Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1726 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_5q_1\tilde{q}_2$ | 0.7102 | 0.9149 | 0.7762 | [X:[], M:[0.6854, 0.6964, 0.6964, 0.6891, 0.6891], q:[0.8323, 0.8213], qb:[0.4823, 0.4786], phi:[0.3464]] | [X:[], M:[[1, -4, -1], [0, 1, -5], [-1, -3, 0], [0, -5, 1], [1, -1, -4]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_5$, $ M_4$, $ \phi_1^2$, $ M_3$, $ M_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_1M_4$, $ M_1M_5$, $ M_5^2$, $ M_4M_5$, $ M_1\phi_1^2$, $ M_4^2$, $ M_1M_2$, $ M_5\phi_1^2$, $ M_1M_3$, $ M_4\phi_1^2$, $ M_2M_5$, $ M_2M_4$, $ M_3M_5$, $ \phi_1^4$, $ M_3M_4$, $ M_2\phi_1^2$, $ M_3\phi_1^2$, $ M_3^2$, $ M_2^2$, $ M_2M_3$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_1q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_1\phi_1\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ | $\phi_1^3\tilde{q}_1\tilde{q}_2$ | -2 | t^2.06 + 2*t^2.07 + t^2.08 + 2*t^2.09 + t^2.88 + t^3.9 + t^3.92 + t^4.11 + 2*t^4.12 + 4*t^4.13 + 4*t^4.15 + 5*t^4.16 + 2*t^4.17 + 3*t^4.18 + t^4.94 + 2*t^4.95 + 2*t^4.96 + 2*t^4.97 + t^5.77 + t^5.96 + 2*t^5.97 + t^5.98 + 2*t^5.99 - 2*t^6. - t^6.02 + t^6.17 + 2*t^6.18 + 4*t^6.19 + 8*t^6.2 + 8*t^6.21 + 10*t^6.22 + 8*t^6.23 + 8*t^6.25 + 3*t^6.26 + 4*t^6.27 + t^6.78 + t^6.8 + t^7. + 2*t^7.01 + 4*t^7.02 + 4*t^7.03 + 4*t^7.04 + 2*t^7.05 + 2*t^7.06 + t^7.8 + t^7.82 - t^7.87 + t^8.01 + 2*t^8.02 + 4*t^8.03 + 2*t^8.05 + t^8.06 - 6*t^8.07 - 3*t^8.08 - 8*t^8.09 - 2*t^8.1 - 2*t^8.11 + t^8.22 + 2*t^8.24 + 4*t^8.25 + 8*t^8.26 + 13*t^8.27 + 14*t^8.28 + 19*t^8.29 + 16*t^8.3 + 17*t^8.31 + 12*t^8.32 + 11*t^8.33 + 4*t^8.35 + 5*t^8.36 + t^8.65 + t^8.84 + 2*t^8.85 + t^8.86 - 3*t^8.88 - 2*t^8.89 - 2*t^8.9 - t^4.04/y - t^6.1/y - (2*t^6.11)/y - t^6.12/y - (2*t^6.13)/y + (2*t^7.12)/y + (2*t^7.13)/y + (4*t^7.15)/y + (4*t^7.16)/y + (2*t^7.17)/y + t^7.18/y + t^7.94/y + (4*t^7.95)/y + (2*t^7.96)/y + (4*t^7.97)/y + t^7.98/y - t^8.15/y - (2*t^8.16)/y - (4*t^8.17)/y - (4*t^8.18)/y - (5*t^8.2)/y - (2*t^8.21)/y - (3*t^8.22)/y + t^8.96/y + (2*t^8.97)/y + (2*t^8.98)/y + (4*t^8.99)/y - t^4.04*y - t^6.1*y - 2*t^6.11*y - t^6.12*y - 2*t^6.13*y + 2*t^7.12*y + 2*t^7.13*y + 4*t^7.15*y + 4*t^7.16*y + 2*t^7.17*y + t^7.18*y + t^7.94*y + 4*t^7.95*y + 2*t^7.96*y + 4*t^7.97*y + t^7.98*y - t^8.15*y - 2*t^8.16*y - 4*t^8.17*y - 4*t^8.18*y - 5*t^8.2*y - 2*t^8.21*y - 3*t^8.22*y + t^8.96*y + 2*t^8.97*y + 2*t^8.98*y + 4*t^8.99*y | (g1*t^2.06)/(g2^4*g3) + (g1*t^2.07)/(g2*g3^4) + (g3*t^2.07)/g2^5 + t^2.08/(g2^2*g3^2) + t^2.09/(g1*g2^3) + (g2*t^2.09)/g3^5 + g2^3*g3^3*t^2.88 + g1*g3^3*t^3.9 + g2^2*g3^2*t^3.92 + (g1^2*t^4.11)/(g2^8*g3^2) + (g1*t^4.12)/g2^9 + (g1^2*t^4.12)/(g2^5*g3^5) + (g1^2*t^4.13)/(g2^2*g3^8) + (2*g1*t^4.13)/(g2^6*g3^3) + (g3^2*t^4.13)/g2^10 + (2*g1*t^4.15)/(g2^3*g3^6) + (2*t^4.15)/(g2^7*g3) + (g1*t^4.16)/g3^9 + (3*t^4.16)/(g2^4*g3^4) + (g3*t^4.16)/(g1*g2^8) + t^4.17/(g2*g3^7) + t^4.17/(g1*g2^5*g3^2) + t^4.18/(g1^2*g2^6) + (g2^2*t^4.18)/g3^10 + t^4.18/(g1*g2^2*g3^5) + (g1*g3^2*t^4.94)/g2 + (g1*g2^2*t^4.95)/g3 + (g3^4*t^4.95)/g2^2 + 2*g2*g3*t^4.96 + (g2^4*t^4.97)/g3^2 + (g3^3*t^4.97)/g1 + g2^6*g3^6*t^5.77 + (g1^2*g3^2*t^5.96)/g2^4 + (g1^2*t^5.97)/(g2*g3) + (g1*g3^4*t^5.97)/g2^5 + (g1*g3*t^5.98)/g2^2 + (g1*g2*t^5.99)/g3^2 + (g3^3*t^5.99)/g2^3 - 2*t^6. - (g2^2*t^6.02)/(g1*g3) + (g1^3*t^6.17)/(g2^12*g3^3) + (g1^3*t^6.18)/(g2^9*g3^6) + (g1^2*t^6.18)/(g2^13*g3) + (g1^3*t^6.19)/(g2^6*g3^9) + (2*g1^2*t^6.19)/(g2^10*g3^4) + (g1*g3*t^6.19)/g2^14 + (g1^3*t^6.2)/(g2^3*g3^12) + (3*g1^2*t^6.2)/(g2^7*g3^7) + (3*g1*t^6.2)/(g2^11*g3^2) + (g3^3*t^6.2)/g2^15 + (2*t^6.21)/g2^12 + (2*g1^2*t^6.21)/(g2^4*g3^10) + (4*g1*t^6.21)/(g2^8*g3^5) + (g1^2*t^6.22)/(g2*g3^13) + (4*g1*t^6.22)/(g2^5*g3^8) + (4*t^6.22)/(g2^9*g3^3) + (g3^2*t^6.22)/(g1*g2^13) + (2*g1*t^6.23)/(g2^2*g3^11) + (4*t^6.23)/(g2^6*g3^6) + (2*t^6.23)/(g1*g2^10*g3) + (g1*g2*t^6.25)/g3^14 + (3*t^6.25)/(g2^3*g3^9) + (3*t^6.25)/(g1*g2^7*g3^4) + (g3*t^6.25)/(g1^2*g2^11) + t^6.26/g3^12 + t^6.26/(g1*g2^4*g3^7) + t^6.26/(g1^2*g2^8*g3^2) + t^6.27/(g1^3*g2^9) + (g2^3*t^6.27)/g3^15 + t^6.27/(g1*g2*g3^10) + t^6.27/(g1^2*g2^5*g3^5) + g1*g2^3*g3^6*t^6.78 + g2^5*g3^5*t^6.8 + (g1^2*g3*t^7.)