Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46029 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4\phi_1\tilde{q}_2^2$ | 0.6895 | 0.8748 | 0.7882 | [X:[], M:[0.7027, 0.692, 0.6884, 0.692], q:[0.4765, 0.8207], qb:[0.8315, 0.4801], phi:[0.3478]] | [X:[], M:[[-4, -3, 1], [-3, -4, 1], [0, -1, -1], [1, 1, -2]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_4$, $ M_2$, $ \phi_1^2$, $ M_1$, $ q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ M_3^2$, $ M_2M_3$, $ M_3M_4$, $ M_4^2$, $ M_2M_4$, $ M_3\phi_1^2$, $ M_2^2$, $ M_4\phi_1^2$, $ M_2\phi_1^2$, $ M_1M_3$, $ \phi_1^4$, $ M_1M_4$, $ M_1M_2$, $ M_1\phi_1^2$, $ M_1^2$, $ \phi_1q_1q_2$, $ M_3q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ \phi_1q_2^2$, $ M_3q_2\tilde{q}_2$, $ M_3\phi_1q_1^2$, $ M_4\phi_1q_1^2$, $ M_3\phi_1q_1\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ \phi_1^3q_1^2$, $ M_4\phi_1q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$ | $\phi_1^3q_1\tilde{q}_2$ | -2 | t^2.07 + 2*t^2.08 + t^2.09 + t^2.11 + t^2.87 + 2*t^3.9 + t^3.91 + t^4.13 + 2*t^4.14 + 4*t^4.15 + 2*t^4.16 + 2*t^4.17 + 2*t^4.18 + t^4.19 + t^4.22 + t^4.94 + 2*t^4.95 + 2*t^4.96 + t^4.98 + t^5.74 + 2*t^5.97 + 4*t^5.98 + 2*t^5.99 - 2*t^6. + t^6.2 + 2*t^6.21 + 4*t^6.22 + 6*t^6.23 + 5*t^6.24 + 4*t^6.25 + 5*t^6.26 + 2*t^6.27 + 2*t^6.28 + 2*t^6.29 + t^6.3 + t^6.32 + 2*t^6.77 + t^6.78 + t^7. + 2*t^7.01 + 4*t^7.02 + 2*t^7.03 + t^7.04 + t^7.06 + t^7.09 + 3*t^7.81 + 2*t^7.82 - 2*t^7.84 + 2*t^8.03 + 4*t^8.04 + 6*t^8.05 - 4*t^8.08 - 2*t^8.09 - 2*t^8.1 - 3*t^8.11 + t^8.26 + 2*t^8.27 + 4*t^8.28 + 6*t^8.29 + 10*t^8.3 + 8*t^8.31 + 8*t^8.33 + 8*t^8.34 + 6*t^8.35 + 4*t^8.36 + 5*t^8.37 + 2*t^8.38 + 2*t^8.39 + 2*t^8.4 + t^8.41 + t^8.43 + t^8.61 + 2*t^8.84 + 3*t^8.85 + 2*t^8.86 - 3*t^8.87 - 2*t^8.88 - t^8.89 - t^4.04/y - t^6.11/y - (2*t^6.12)/y - t^6.13/y - t^6.15/y + (2*t^7.14)/y + (2*t^7.15)/y + (2*t^7.16)/y + t^7.17/y + (2*t^7.18)/y + t^7.19/y + (2*t^7.94)/y + (2*t^7.95)/y + (2*t^7.96)/y + (2*t^7.97)/y + (2*t^7.98)/y - t^8.17/y - (2*t^8.18)/y - (4*t^8.2)/y - (2*t^8.21)/y - (2*t^8.22)/y - (2*t^8.23)/y - t^8.24/y - t^8.26/y + (2*t^8.97)/y + (5*t^8.98)/y + (4*t^8.99)/y - t^4.04*y - t^6.11*y - 2*t^6.12*y - t^6.13*y - t^6.15*y + 2*t^7.14*y + 2*t^7.15*y + 2*t^7.16*y + t^7.17*y + 2*t^7.18*y + t^7.19*y + 2*t^7.94*y + 2*t^7.95*y + 2*t^7.96*y + 2*t^7.97*y + 2*t^7.98*y - t^8.17*y - 2*t^8.18*y - 4*t^8.2*y - 2*t^8.21*y - 2*t^8.22*y - 2*t^8.23*y - t^8.24*y - t^8.26*y + 2*t^8.97*y + 5*t^8.98*y + 4*t^8.99*y | t^2.07/(g2*g3) + (g1*g2*t^2.08)/g3^2 + (g3*t^2.08)/(g1^3*g2^4) + t^2.09/(g1^2*g2^2) + (g3*t^2.11)/(g1^4*g2^3) + g1^3*g2^3*t^2.87 + (g1^5*g2^5*t^3.9)/g3^2 + g1*g3*t^3.9 + g1^2*g2^2*t^3.91 + t^4.13/(g2^2*g3^2) + t^4.14/(g1^3*g2^5) + (g1*t^4.14)/g3^3 + (g1^2*g2^2*t^4.15)/g3^4 + (2*t^4.15)/(g1^2*g2^3*g3) + (g3^2*t^4.15)/(g1^6*g2^8) + t^4.16/(g1*g2*g3^2) + (g3*t^4.16)/(g1^5*g2^6) + (2*t^4.17)/(g1^4*g2^4) + t^4.18/(g1^3*g2^2*g3) + (g3^2*t^4.18)/(g1^7*g2^7) + (g3*t^4.19)/(g1^6*g2^5) + (g3^2*t^4.22)/(g1^8*g2^6) + (g1^3*g2^2*t^4.94)/g3 + (g1^4*g2^4*t^4.95)/g3^2 + (g3*t^4.95)/g2 + 2*g1*g2*t^4.96 + (g3*t^4.98)/g1 + g1^6*g2^6*t^5.74 + (g1*t^5.97)/g2 + (g1^5*g2^4*t^5.97)/g3^3 + (g1^6*g2^6*t^5.98)/g3^4 + (2*g1^2*g2*t^5.98)/g3 + (g3^2*t^5.98)/(g1^2*g2^4) + (g1^3*g2^3*t^5.99)/g3^2 + (g3*t^5.99)/(g1*g2^2) - 2*t^6. + t^6.2/(g2^3*g3^3) + (g1*t^6.21)/(g2*g3^4) + t^6.21/(g1^3*g2^6*g3) + (g1^2*g2*t^6.22)/g3^5 + (2*t^6.22)/(g1^2*g2^4*g3^2) + (g3*t^6.22)/(g1^6*g2^9) + (2*t^6.23)/(g1^5*g2^7) + (g1^3*g2^3*t^6.23)/g3^6 + (2*t^6.23)/(g1*g2^2*g3^3) + (g3^3*t^6.23)/(g1^9*g2^12) + t^6.24/g3^4 + (3*t^6.24)/(g1^4*g2^5*g3) + (g3^2*t^6.24)/(g1^8*g2^10) + (2*t^6.25)/(g1^3*g2^3*g3^2) + (2*g3*t^6.25)/(g1^7*g2^8) + (3*t^6.26)/(g1^6*g2^6) + t^6.26/(g1^2*g2*g3^3) + (g3^3*t^6.26)/(g1^10*g2^11) + t^6.27/(g1^5*g2^4*g3) + (g3^2*t^6.27)/(g1^9*g2^9) + (2*g3*t^6.28)/(g1^8*g2^7) + t^6.29/(g1^7*g2^5) + (g3^3*t^6.29)/(g1^11*g2^10) + (g3^2*t^6.3)/(g1^10*g2^8) + (g3^3*t^6.32)/(g1^12*g2^9) + (g1^8*g2^8*t^6.77)/g3^2 + g1^4*g2^3*g3*t^6.77 + g1^5*g2^5*t^6.78 + (g1^3*g2*t^7.)