Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46790 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ | 0.7308 | 0.9549 | 0.7653 | [M:[0.6897, 0.6897, 0.6897, 0.6897, 0.6897, 0.6897], q:[0.4827, 0.8276], qb:[0.8276, 0.4827], phi:[0.3449]] | [M:[[-4, -3, 1], [-3, -4, 1], [0, -1, -1], [1, 1, -2], [-1, 0, -1], [-5, -5, 2]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{5}$, ${ }M_{3}$, ${ }M_{2}$, ${ }M_{1}$, ${ }M_{6}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{5}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{5}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{1}M_{6}$, ${ }M_{6}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ | ${}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | -2 | 7*t^2.069 + t^2.896 + t^3.931 + 28*t^4.138 + 8*t^4.965 + t^5.792 - 2*t^6. + 84*t^6.208 + t^6.827 + 27*t^7.035 - 34*t^8.069 + 210*t^8.277 + t^8.689 - 9*t^8.896 - t^4.035/y - (7*t^6.104)/y + (21*t^7.138)/y + (14*t^7.965)/y - (28*t^8.173)/y - t^4.035*y - 7*t^6.104*y + 21*t^7.138*y + 14*t^7.965*y - 28*t^8.173*y | t^2.069/(g1^2*g2^2) + (g1*g2*t^2.069)/g3^2 + t^2.069/(g1*g3) + t^2.069/(g2*g3) + (g3*t^2.069)/(g1^3*g2^4) + (g3*t^2.069)/(g1^4*g2^3) + (g3^2*t^2.069)/(g1^5*g2^5) + g1^3*g2^3*t^2.896 + g1^2*g2^2*t^3.931 + t^4.138/(g1^3*g2^5) + (4*t^4.138)/(g1^4*g2^4) + t^4.138/(g1^5*g2^3) + (g1^2*g2^2*t^4.138)/g3^4 + (g1*t^4.138)/g3^3 + (g2*t^4.138)/g3^3 + t^4.138/(g1^2*g3^2) + t^4.138/(g2^2*g3^2) + (2*t^4.138)/(g1*g2*g3^2) + (2*t^4.138)/(g1^2*g2^3*g3) + (2*t^4.138)/(g1^3*g2^2*g3) + (2*g3*t^4.138)/(g1^5*g2^6) + (2*g3*t^4.138)/(g1^6*g2^5) + (g3^2*t^4.138)/(g1^6*g2^8) + (2*g3^2*t^4.138)/(g1^7*g2^7) + (g3^2*t^4.138)/(g1^8*g2^6) + (g3^3*t^4.138)/(g1^8*g2^9) + (g3^3*t^4.138)/(g1^9*g2^8) + (g3^4*t^4.138)/(g1^10*g2^10) + 2*g1*g2*t^4.965 + (g1^4*g2^4*t^4.965)/g3^2 + (g1^3*g2^2*t^4.965)/g3 + (g1^2*g2^3*t^4.965)/g3 + (g3*t^4.965)/g1 + (g3*t^4.965)/g2 + (g3^2*t^4.965)/(g1^2*g2^2) + g1^6*g2^6*t^5.792 - 2*t^6. + (3*t^6.208)/(g1^5*g2^7) + (6*t^6.208)/(g1^6*g2^6) + (3*t^6.208)/(g1^7*g2^5) + (g1^3*g2^3*t^6.208)/g3^6 + (g1^2*g2*t^6.208)/g3^5 + (g1*g2^2*t^6.208)/g3^5 + (2*t^6.208)/g3^4 + (g1*t^6.208)/(g2*g3^4) + (g2*t^6.208)/(g1*g3^4) + t^6.208/(g1^3*g3^3) + t^6.208/(g2^3*g3^3) + (3*t^6.208)/(g1*g2^2*g3^3) + (3*t^6.208)/(g1^2*g2*g3^3) + (2*t^6.208)/(g1^2*g2^4*g3^2) + (5*t^6.208)/(g1^3*g2^3*g3^2) + (2*t^6.208)/(g1^4*g2^2*g3^2) + t^6.208/(g1^3*g2^6*g3) + (5*t^6.208)/(g1^4*g2^5*g3) + (5*t^6.208)/(g1^5*g2^4*g3) + t^6.208/(g1^6*g2^3*g3) + (g3*t^6.208)/(g1^6*g2^9) + (5*g3*t^6.208)/(g1^7*g2^8) + (5*g3*t^6.208)/(g1^8*g2^7) + (g3*t^6.208)/(g1^9*g2^6) + (2*g3^2*t^6.208)/(g1^8*g2^10) + (5*g3^2*t^6.208)/(g1^9*g2^9) + (2*g3^2*t^6.208)/(g1^10*g2^8) + (g3^3*t^6.208)/(g1^9*g2^12) + (3*g3^3*t^6.208)/(g1^10*g2^11) + (3*g3^3*t^6.208)/(g1^11*g2^10) + (g3^3*t^6.208)/(g1^12*g2^9) + (g3^4*t^6.208)/(g1^11*g2^13) + (2*g3^4*t^6.208)/(g1^12*g2^12) + (g3^4*t^6.208)/(g1^13*g2^11) + (g3^5*t^6.208)/(g1^13*g2^14) + (g3^5*t^6.208)/(g1^14*g2^13) + (g3^6*t^6.208)/(g1^15*g2^15) + g1^5*g2^5*t^6.827 + t^7.035/g1^2 + t^7.035/g2^2 + (3*t^7.035)/(g1*g2) + (g1^5*g2^5*t^7.035)/g3^4 + (g1^4*g2^3*t^7.035)/g3^3 + (g1^3*g2^4*t^7.035)/g3^3 + (g1^3*g2*t^7.035)/g3^2 + (2*g1^2*g2^2*t^7.035)/g3^2 + (g1*g2^3*t^7.035)/g3^2 + (2*g1*t^7.035)/g3 + (2*g2*t^7.035)/g3 + (2*g3*t^7.035)/(g1^2*g2^3) + (2*g3*t^7.035)/(g1^3*g2^2) + (g3^2*t^7.035)/(g1^3*g2^5) + (2*g3^2*t^7.035)/(g1^4*g2^4) + (g3^2*t^7.035)/(g1^5*g2^3) + (g3^3*t^7.035)/(g1^5*g2^6) + (g3^3*t^7.035)/(g1^6*g2^5) + (g3^4*t^7.035)/(g1^7*g2^7) - t^8.069/(g1*g2^3) - (4*t^8.069)/(g1^2*g2^2) - t^8.069/(g1^3*g2) - (g1^3*g2^2*t^8.069)/g3^3 - (g1^2*g2^3*t^8.069)/g3^3 - (4*g1*g2*t^8.069)/g3^2 - (4*t^8.069)/(g1*g3) - (4*t^8.069)/(g2*g3) - (4*g3*t^8.069)/(g1^3*g2^4) - (4*g3*t^8.069)/(g1^4*g2^3) - (4*g3^2*t^8.069)/(g1^5*g2^5) - (g3^3*t^8.069)/(g1^6*g2^7) - (g3^3*t^8.069)/(g1^7*g2^6) + t^8.277/(g1^6*g2^10) + (6*t^8.277)/(g1^7*g2^9) + (12*t^8.277)/(g1^8*g2^8) + (6*t^8.277)/(g1^9*g2^7) + t^8.277/(g1^10*g2^6) + (g1^4*g2^4*t^8.277)/g3^8 + (g1^3*g2^2*t^8.277)/g3^7 + (g1^2*g2^3*t^8.277)/g3^7 + (g1^2*t^8.277)/g3^6 + (2*g1*g2*t^8.277)/g3^6 + (g2^2*t^8.277)/g3^6 + (3*t^8.277)/(g1*g3^5) + (g1*t^8.277)/(g2^2*g3^5) + (3*t^8.277)/(g2*g3^5) + (g2*t^8.277)/(g1^2*g3^5) + t^8.277/(g1^4*g3^4) + t^8.277/(g2^4*g3^4) + (3*t^8.277)/(g1*g2^3*g3^4) + (6*t^8.277)/(g1^2*g2^2*g3^4) + (3*t^8.277)/(g1^3*g2*g3^4) + (2*t^8.277)/(g1^2*g2^5*g3^3) + (6*t^8.277)/(g1^3*g2^4*g3^3) + (6*t^8.277)/(g1^4*g2^3*g3^3) + (2*t^8.277)/(g1^5*g2^2*g3^3) + t^8.277/(g1^3*g2^7*g3