/g2^5 + (g1^2*t^7.01)/(g2^2*g3^2) + (g1*g3^3*t^7.01)/g2^6 + (2*g1*t^7.02)/g2^3 + (g1^2*g2*t^7.02)/g3^5 + (g3^5*t^7.02)/g2^7 + (2*g1*t^7.03)/g3^3 + (2*g3^2*t^7.03)/g2^4 + (g1*g2^3*t^7.04)/g3^6 + (2*t^7.04)/(g2*g3) + (g3^4*t^7.04)/(g1*g2^5) + (g2^2*t^7.05)/g3^4 + (g3*t^7.05)/(g1*g2^2) + (g2^5*t^7.06)/g3^7 + (g3^3*t^7.06)/(g1^2*g2^3) + g1^2*g3^6*t^7.8 + g1*g2^2*g3^5*t^7.82 - (g2^6*g3^3*t^7.87)/g1 + (g1^3*g3*t^8.01)/g2^8 + (g1^3*t^8.02)/(g2^5*g3^2) + (g1^2*g3^3*t^8.02)/g2^9 + (2*g1^2*t^8.03)/g2^6 + (g1^3*t^8.03)/(g2^2*g3^5) + (g1*g3^5*t^8.03)/g2^10 + (g1^2*t^8.05)/(g2^3*g3^3) + (g1*g3^2*t^8.05)/g2^7 + (g1^2*t^8.06)/g3^6 - (g1*t^8.06)/(g2^4*g3) + (g3^4*t^8.06)/g2^8 - (3*g1*t^8.07)/(g2*g3^4) - (3*g3*t^8.07)/g2^5 - (3*t^8.08)/(g2^2*g3^2) - (4*t^8.09)/(g1*g2^3) - (4*g2*t^8.09)/g3^5 - (2*t^8.1)/(g1*g3^3) - (g2^3*t^8.11)/(g1*g3^6) - t^8.11/(g1^2*g2*g3) + (g1^4*t^8.22)/(g2^16*g3^4) + (g1^4*t^8.24)/(g2^13*g3^7) + (g1^3*t^8.24)/(g2^17*g3^2) + (g1^2*t^8.25)/g2^18 + (g1^4*t^8.25)/(g2^10*g3^10) + (2*g1^3*t^8.25)/(g2^14*g3^5) + (g1^4*t^8.26)/(g2^7*g3^13) + (3*g1^3*t^8.26)/(g2^11*g3^8) + (3*g1^2*t^8.26)/(g2^15*g3^3) + (g1*g3^2*t^8.26)/g2^19 + (g1^4*t^8.27)/(g2^4*g3^16) + (3*g1^3*t^8.27)/(g2^8*g3^11) + (5*g1^2*t^8.27)/(g2^12*g3^6) + (3*g1*t^8.27)/(g2^16*g3) + (g3^4*t^8.27)/g2^20 + (2*g1^3*t^8.28)/(g2^5*g3^14) + (5*g1^2*t^8.28)/(g2^9*g3^9) + (5*g1*t^8.28)/(g2^13*g3^4) + (2*g3*t^8.28)/g2^17 + (g1^3*t^8.29)/(g2^2*g3^17) + (5*g1^2*t^8.29)/(g2^6*g3^12) + (7*g1*t^8.29)/(g2^10*g3^7) + (5*t^8.29)/(g2^14*g3^2) + (g3^3*t^8.29)/(g1*g2^18) + (2*t^8.3)/(g1*g2^15) + (2*g1^2*t^8.3)/(g2^3*g3^15) + (6*g1*t^8.3)/(g2^7*g3^10) + (6*t^8.3)/(g2^11*g3^5) + (g1^2*t^8.31)/g3^18 + (4*g1*t^8.31)/(g2^4*g3^13) + (7*t^8.31)/(g2^8*g3^8) + (4*t^8.31)/(g1*g2^12*g3^3) + (g3^2*t^8.31)/(g1^2*g2^16) + (2*g1*t^8.32)/(g2*g3^16) + (4*t^8.32)/(g2^5*g3^11) + (4*t^8.32)/(g1*g2^9*g3^6) + (2*t^8.32)/(g1^2*g2^13*g3) + (g1*g2^2*t^8.33)/g3^19 + (3*t^8.33)/(g2^2*g3^14) + (3*t^8.33)/(g1*g2^6*g3^9) + (3*t^8.33)/(g1^2*g2^10*g3^4) + (g3*t^8.33)/(g1^3*g2^14) + (g2*t^8.35)/g3^17 + t^8.35/(g1*g2^3*g3^12) + t^8.35/(g1^2*g2^7*g3^7) + t^8.35/(g1^3*g2^11*g3^2) + t^8.36/(g1^4*g2^12) + (g2^4*t^8.36)/g3^20 + t^8.36/(g1*g3^15) + t^8.36/(g1^2*g2^4*g3^10) + t^8.36/(g1^3*g2^8*g3^5) + g2^9*g3^9*t^8.65 + (g1^2*g3^5*t^8.84)/g2 + g1^2*g2^2*g3^2*t^8.85 + (g1*g3^7*t^8.85)/g2^2 + g1*g2*g3^4*t^8.86 - 3*g2^3*g3^3*t^8.88 - g2^6*t^8.89 - (g2^2*g3^5*t^8.89)/g1 - (2*g2^5*g3^2*t^8.9)/g1 - t^4.04/(g2*g3*y) - (g1*t^6.1)/(g2^5*g3^2*y) - t^6.11/(g2^6*y) - (g1*t^6.11)/(g2^2*g3^5*y) - t^6.12/(g2^3*g3^3*y) - t^6.13/(g3^6*y) - t^6.13/(g1*g2^4*g3*y) + (g1*t^7.12)/(g2^9*y) + (g1^2*t^7.12)/(g2^5*g3^5*y) + (2*g1*t^7.13)/(g2^6*g3^3*y) + (2*g1*t^7.15)/(g2^3*g3^6*y) + (2*t^7.15)/(g2^7*g3*y) + (g1*t^7.16)/(g3^9*y) + (2*t^7.16)/(g2^4*g3^4*y) + (g3*t^7.16)/(g1*g2^8*y) + t^7.17/(g2*g3^7*y) + t^7.17/(g1*g2^5*g3^2*y) + t^7.18/(g1*g2^2*g3^5*y) + (g1*g3^2*t^7.94)/(g2*y) + (2*g1*g2^2*t^7.95)/(g3*y) + (2*g3^4*t^7.95)/(g2^2*y) + (2*g2*g3*t^7.96)/y + (2*g2^4*t^7.97)/(g3^2*y) + (2*g3^3*t^7.97)/(g1*y) + (g2^3*t^7.98)/(g1*y) - (g1^2*t^8.15)/(g2^9*g3^3*y) - (g1^2*t^8.16)/(g2^6*g3^6*y) - (g1*t^8.16)/(g2^10*g3*y) - (g1^2*t^8.17)/(g2^3*g3^9*y) - (2*g1*t^8.17)/(g2^7*g3^4*y) - (g3*t^8.17)/(g2^11*y) - (2*g1*t^8.18)/(g2^4*g3^7*y) - (2*t^8.18)/(g2^8*g3^2*y) - t^8.2/(g1*g2^9*y) - (g1*t^8.2)/(g2*g3^10*y) - (3*t^8.2)/(g2^5*g3^5*y) - t^8.21/(g2^2*g3^8*y) - t^8.21/(g1*g2^6*g3^3*y) - (g2*t^8.22)/(g3^11*y) - t^8.22/(g1*g2^3*g3^6*y) - t^8.22/(g1^2*g2^7*g3*y) + (g1^2*g3^2*t^8.96)/(g2^4*y) + (g1^2*t^8.97)/(g2*g3*y) + (g1*g3^4*t^8.97)/(g2^5*y) + (2*g1*g3*t^8.98)/(g2^2*y) + (2*g1*g2*t^8.99)/(g3^2*y) + (2*g3^3*t^8.99)/(g2^3*y) - (t^4.04*y)/(g2*g3) - (g1*t^6.1*y)/(g2^5*g3^2) - (t^6.11*y)/g2^6 - (g1*t^6.11*y)/(g2^2*g3^5) - (t^6.12*y)/(g2^3*g3^3) - (t^6.13*y)/g3^6 - (t^6.13*y)/(g1*g2^4*g3) + (g1*t^7.12*y)/g2^9 + (g1^2*t^7.12*y)/(g2^5*g3^5) + (2*g1*t^7.13*y)/(g2^6*g3^3) + (2*g1*t^7.15*y)/(g2^3*g3^6) + (2*t^7.15*y)/(g2^7*g3) + (g1*t^7.16*y)/g3^9 + (2*t^7.16*y)/(g2^4*g3^4) + (g3*t^7.16*y)/(g1*g2^8) + (t^7.17*y)/(g2*g3^7) + (t^7.17*y)/(g1*g2^5*g3^2) + (t^7.18*y)/(g1*g2^2*g3^5) + (g1*g3^2*t^7.94*y)/g2 + (2*g1*g2^2*t^7.95*y)/g3 + (2*g3^4*t^7.95*y)/g2^2 + 2*g2*g3*t^7.96*y + (2*g2^4*t^7.97*y)/g3^2 + (2*g3^3*t^7.97*y)/g1 + (g2^3*t^7.98*y)/g1 - (g1^2*t^8.15*y)/(g2^9*g3^3) - (g1^2*t^8.16*y)/(g2^6*g3^6) - (g1*t^8.16*y)/(g2^10*g3) - (g1^2*t^8.17*y)/(g2^3*g3^9) - (2*g1*t^8.17*y)/(g2^7*g3^4) - (g3*t^8.17*y)/g2^11 - (2*g1*t^8.18*y)/(g2^4*g3^7) - (2*t^8.18*y)/(g2^8*g3^2) - (t^8.2*y)/(g1*g2^9) - (g1*t^8.2*y)/(g2*g3^10) - (3*t^8.2*y)/(g2^5*g3^5) - (t^8.21*y)/(g2^2*g3^8) - (t^8.21*y)/(g1*g2^6*g3^3) - (g2*t^8.22*y)/g3^11 - (t^8.22*y)/(g1*g2^3*g3^6) - (t^8.22*y)/(g1^2*g2^7*g3) + (g1^2*g3^2*t^8.96*y)/g2^4 + (g1^2*t^8.97*y)/(g2*g3) + (g1*g3^4*t^8.97*y)/g2^5 + (2*g1*g3*t^8.98*y)/g2^2 + (2*g1*g2*t^8.99*y)/g3^2 + (2*g3^3*t^8.99*y)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
2728 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_2$ | 0.7308 | 0.9549 | 0.7653 | [X:[], M:[0.6897, 0.6897, 0.6897, 0.6897, 0.6897, 0.6897], q:[0.8276, 0.8276], qb:[0.4827, 0.4827], phi:[0.3449]] | 7*t^2.07 + t^2.9 + t^3.93 + 28*t^4.14 + 8*t^4.97 + t^5.79 - 2*t^6. - t^4.03/y - t^4.03*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
195 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ | 0.6895 | 0.8748 | 0.7882 | [X:[], M:[0.692, 0.7027, 0.692, 0.6884], q:[0.8261, 0.8261], qb:[0.4819, 0.4747], phi:[0.3478]] | t^2.07 + 2*t^2.08 + t^2.09 + t^2.11 + t^2.87 + 2*t^3.9 + t^3.91 + t^4.13 + 2*t^4.14 + 4*t^4.15 + 2*t^4.16 + 2*t^4.17 + 2*t^4.18 + t^4.19 + t^4.22 + t^4.94 + 2*t^4.95 + 2*t^4.96 + t^4.98 + t^5.74 + 2*t^5.97 + 4*t^5.98 + 2*t^5.99 - 2*t^6. - t^4.04/y - t^4.04*y | detail |