/g3^2 + t^7.01/g2^2 + (g1^4*g2^3*t^7.01)/g3^3 + (g1^5*g2^5*t^7.02)/g3^4 + (2*g1*t^7.02)/g3 + (g3^2*t^7.02)/(g1^3*g2^5) + (g1^2*g2^2*t^7.03)/g3^2 + (g3*t^7.03)/(g1^2*g2^3) + t^7.04/(g1*g2) + (g3*t^7.06)/(g1^3*g2^2) + (g3^2*t^7.09)/(g1^5*g2^3) + (g1^10*g2^10*t^7.81)/g3^4 + (g1^6*g2^5*t^7.81)/g3 + g1^2*g3^2*t^7.81 + (g1^7*g2^7*t^7.82)/g3^2 + g1^3*g2^2*g3*t^7.82 - (g1^5*g2^6*t^7.84)/g3 - g1*g2*g3^2*t^7.84 + (g1^5*g2^3*t^8.03)/g3^4 + (g1*t^8.03)/(g2^2*g3) + (g1^6*g2^5*t^8.04)/g3^5 + (2*g1^2*t^8.04)/g3^2 + (g3*t^8.04)/(g1^2*g2^5) + (2*t^8.05)/(g1*g2^3) + (g1^7*g2^7*t^8.05)/g3^6 + (2*g1^3*g2^2*t^8.05)/g3^3 + (g3^3*t^8.05)/(g1^5*g2^8) + (g1^4*g2^4*t^8.07)/g3^4 - (2*t^8.07)/(g2*g3) + (g3^2*t^8.07)/(g1^4*g2^6) - (2*g1*g2*t^8.08)/g3^2 - (2*g3*t^8.08)/(g1^3*g2^4) - (2*t^8.09)/(g1^2*g2^2) - t^8.1/(g1*g3) - (g3^2*t^8.1)/(g1^5*g2^5) - (3*g3*t^8.11)/(g1^4*g2^3) + t^8.26/(g2^4*g3^4) + (g1*t^8.27)/(g2^2*g3^5) + t^8.27/(g1^3*g2^7*g3^2) + t^8.28/(g1^6*g2^10) + (g1^2*t^8.28)/g3^6 + (2*t^8.28)/(g1^2*g2^5*g3^3) + (g1^3*g2^2*t^8.29)/g3^7 + (2*t^8.29)/(g1*g2^3*g3^4) + (2*t^8.29)/(g1^5*g2^8*g3) + (g3^2*t^8.29)/(g1^9*g2^13) + (g1^4*g2^4*t^8.3)/g3^8 + (2*t^8.3)/(g2*g3^5) + (4*t^8.3)/(g1^4*g2^6*g3^2) + (2*g3*t^8.3)/(g1^8*g2^11) + (g3^4*t^8.3)/(g1^12*g2^16) + (3*t^8.31)/(g1^7*g2^9) + (g1*g2*t^8.31)/g3^6 + (3*t^8.31)/(g1^3*g2^4*g3^3) + (g3^3*t^8.31)/(g1^11*g2^14) + (2*t^8.33)/(g1^2*g2^2*g3^4) + (4*t^8.33)/(g1^6*g2^7*g3) + (2*g3^2*t^8.33)/(g1^10*g2^12) + t^8.34/(g1*g3^5) + (3*t^8.34)/(g1^5*g2^5*g3^2) + (3*g3*t^8.34)/(g1^9*g2^10) + (g3^4*t^8.34)/(g1^13*g2^15) + (4*t^8.35)/(g1^8*g2^8) + t^8.35/(g1^4*g2^3*g3^3) + (g3^3*t^8.35)/(g1^12*g2^13) + (2*t^8.36)/(g1^7*g2^6*g3) + (2*g3^2*t^8.36)/(g1^11*g2^11) + t^8.37/(g1^6*g2^4*g3^2) + (3*g3*t^8.37)/(g1^10*g2^9) + (g3^4*t^8.37)/(g1^14*g2^14) + t^8.38/(g1^9*g2^7) + (g3^3*t^8.38)/(g1^13*g2^12) + (2*g3^2*t^8.39)/(g1^12*g2^10) + (g3*t^8.4)/(g1^11*g2^8) + (g3^4*t^8.4)/(g1^15*g2^13) + (g3^3*t^8.41)/(g1^14*g2^11) + (g3^4*t^8.43)/(g1^16*g2^12) + g1^9*g2^9*t^8.61 + g1^4*g2^2*t^8.84 + (g1^8*g2^7*t^8.84)/g3^3 + (g1^9*g2^9*t^8.85)/g3^4 + (g1^5*g2^4*t^8.85)/g3 + (g1*g3^2*t^8.85)/g2 + (g1^6*g2^6*t^8.86)/g3^2 + g1^2*g2*g3*t^8.86 - 3*g1^3*g2^3*t^8.87 - (g1^4*g2^5*t^8.88)/g3 - g3^2*t^8.88 - g1*g2^2*g3*t^8.89 - t^4.04/(g1*g2*y) - t^6.11/(g1*g2^2*g3*y) - t^6.12/(g3^2*y) - (g3*t^6.12)/(g1^4*g2^5*y) - t^6.13/(g1^3*g2^3*y) - (g3*t^6.15)/(g1^5*g2^4*y) + t^7.14/(g1^3*g2^5*y) + (g1*t^7.14)/(g3^3*y) + (2*t^7.15)/(g1^2*g2^3*g3*y) + t^7.16/(g1*g2*g3^2*y) + (g3*t^7.16)/(g1^5*g2^6*y) + t^7.17/(g1^4*g2^4*y) + t^7.18/(g1^3*g2^2*g3*y) + (g3^2*t^7.18)/(g1^7*g2^7*y) + (g3*t^7.19)/(g1^6*g2^5*y) + (2*g1^3*g2^2*t^7.94)/(g3*y) + (g1^4*g2^4*t^7.95)/(g3^2*y) + (g3*t^7.95)/(g2*y) + (2*g1*g2*t^7.96)/y + (g1^2*g2^3*t^7.97)/(g3*y) + (g3^2*t^7.97)/(g1^2*g2^2*y) + (2*g3*t^7.98)/(g1*y) - t^8.17/(g1*g2^3*g3^2*y) - t^8.18/(g1^4*g2^6*y) - t^8.18/(g2*g3^3*y) - (g1*g2*t^8.2)/(g3^4*y) - (2*t^8.2)/(g1^3*g2^4*g3*y) - (g3^2*t^8.2)/(g1^7*g2^9*y) - t^8.21/(g1^2*g2^2*g3^2*y) - (g3*t^8.21)/(g1^6*g2^7*y) - (2*t^8.22)/(g1^5*g2^5*y) - t^8.23/(g1^4*g2^3*g3*y) - (g3^2*t^8.23)/(g1^8*g2^8*y) - (g3*t^8.24)/(g1^7*g2^6*y) - (g3^2*t^8.26)/(g1^9*g2^7*y) + (g1*t^8.97)/(g2*y) + (g1^5*g2^4*t^8.97)/(g3^3*y) + (g1^6*g2^6*t^8.98)/(g3^4*y) + (3*g1^2*g2*t^8.98)/(g3*y) + (g3^2*t^8.98)/(g1^2*g2^4*y) + (2*g1^3*g2^3*t^8.99)/(g3^2*y) + (2*g3*t^8.99)/(g1*g2^2*y) - (t^4.04*y)/(g1*g2) - (t^6.11*y)/(g1*g2^2*g3) - (t^6.12*y)/g3^2 - (g3*t^6.12*y)/(g1^4*g2^5) - (t^6.13*y)/(g1^3*g2^3) - (g3*t^6.15*y)/(g1^5*g2^4) + (t^7.14*y)/(g1^3*g2^5) + (g1*t^7.14*y)/g3^3 + (2*t^7.15*y)/(g1^2*g2^3*g3) + (t^7.16*y)/(g1*g2*g3^2) + (g3*t^7.16*y)/(g1^5*g2^6) + (t^7.17*y)/(g1^4*g2^4) + (t^7.18*y)/(g1^3*g2^2*g3) + (g3^2*t^7.18*y)/(g1^7*g2^7) + (g3*t^7.19*y)/(g1^6*g2^5) + (2*g1^3*g2^2*t^7.94*y)/g3 + (g1^4*g2^4*t^7.95*y)/g3^2 + (g3*t^7.95*y)/g2 + 2*g1*g2*t^7.96*y + (g1^2*g2^3*t^7.97*y)/g3 + (g3^2*t^7.97*y)/(g1^2*g2^2) + (2*g3*t^7.98*y)/g1 - (t^8.17*y)/(g1*g2^3*g3^2) - (t^8.18*y)/(g1^4*g2^6) - (t^8.18*y)/(g2*g3^3) - (g1*g2*t^8.2*y)/g3^4 - (2*t^8.2*y)/(g1^3*g2^4*g3) - (g3^2*t^8.2*y)/(g1^7*g2^9) - (t^8.21*y)/(g1^2*g2^2*g3^2) - (g3*t^8.21*y)/(g1^6*g2^7) - (2*t^8.22*y)/(g1^5*g2^5) - (t^8.23*y)/(g1^4*g2^3*g3) - (g3^2*t^8.23*y)/(g1^8*g2^8) - (g3*t^8.24*y)/(g1^7*g2^6) - (g3^2*t^8.26*y)/(g1^9*g2^7) + (g1*t^8.97*y)/g2 + (g1^5*g2^4*t^8.97*y)/g3^3 + (g1^6*g2^6*t^8.98*y)/g3^4 + (3*g1^2*g2*t^8.98*y)/g3 + (g3^2*t^8.98*y)/(g1^2*g2^4) + (2*g1^3*g2^3*t^8.99*y)/g3^2 + (2*g3*t^8.99*y)/(g1*g2^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