^2) + (6*t^8.277)/(g1^4*g2^6*g3^2) + (9*t^8.277)/(g1^5*g2^5*g3^2) + (6*t^8.277)/(g1^6*g2^4*g3^2) + t^8.277/(g1^7*g2^3*g3^2) + (3*t^8.277)/(g1^5*g2^8*g3) + (9*t^8.277)/(g1^6*g2^7*g3) + (9*t^8.277)/(g1^7*g2^6*g3) + (3*t^8.277)/(g1^8*g2^5*g3) + (3*g3*t^8.277)/(g1^8*g2^11) + (9*g3*t^8.277)/(g1^9*g2^10) + (9*g3*t^8.277)/(g1^10*g2^9) + (3*g3*t^8.277)/(g1^11*g2^8) + (g3^2*t^8.277)/(g1^9*g2^13) + (6*g3^2*t^8.277)/(g1^10*g2^12) + (9*g3^2*t^8.277)/(g1^11*g2^11) + (6*g3^2*t^8.277)/(g1^12*g2^10) + (g3^2*t^8.277)/(g1^13*g2^9) + (2*g3^3*t^8.277)/(g1^11*g2^14) + (6*g3^3*t^8.277)/(g1^12*g2^13) + (6*g3^3*t^8.277)/(g1^13*g2^12) + (2*g3^3*t^8.277)/(g1^14*g2^11) + (g3^4*t^8.277)/(g1^12*g2^16) + (3*g3^4*t^8.277)/(g1^13*g2^15) + (6*g3^4*t^8.277)/(g1^14*g2^14) + (3*g3^4*t^8.277)/(g1^15*g2^13) + (g3^4*t^8.277)/(g1^16*g2^12) + (g3^5*t^8.277)/(g1^14*g2^17) + (3*g3^5*t^8.277)/(g1^15*g2^16) + (3*g3^5*t^8.277)/(g1^16*g2^15) + (g3^5*t^8.277)/(g1^17*g2^14) + (g3^6*t^8.277)/(g1^16*g2^18) + (2*g3^6*t^8.277)/(g1^17*g2^17) + (g3^6*t^8.277)/(g1^18*g2^16) + (g3^7*t^8.277)/(g1^18*g2^19) + (g3^7*t^8.277)/(g1^19*g2^18) + (g3^8*t^8.277)/(g1^20*g2^20) + g1^9*g2^9*t^8.689 - 3*g1^3*g2^3*t^8.896 - (g1^6*g2^6*t^8.896)/g3^2 - (g1^5*g2^4*t^8.896)/g3 - (g1^4*g2^5*t^8.896)/g3 - g1^2*g2*g3*t^8.896 - g1*g2^2*g3*t^8.896 - g3^2*t^8.896 - t^4.035/(g1*g2*y) - t^6.104/(g1^3*g2^3*y) - t^6.104/(g3^2*y) - t^6.104/(g1*g2^2*g3*y) - t^6.104/(g1^2*g2*g3*y) - (g3*t^6.104)/(g1^4*g2^5*y) - (g3*t^6.104)/(g1^5*g2^4*y) - (g3^2*t^6.104)/(g1^6*g2^6*y) + t^7.138/(g1^3*g2^5*y) + (3*t^7.138)/(g1^4*g2^4*y) + t^7.138/(g1^5*g2^3*y) + (g1*t^7.138)/(g3^3*y) + (g2*t^7.138)/(g3^3*y) + (2*t^7.138)/(g1*g2*g3^2*y) + (2*t^7.138)/(g1^2*g2^3*g3*y) + (2*t^7.138)/(g1^3*g2^2*g3*y) + (2*g3*t^7.138)/(g1^5*g2^6*y) + (2*g3*t^7.138)/(g1^6*g2^5*y) + (2*g3^2*t^7.138)/(g1^7*g2^7*y) + (g3^3*t^7.138)/(g1^8*g2^9*y) + (g3^3*t^7.138)/(g1^9*g2^8*y) + (2*g1*g2*t^7.965)/y + (2*g1^4*g2^4*t^7.965)/(g3^2*y) + (2*g1^3*g2^2*t^7.965)/(g3*y) + (2*g1^2*g2^3*t^7.965)/(g3*y) + (2*g3*t^7.965)/(g1*y) + (2*g3*t^7.965)/(g2*y) + (2*g3^2*t^7.965)/(g1^2*g2^2*y) - t^8.173/(g1^4*g2^6*y) - (4*t^8.173)/(g1^5*g2^5*y) - t^8.173/(g1^6*g2^4*y) - (g1*g2*t^8.173)/(g3^4*y) - t^8.173/(g1*g3^3*y) - t^8.173/(g2*g3^3*y) - t^8.173/(g1*g2^3*g3^2