Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46444 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}^{2}$ | 0.6895 | 0.8748 | 0.7882 | [M:[0.6997, 0.6997, 0.6916, 0.6875, 0.6916, 1.3043], q:[0.4742, 0.8261], qb:[0.8261, 0.4823], phi:[0.3478]] | [M:[[-4, -3, 1], [-3, -4, 1], [0, -1, -1], [1, 1, -2], [-1, 0, -1], [2, 2, 0]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{5}$, ${ }M_{3}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{5}$, ${ }M_{1}M_{5}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}\phi_{1}q_{1}^{2}$, ${ }M_{3}\phi_{1}q_{1}^{2}$, ${ }M_{5}\phi_{1}q_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{6}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{2}$ | ${}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$ | -3 | t^2.063 + 2*t^2.075 + 2*t^2.099 + t^2.87 + t^3.889 + 2*t^3.913 + t^4.125 + 2*t^4.137 + 3*t^4.149 + 2*t^4.162 + 4*t^4.174 + 3*t^4.198 + t^4.932 + 2*t^4.944 + t^4.957 + 2*t^4.969 + t^5.739 + t^5.951 + 2*t^5.963 + t^5.976 + 4*t^5.988 - 3*t^6. + 2*t^6.012 - t^6.024 + t^6.188 + 2*t^6.2 + 3*t^6.212 + 6*t^6.224 + 4*t^6.236 + 6*t^6.249 + 3*t^6.261 + 6*t^6.273 + 4*t^6.298 + t^6.758 + 2*t^6.783 + t^6.995 + 2*t^7.007 + 3*t^7.019 + 2*t^7.031 + 2*t^7.043 + 2*t^7.068 + t^7.777 + 2*t^7.802 + t^7.826 - t^7.851 + t^8.014 + 2*t^8.026 + 4*t^8.038 + 2*t^8.05 + 3*t^8.063 - 6*t^8.075 + 3*t^8.087 - 8*t^8.099 + 2*t^8.111 - 2*t^8.124 + t^8.25 + 2*t^8.262 + 3*t^8.275 + 6*t^8.287 + 9*t^8.299 + 6*t^8.311 + 11*t^8.323 + 6*t^8.336 + 9*t^8.348 + 4*t^8.36 + 8*t^8.372 + 5*t^8.397 + t^8.609 + t^8.821 + 2*t^8.833 + t^8.845 + 2*t^8.857 - 3*t^8.87 - 2*t^8.894 - t^4.043/y - t^6.106/y - (2*t^6.118)/y - (2*t^6.143)/y + (2*t^7.137)/y + t^7.149/y + (2*t^7.162)/y + (4*t^7.174)/y + t^7.198/y + t^7.932/y + (4*t^7.944)/y + (4*t^7.969)/y + t^7.981/y - t^8.169/y - (2*t^8.181)/y - (3*t^8.193)/y - (2*t^8.205)/y - (4*t^8.217)/y - (3*t^8.242)/y + t^8.951/y + (2*t^8.963)/y + (2*t^8.976)/y + (6*t^8.988)/y - t^4.043*y - t^6.106*y - 2*t^6.118*y - 2*t^6.143*y + 2*t^7.137*y + t^7.149*y + 2*t^7.162*y + 4*t^7.174*y + t^7.198*y + t^7.932*y + 4*t^7.944*y + 4*t^7.969*y + t^7.981*y - t^8.169*y - 2*t^8.181*y - 3*t^8.193*y - 2*t^8.205*y - 4*t^8.217*y - 3*t^8.242*y + t^8.951*y + 2*t^8.963*y + 2*t^8.976*y + 6*t^8.988*y | (g1*g2*t^2.063)/g3^2 + t^2.075/(g1*g3) + t^2.075/(g2*g3) + (g3*t^2.099)/(g1^3*g2^4) + (g3*t^2.099)/(g1^4*g2^3) + g1^3*g2^3*t^2.87 + (g1^5*g2^5*t^3.889)/g3^2 + 2*g1^2*g2^2*t^3.913 + (g1^2*g2^2*t^4.125)/g3^4 + (g1*t^4.137)/g3^3 + (g2*t^4.137)/g3^3 + t^4.149/(g1^2*g3^2) + t^4.149/(g2^2*g3^2) + t^4.149/(g1*g2*g3^2) + t^4.162/(g1^2*g2^3*g3) + t^4.162/(g1^3*g2^2*g3) + t^4.174/(g1^3*g2^5) + (2*t^4.174)/(g1^4*g2^4) + t^4.174/(g1^5*g2^3) + (g3^2*t^4.198)/(g1^6*g2^8) + (g3^2*t^4.198)/(g1^7*g2^7) + (g3^2*t^4.198)/(g1^8*g2^6) + (g1^4*g2^4*t^4.932)/g3^2 + (g1^3*g2^2*t^4.944)/g3 + (g1^2*g2^3*t^4.944)/g3 + g1*g2*t^4.957 + (g3*t^4.969)/g1 + (g3*t^4.969)/g2 + g1^6*g2^6*t^5.739 + (g1^6*g2^6*t^5.951)/g3^4 + (g1^5*g2^4*t^5.963)/g3^3 + (g1^4*g2^5*t^5.963)/g3^3 + (g1^3*g2^3*t^5.976)/g3^2 + (2*g1^2*g2*t^5.988)/g3 + (2*g1*g2^2*t^5.988)/g3 - 3*t^6. + (g3*t^6.012)/(g1*g2^2) + (g3*t^6.012)/(g1^2*g2) - (g3^2*t^6.024)/(g1^3*g2^3) + (g1^3*g2^3*t^6.188)/g3^6 + (g1^2*g2*t^6.2)/g3^5 + (g1*g2^2*t^6.2)/g3^5 + t^6.212/g3^4 + (g1*t^6.212)/(g2*g3^4) + (g2*t^6.212)/(g1*g3^4) + t^6.224/(g1^3*g3^3) + t^6.224/(g2^3*g3^3) + (2*t^6.224)/(g1*g2^2*g3^3) + (2*t^6.224)/(g1^2*g2*g3^3) + t^6.236/(g1^2*g2^4*g3^2) + (2*t^6.236)/(g1^3*g2^3*g3^2) + t^6.236/(g1^4*g2^2*g3^2) + t^6.249/(g1^3*g2^6*g3) + (2*t^6.249)/(g1^4*g2^5*g3) + (2*t^6.249)/(g1^5*g2^4*g3) + t^6.249/(g1^6*g2^3*g3) + t^6.261/(g1^5*g2^7) + t^6.261/(g1^6*g2^6) + t^6.261/(g1^7*g2^5) + (g3*t^6.273)/(g1^6*g2^9) + (2*g3*t^6.273)/(g1^7*g2^8) + (2*g3*t^6.273)/(g1^8*g2^7) + (g3*t^6.273)/(g1^9*g2^6) + (g3^3*t^6.298)/(g1^9*g2^12) + (g3^3*t^6.298)/(g1^10*g2^11) + (g3^3*t^6.298)/(g1^11*g2^10) + (g3^3*t^6.298)/(g1^12*g2^9) + (g1^8*g2^8*t^6.758)/g3^2 + 2*g1^5*g2^5*t^6.783 + (g1^5*g2^5*t^6.995)/g3^4 + (g1^4*g2^3*t^7.007)/g3^3 + (g1^3*g2^4*t^7.007)/g3^3 + (g1^3*g2*t^7.019)/g3^2 + (g1^2*g2^2*t^7.019)/g3^2 + (g1*g2^3*t^7.019)/g3^2 + (g1*t^7.031)/g3 + (g2*t^7.031)/g3 + t^7.043/g1^2 + t^7.043/g2^2 + (g3^2*t^7.068)/(g1^3*g2^5) + (g3^2*t^7.068)/(g1^5*g2^3) + (g1^10*g2^10*t^7.777)/g3^4 + (2*g1^7*g2^7*t^7.802)/g3^2 + g1^4*g2^4*t^7.826 - g1*g2*g3^2*t^7.851 + (g1^7*g2^7*t^8.014)/g3^6 + (g1^6*g2^5*t^8.026)/g3^5 + (g1^5*g2^6*t^8.026)/g3^5 + (g1^5*g2^3*t^8.038)/g3^4 + (2*g1^4*g2^4*t^8.038)/g3^4 + (g1^3*g2^5*t^8.038)/g3^4 + (g1^3*g2^2*t^8.05)/g3^3 + (g1^2*g2^3*t^8.05)/g3^3 + (2*g1^2*t^8.063)/g3^2 - (g1*g2*t^8.063)/g3^2 + (2*g2^2*t^8.063)/g3^2 - (3*t^8.075)/(g1*g3) - (3*t^8.075)/(g2*g3) + t^8.087/(g1*g2^3) + t^8.087/(g1^2*g2^2) + t^8.087/(g1^3*g2) - (4*g3*t^8.099)/(g1^3*g2^4) - (4*g3*t^8.099)/(g1^4*g2^3) + (g3^2*t^8.111)/(g1^4*g2^6) + (g3^2*t^8.111)/(g1^6*g2^4) - (g3^3*t^8.124)/(g1^6*g2^7) - (g3^3*t^8.124)/(g1^7*g2^6) + (g1^4*g2^4*t^8.25)/g3^8 + (g1^3*g2^2*t^8.262)/g3^7 + (g1^2*g2^3*t^8.262)/g3^7 + (g1^2*t^8.275)/g3^6 + (g1*g2*t^8.275)/g3^6 + (g2^2*t^8.275)/g3^6 + (2*t^8.287)/(g1*g3^5) + (g1*t^8.287)/(g2^2*g3^5) + (2*t^8.287)/(g2*g3^5) + (g2*t^8.287)/(g1^2*g3^5) + t^8.299/(g1^4*g3^4) + t^8.299/(g2^4*g3^4) + (2*t^8.299)/(g1*g2^3*g3^4) + (3*t^8.299)/(g1^2*g2^2*g3^4) + (2*t^8.299)/(g1^3*g2*g3^4) + t^8.311/(g1^2*g2^5*g3^3) + (2*t^8.311)/(g1^3*g2^4*g3^3) + (2*t^8.311)/(g1^4*g2^3*g3^3) + t^8.311/(g1^5*g2^2*g3^3) + t^8.323/(g1^3*g2^7*g3^2) + (3*t^8.323)/(g1^4*g2^6*g3^2) + (3*t^8.323)/(g1^5*g2^5*g3^2) + (3*t^8.323)/(g1^6*g2^4*g3^2) + t^8.323/(g1^7*g2^3*g3^2) + t^8.336/(g1^5*g2^8*g3) + (2*t^8.336)/(g1^6*g2^7*g3) + (2*t^8.336)/(g1^7*g2^6*g3) + t^8.336/(g1^8*g2^5*g3) + t^8.348/(g1^6*g2^10) + (2*t^8.348)/(g1^7*g2^9) + (3*t^8.348)/(g1^8*g2^8) + (2*t^8.348)/(g1^9*g2^7) + t^8.348/(g1^10*g2^6) + (g3*t^8.36)/(g1^8*g2^11) + (g3*t^8.36)/(g1^9*g2^10) + (g3*t^8.36)/(g1^10*g2^9) + (g3*t^8.36)/(g1^11*g2^8) + (g3^2*t^8.372)/(g1^9*g2^13) + (2*g3^2*t^8.372)/(g1^10*g2^12) + (2*g3^2*t^8.372)/(g1^11*g2^11) + (2*g3^2*t^8.372)/(g1^12*g2^10) + (g3^2*t^8.372)/(g1^13*g2^9) + (g3^4*t^8.397)/(g1^12*g2^16) + (g3^4*t^8.397)/(g1^13*g2^15) + (g3^4*t^8.397)/(g1^14*g2^14) + (g3^4*t^8.397)/(g1^15*g2^13) + (g3^4*t^8.397)/(g1^16*g2^12) + g1^9*g2^9*t^8.609 + (g1^9*g2^9*t^8.821)/g3^4 + (g1^8*g2^7*t^8.833)/g3^3 + (g1^7*g2^8*t^8.833)/g3^3 + (g1^6*g2^6*t^8.845)/g3^2 + (g1^5*g2^4*t^8.857)/g3 + (g1^4*g2^5*t^8.857)/g3 - 3*g1^3*g2^3*t^8.87 - 2*g3^2*t^8.894 - t^4.043/(g1*g2*y) - t^6.106/(g3^2*y) - t^6.118/(g1*g2^2*g3*y) - t^6.118/(g1^2*g2*g3*y) - (g3*t^6.143)/(g1^4*g2^5*y) - (g3*t^6.143)/(g1^5*g2^4*y) + (g1*t^7.137)/(g3^3*y) + (g2*t^7.137)/(g3^3*y) + t^7.149/(g1*g2*g3^2*y) + t^7.162/(g1^2*g2^3*g3*y) + t^7.162/(g1^3*g2^2*g3*y) + t^7.174/(g1^3*g2^5*y) + (2*t^7.174)/(g1^4*g2^4*y) + t^7.174/(g1^5*g2^3*y) + (g3^2*t^7.198)/(g1^7*g2^7*y) + (g1^4*g2^4*t^7.932)/(g3^2*y) + (2*g1^3*g2^2*t^7.944)/(g3*y) + (2*g1^2*g2^3*t^7.944)/(g3*y) + (2*g3*t^7.969)/(g1*y) + (2*g3*t^7.969)/(g2*y) + (g3^2*t^7.981)/(g1^2*g2^2*y) - (g1*g2*t^8.169)/(g3^4*y) - t^8.181/(g1*g3^3*y) - t^8.181/(g2*g3^3*y) - t^8.193/(g1*g2^3*g3^2*y) - t^8.193/(g1^2*g2^2*g3^2*y) - t^8.193/(g1^3*g2*g3^2*y) - t^8.205/(g1^3*g2^4*g3*y) - t^8.205/(g1^4*g2^3*g3*y) - t^8.217/(g1^4*g2^6*y) - (2*t^8.217)/(g1^5*g2^5*y) - t^8.217/(g1^6*g2^4*y) - (g3^2*t^8.242)/(g1^7*g2^9*y) - (g3^2*t^8.242)/(g1^8*g2^8*y) - (g3^2*t^8.242)/(g1^9*g2^7*y) + (g1^6*g2^6*t^8.951)/(g3^4*y) + (g1^5*g2^4*t^8.963)/(g3^3*y) + (g1^4*g2^5*t^8.963)/(g3^3*y) + (2*g1^3*g2^3*t^8.976)/(g3^2*y) + (3*g1^2*g2*t^8.988)/(g3*y) + (3*g1*g2^2*t^8.988)/(g3*y) - (t^4.043*y)/(g1*g2) - (t^6.106*y)/g3^2 - (t^6.118*y)/(g1*g2^2*g3) - (t^6.118*y)/(g1^2*g2*g3) - (g3*t^6.143*y)/(g1^4*g2^5) - (g3*t^6.143*y)/(g1^5*g2^4) + (g1*t^7.137*y)/g3^3 + (g2*t^7.137*y)/g3^3 + (t^7.149*y)/(g1*g2*g3^2) + (t^7.162*y)/(g1^2*g2^3*g3) + (t^7.162*y)/(g1^3*g2^2*g3) + (t^7.174*y)/(g1^3*g2^5) + (2*t^7.174*y)/(g1^4*g2^4) + (t^7.174*y)/(g1^5*g2^3) + (g3^2*t^7.198*y)/(g1^7*g2^7) + (g1^4*g2^4*t^7.932*y)/g3^2 + (2*g1^3*g2^2*t^7.944*y)/g3 + (2*g1^2*g2^3*t^7.944*y)/g3 + (2*g3*t^7.969*y)/g1 + (2*g3*t^7.969*y)/g2 + (g3^2*t^7.981*y)/(g1^2*g2^2) - (g1*g2*t^8.169*y)/g3^4 - (t^8.181*y)/(g1*g3^3) - (t^8.181*y)/(g2*g3^3) - (t^8.193*y)/(g1*g2^3*g3^2) - (t^8.193*y)/(g1^2*g2^2*g3^2) - (t^8.193*y)/(g1^3*g2*g3^2) - (t^8.205*y)/(g1^3*g2^4*g3) - (t^8.205*y)/(g1^4*g2^3*g3) - (t^8.217*y)/(g1^4*g2^6) - (2*t^8.217*y)/(g1^5*g2^5) - (t^8.217*y)/(g1^6*g2^4) - (g3^2*t^8.242*y)/(g1^7*g2^9) - (g3^2*t^8.242*y)/(g1^8*g2^8) - (g3^2*t^8.242*y)/(g1^9*g2^7) + (g1^6*g2^6*t^8.951*y)/g3^4 + (g1^5*g2^4*t^8.963*y)/g3^3 + (g1^4*g2^5*t^8.963*y)/g3^3 + (2*g1^3*g2^3*t^8.976*y)/g3^2 + (3*g1^2*g2*t^8.988*y)/g3 + (3*g1*g2^2*t^8.988*y)/g3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
48148 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ | 0.6895 | 0.8744 | 0.7885 | [M:[0.6933, 0.6983, 0.6966, 0.6933, 0.6916, 1.305], q:[0.4779, 0.8287], qb:[0.8238, 0.4796], phi:[0.3475]] | t^2.075 + 2*t^2.08 + t^2.09 + t^2.095 + t^2.873 + t^3.91 + 2*t^3.915 + t^4.15 + 2*t^4.155 + 3*t^4.16 + t^4.165 + 3*t^4.17 + 2*t^4.175 + t^4.18 + t^4.185 + t^4.19 + t^4.948 + 2*t^4.953 + t^4.958 + t^4.963 + t^4.968 + t^5.745 + t^5.985 + 3*t^5.99 + 2*t^5.995 - 2*t^6. - t^4.042/y - t^4.042*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46084 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ | 0.7102 | 0.9149 | 0.7762 | [M:[0.6964, 0.6964, 0.6891, 0.6854, 0.6891], q:[0.4768, 0.8268], qb:[0.8268, 0.4841], phi:[0.3464]] | t^2.056 + 2*t^2.067 + t^2.078 + 2*t^2.089 + t^2.883 + t^3.9 + t^3.922 + t^4.112 + 2*t^4.123 + 4*t^4.134 + 4*t^4.145 + 5*t^4.156 + 2*t^4.167 + 3*t^4.178 + t^4.939 + 2*t^4.95 + 2*t^4.961 + 2*t^4.972 + t^5.766 + t^5.956 + 2*t^5.967 + t^5.978 + 2*t^5.989 - 2*t^6. - t^4.039/y - t^4.039*y | detail |