46206 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_3\phi_1q_1^2$ | 0.6895 | 0.8745 | 0.7885 | [X:[], M:[0.6972, 0.6907, 0.6929, 0.6972], q:[0.4798, 0.823], qb:[0.8295, 0.4777], phi:[0.3475]] | t^2.07 + t^2.08 + 3*t^2.09 + t^2.87 + t^3.9 + t^3.91 + t^3.92 + t^4.14 + t^4.15 + 5*t^4.16 + 3*t^4.17 + 5*t^4.18 + t^4.94 + t^4.95 + 4*t^4.96 + t^5.74 + t^5.97 + t^5.98 + 3*t^5.99 - t^6. - t^4.04/y - t^4.04*y | detail | |
46138 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_4\phi_1q_1^2$ | 0.6895 | 0.8747 | 0.7883 | [X:[], M:[0.7011, 0.6897, 0.6897, 0.6954], q:[0.4785, 0.8205], qb:[0.8318, 0.4785], phi:[0.3477]] | 2*t^2.07 + 2*t^2.09 + t^2.1 + t^2.87 + t^3.9 + 2*t^3.91 + 3*t^4.14 + 4*t^4.16 + 5*t^4.17 + 2*t^4.19 + t^4.21 + 2*t^4.94 + 3*t^4.96 + t^4.97 + t^5.74 + 2*t^5.97 + 4*t^5.98 - t^4.04/y - t^4.04*y | detail | |
46084 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_5q_2\tilde{q}_2$ | 0.7102 | 0.9149 | 0.7762 | [X:[], M:[0.6964, 0.6964, 0.6891, 0.6854, 0.6891], q:[0.4768, 0.8268], qb:[0.8268, 0.4841], phi:[0.3464]] | t^2.06 + 2*t^2.07 + t^2.08 + 2*t^2.09 + t^2.88 + t^3.9 + t^3.92 + t^4.11 + 2*t^4.12 + 4*t^4.13 + 4*t^4.15 + 5*t^4.16 + 2*t^4.17 + 3*t^4.18 + t^4.94 + 2*t^4.95 + 2*t^4.96 + 2*t^4.97 + t^5.77 + t^5.96 + 2*t^5.97 + t^5.98 + 2*t^5.99 - 2*t^6. - t^4.04/y - t^4.04*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45872 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ | 0.669 | 0.8353 | 0.8009 | [X:[], M:[0.7026, 0.6881, 0.6965], q:[0.4795, 0.8179], qb:[0.8324, 0.4712], phi:[0.3498]] | t^2.06 + t^2.09 + t^2.1 + t^2.11 + t^2.85 + t^3.87 + t^3.88 + t^3.9 + t^3.93 + t^4.13 + t^4.15 + t^4.16 + t^4.17 + t^4.18 + t^4.19 + 2*t^4.2 + t^4.21 + t^4.22 + t^4.92 + t^4.94 + 2*t^4.95 + t^4.96 + t^5.7 + t^5.93 + t^5.94 + t^5.96 + 3*t^5.97 + t^5.98 + t^5.99 - 2*t^6. - t^4.05/y - t^4.05*y | detail |