*y) - (2*t^8.173)/(g1^2*g2^2*g3^2*y) - t^8.173/(g1^3*g2*g3^2*y) - (2*t^8.173)/(g1^3*g2^4*g3*y) - (2*t^8.173)/(g1^4*g2^3*g3*y) - (2*g3*t^8.173)/(g1^6*g2^7*y) - (2*g3*t^8.173)/(g1^7*g2^6*y) - (g3^2*t^8.173)/(g1^7*g2^9*y) - (2*g3^2*t^8.173)/(g1^8*g2^8*y) - (g3^2*t^8.173)/(g1^9*g2^7*y) - (g3^3*t^8.173)/(g1^9*g2^10*y) - (g3^3*t^8.173)/(g1^10*g2^9*y) - (g3^4*t^8.173)/(g1^11*g2^11*y) - (t^4.035*y)/(g1*g2) - (t^6.104*y)/(g1^3*g2^3) - (t^6.104*y)/g3^2 - (t^6.104*y)/(g1*g2^2*g3) - (t^6.104*y)/(g1^2*g2*g3) - (g3*t^6.104*y)/(g1^4*g2^5) - (g3*t^6.104*y)/(g1^5*g2^4) - (g3^2*t^6.104*y)/(g1^6*g2^6) + (t^7.138*y)/(g1^3*g2^5) + (3*t^7.138*y)/(g1^4*g2^4) + (t^7.138*y)/(g1^5*g2^3) + (g1*t^7.138*y)/g3^3 + (g2*t^7.138*y)/g3^3 + (2*t^7.138*y)/(g1*g2*g3^2) + (2*t^7.138*y)/(g1^2*g2^3*g3) + (2*t^7.138*y)/(g1^3*g2^2*g3) + (2*g3*t^7.138*y)/(g1^5*g2^6) + (2*g3*t^7.138*y)/(g1^6*g2^5) + (2*g3^2*t^7.138*y)/(g1^7*g2^7) + (g3^3*t^7.138*y)/(g1^8*g2^9) + (g3^3*t^7.138*y)/(g1^9*g2^8) + 2*g1*g2*t^7.965*y + (2*g1^4*g2^4*t^7.965*y)/g3^2 + (2*g1^3*g2^2*t^7.965*y)/g3 + (2*g1^2*g2^3*t^7.965*y)/g3 + (2*g3*t^7.965*y)/g1 + (2*g3*t^7.965*y)/g2 + (2*g3^2*t^7.965*y)/(g1^2*g2^2) - (t^8.173*y)/(g1^4*g2^6) - (4*t^8.173*y)/(g1^5*g2^5) - (t^8.173*y)/(g1^6*g2^4) - (g1*g2*t^8.173*y)/g3^4 - (t^8.173*y)/(g1*g3^3) - (t^8.173*y)/(g2*g3^3) - (t^8.173*y)/(g1*g2^3*g3^2) - (2*t^8.173*y)/(g1^2*g2^2*g3^2) - (t^8.173*y)/(g1^3*g2*g3^2) - (2*t^8.173*y)/(g1^3*g2^4*g3) - (2*t^8.173*y)/(g1^4*g2^3*g3) - (2*g3*t^8.173*y)/(g1^6*g2^7) - (2*g3*t^8.173*y)/(g1^7*g2^6) - (g3^2*t^8.173*y)/(g1^7*g2^9) - (2*g3^2*t^8.173*y)/(g1^8*g2^8) - (g3^2*t^8.173*y)/(g1^9*g2^7) - (g3^3*t^8.173*y)/(g1^9*g2^10) - (g3^3*t^8.173*y)/(g1^10*g2^9) - (g3^4*t^8.173*y)/(g1^11*g2^11) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46084 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ | 0.7102 | 0.9149 | 0.7762 | [M:[0.6964, 0.6964, 0.6891, 0.6854, 0.6891], q:[0.4768, 0.8268], qb:[0.8268, 0.4841], phi:[0.3464]] | t^2.056 + 2*t^2.067 + t^2.078 + 2*t^2.089 + t^2.883 + t^3.9 + t^3.922 + t^4.112 + 2*t^4.123 + 4*t^4.134 + 4*t^4.145 + 5*t^4.156 + 2*t^4.167 + 3*t^4.178 + t^4.939 + 2*t^4.95 + 2*t^4.961 + 2*t^4.972 + t^5.766 + t^5.956 + 2*t^5.967 + t^5.978 + 2*t^5.989 - 2*t^6. - t^4.039/y - t^4.039*y | detail |