978*y)/g3^2 + (2*g1^2*g2*t^8.989*y)/g3 + (2*g1*g2^2*t^8.989*y)/g3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46790 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ 0.7308 0.9549 0.7653 [M:[0.6897, 0.6897, 0.6897, 0.6897, 0.6897, 0.6897], q:[0.4827, 0.8276], qb:[0.8276, 0.4827], phi:[0.3449]] 7*t^2.069 + t^2.896 + t^3.931 + 28*t^4.138 + 8*t^4.965 + t^5.792 - 2*t^6. - t^4.035/y - t^4.035*y detail
46444 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}^{2}$ 0.6895 0.8748 0.7882 [M:[0.6997, 0.6997, 0.6916, 0.6875, 0.6916, 1.3043], q:[0.4742, 0.8261], qb:[0.8261, 0.4823], phi:[0.3478]] t^2.063 + 2*t^2.075 + 2*t^2.099 + t^2.87 + t^3.889 + 2*t^3.913 + t^4.125 + 2*t^4.137 + 3*t^4.149 + 2*t^4.162 + 4*t^4.174 + 3*t^4.198 + t^4.932 + 2*t^4.944 + t^4.957 + 2*t^4.969 + t^5.739 + t^5.951 + 2*t^5.963 + t^5.976 + 4*t^5.988 - 3*t^6. - t^4.043/y - t^4.043*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46029 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ 0.6895 0.8748 0.7882 [M:[0.7027, 0.692, 0.6884, 0.692], q:[0.4765, 0.8207], qb:[0.8315, 0.4801], phi:[0.3478]] t^2.065 + 2*t^2.076 + t^2.087 + t^2.108 + t^2.87 + 2*t^3.903 + t^3.913 + t^4.13 + 2*t^4.141 + 4*t^4.152 + 2*t^4.163 + 2*t^4.173 + 2*t^4.184 + t^4.195 + t^4.216 + t^4.935 + 2*t^4.946 + 2*t^4.957 + t^4.978 + t^5.74 + 2*t^5.968 + 4*t^5.978 + 2*t^5.989 - 2*t^6. - t^4.043/y - t^4.043*y detail