Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2003 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_2M_5$ + $ M_1M_5$ + $ M_5M_6$ + $ M_7q_2\tilde{q}_2$ 0.7102 0.9149 0.7762 [X:[], M:[0.6964, 0.6964, 0.6854, 0.6891, 1.3036, 0.6964, 0.6891], q:[0.8213, 0.8323], qb:[0.4823, 0.4786], phi:[0.3464]] [X:[], M:[[1, -5], [1, -5], [-8, 4], [-5, 1], [-1, 5], [1, -5], [-5, 1]], q:[[-4, 5], [5, -4]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_4$, $ M_7$, $ \phi_1^2$, $ M_1$, $ M_6$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_3M_7$, $ M_4^2$, $ M_4M_7$, $ M_7^2$, $ M_3\phi_1^2$, $ M_1M_3$, $ M_3M_6$, $ M_4\phi_1^2$, $ M_7\phi_1^2$, $ M_1M_4$, $ M_4M_6$, $ M_1M_7$, $ M_6M_7$, $ \phi_1^4$, $ M_1\phi_1^2$, $ M_6\phi_1^2$, $ M_1^2$, $ M_1M_6$, $ M_6^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_7\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ M_7q_1\tilde{q}_2$, $ M_3\phi_1\tilde{q}_1\tilde{q}_2$, $ M_6q_1\tilde{q}_2$, $ M_4\phi_1\tilde{q}_1\tilde{q}_2$, $ M_7\phi_1\tilde{q}_1\tilde{q}_2$ $\phi_1^3\tilde{q}_1\tilde{q}_2$ -2 t^2.06 + 2*t^2.07 + t^2.08 + 2*t^2.09 + t^2.88 + t^3.9 + t^3.92 + t^4.11 + 2*t^4.12 + 4*t^4.13 + 4*t^4.15 + 5*t^4.16 + 2*t^4.17 + 3*t^4.18 + t^4.94 + 2*t^4.95 + 2*t^4.96 + 2*t^4.97 + t^5.77 + t^5.96 + 2*t^5.97 + t^5.98 + 2*t^5.99 - 2*t^6. - t^6.02 + t^6.17 + 2*t^6.18 + 4*t^6.19 + 8*t^6.2 + 8*t^6.21 + 10*t^6.22 + 8*t^6.23 + 8*t^6.25 + 3*t^6.26 + 4*t^6.27 + t^6.78 + t^6.8 + t^7. + 2*t^7.01 + 4*t^7.02 + 4*t^7.03 + 4*t^7.04 + 2*t^7.05 + 2*t^7.06 + t^7.8 + t^7.82 - t^7.87 + t^8.01 + 2*t^8.02 + 4*t^8.03 + 2*t^8.05 + t^8.06 - 6*t^8.07 - 3*t^8.08 - 8*t^8.09 - 2*t^8.1 - 2*t^8.11 + t^8.22 + 2*t^8.24 + 4*t^8.25 + 8*t^8.26 + 13*t^8.27 + 14*t^8.28 + 19*t^8.29 + 16*t^8.3 + 17*t^8.31 + 12*t^8.32 + 11*t^8.33 + 4*t^8.35 + 5*t^8.36 + t^8.65 + t^8.84 + 2*t^8.85 + t^8.86 - 3*t^8.88 - 2*t^8.89 - 2*t^8.9 - t^4.04/y - t^6.1/y - (2*t^6.11)/y - t^6.12/y - (2*t^6.13)/y + (2*t^7.12)/y + (2*t^7.13)/y + (4*t^7.15)/y + (4*t^7.16)/y + (2*t^7.17)/y + t^7.18/y + t^7.94/y + (4*t^7.95)/y + (2*t^7.96)/y + (4*t^7.97)/y + t^7.98/y - t^8.15/y - (2*t^8.16)/y - (4*t^8.17)/y - (4*t^8.18)/y - (5*t^8.2)/y - (2*t^8.21)/y - (3*t^8.22)/y + t^8.96/y + (2*t^8.97)/y + (2*t^8.98)/y + (4*t^8.99)/y - t^4.04*y - t^6.1*y - 2*t^6.11*y - t^6.12*y - 2*t^6.13*y + 2*t^7.12*y + 2*t^7.13*y + 4*t^7.15*y + 4*t^7.16*y + 2*t^7.17*y + t^7.18*y + t^7.94*y + 4*t^7.95*y + 2*t^7.96*y + 4*t^7.97*y + t^7.98*y - t^8.15*y - 2*t^8.16*y - 4*t^8.17*y - 4*t^8.18*y - 5*t^8.2*y - 2*t^8.21*y - 3*t^8.22*y + t^8.96*y + 2*t^8.97*y + 2*t^8.98*y + 4*t^8.99*y (g2^4*t^2.06)/g1^8 + (2*g2*t^2.07)/g1^5 + t^2.08/(g1^2*g2^2) + (2*g1*t^2.09)/g2^5 + g1^3*g2^3*t^2.88 + (g2^8*t^3.9)/g1^4 + g1^2*g2^2*t^3.92 + (g2^8*t^4.11)/g1^16 + (2*g2^5*t^4.12)/g1^13 + (4*g2^2*t^4.13)/g1^10 + (4*t^4.15)/(g1^7*g2) + (5*t^4.16)/(g1^4*g2^4) + (2*t^4.17)/(g1*g2^7) + (3*g1^2*t^4.18)/g2^10 + (g2^7*t^4.94)/g1^5 + (2*g2^4*t^4.95)/g1^2 + 2*g1*g2*t^4.96 + (2*g1^4*t^4.97)/g2^2 + g1^6*g2^6*t^5.77 + (g2^12*t^5.96)/g1^12 + (2*g2^9*t^5.97)/g1^9 + (g2^6*t^5.98)/g1^6 + (2*g2^3*t^5.99)/g1^3 - 2*t^6. - (g1^6*t^6.02)/g2^6 + (g2^12*t^6.17)/g1^24 + (2*g2^9*t^6.18)/g1^21 + (4*g2^6*t^6.19)/g1^18 + (8*g2^3*t^6.2)/g1^15 + (8*t^6.21)/g1^12 + (10*t^6.22)/(g1^9*g2^3) + (8*t^6.23)/(g1^6*g2^6) + (8*t^6.25)/(g1^3*g2^9) + (3*t^6.26)/g2^12 + (4*g1^3*t^6.27)/g2^15 + (g2^11*t^6.78)/g1 + g1^5*g2^5*t^6.8 + (g2^11*t^7.)/g1^13 + (2*g2^8*t^7.01)/g1^10 + (4*g2^5*t^7.02)/g1^7 + (4*g2^2*t^7.03)/g1^4 + (4*t^7.04)/(g1*g2) + (2*g1^2*t^7.05)/g2^4 + (2*g1^5*t^7.06)/g2^7 + (g2^16*t^7.8)/g1^8 + (g2^10*t^7.82)/g1^2 - (g1^10*t^7.87)/g2^2 + (g2^16*t^8.01)/g1^20 + (2*g2^13*t^8.02)/g1^17 + (4*g2^10*t^8.03)/g1^14 + (2*g2^7*t^8.05)/g1^11 + (g2^4*t^8.06)/g1^8 - (6*g2*t^8.07)/g1^5 - (3*t^8.08)/(g1^2*g2^2) - (8*g1*t^8.09)/g2^5 - (2*g1^4*t^8.1)/g2^8 - (2*g1^7*t^8.11)/g2^11 + (g2^16*t^8.22)/g1^32 + (2*g2^13*t^8.24)/g1^29 + (4*g2^10*t^8.25)/g1^26 + (8*g2^7*t^8.26)/g1^23 + (13*g2^4*t^8.27)/g1^20 + (14*g2*t^8.28)/g1^17 + (19*t^8.29)/(g1^14*g2^2) + (16*t^8.3)/(g1^11*g2^5) + (17*t^8.31)/(g1^8*g2^8) + (12*t^8.32)/(g1^5*g2^11) + (11*t^8.33)/(g1^2*g2^14) + (4*g1*t^8.35)/g2^17 + (5*g1^4*t^8.36)/g2^20 + g1^9*g2^9*t^8.65 + (g2^15*t^8.84)/g1^9 + (2*g2^12*t^8.85)/g1^6 + (g2^9*t^8.86)/g1^3 - 3*g1^3*g2^3*t^8.88 - 2*g1^6*t^8.89 - (2*g1^9*t^8.9)/g2^3 - t^4.04/(g1*g2*y) - (g2^3*t^6.1)/(g1^9*y) - (2*t^6.11)/(g1^6*y) - t^6.12/(g1^3*g2^3*y) - (2*t^6.13)/(g2^6*y) + (2*g2^5*t^7.12)/(g1^13*y) + (2*g2^2*t^7.13)/(g1^10*y) + (4*t^7.15)/(g1^7*g2*y) + (4*t^7.16)/(g1^4*g2^4*y) + (2*t^7.17)/(g1*g2^7*y) + (g1^2*t^7.18)/(g2^10*y) + (g2^7*t^7.94)/(g1^5*y) + (4*g2^4*t^7.95)/(g1^2*y) + (2*g1*g2*t^7.96)/y + (4*g1^4*t^7.97)/(g2^2*y) + (g1^7*t^7.98)/(g2^5*y) - (g2^7*t^8.15)/(g1^17*y) - (2*g2^4*t^8.16)/(g1^14*y) - (4*g2*t^8.17)/(g1^11*y) - (4*t^8.18)/(g1^8*g2^2*y) - (5*t^8.2)/(g1^5*g2^5*y) - (2*t^8.21)/(g1^2*g2^8*y) - (3*g1*t^8.22)/(g2^11*y) + (g2^12*t^8.96)/(g1^12*y) + (2*g2^9*t^8.97)/(g1^9*y) + (2*g2^6*t^8.98)/(g1^6*y) + (4*g2^3*t^8.99)/(g1^3*y) - (t^4.04*y)/(g1*g2) - (g2^3*t^6.1*y)/g1^9 - (2*t^6.11*y)/g1^6 - (t^6.12*y)/(g1^3*g2^3) - (2*t^6.13*y)/g2^6 + (2*g2^5*t^7.12*y)/g1^13 + (2*g2^2*t^7.13*y)/g1^10 + (4*t^7.15*y)/(g1^7*g2) + (4*t^7.16*y)/(g1^4*g2^4) + (2*t^7.17*y)/(g1*g2^7) + (g1^2*t^7.18*y)/g2^10 + (g2^7*t^7.94*y)/g1^5 + (4*g2^4*t^7.95*y)/g1^2 + 2*g1*g2*t^7.96*y + (4*g1^4*t^7.97*y)/g2^2 + (g1^7*t^7.98*y)/g2^5 - (g2^7*t^8.15*y)/g1^17 - (2*g2^4*t^8.16*y)/g1^14 - (4*g2*t^8.17*y)/g1^11 - (4*t^8.18*y)/(g1^8*g2^2) - (5*t^8.2*y)/(g1^5*g2^5) - (2*t^8.21*y)/(g1^2*g2^8) - (3*g1*t^8.22*y)/g2^11 + (g2^12*t^8.96*y)/g1^12 + (2*g2^9*t^8.97*y)/g1^9 + (2*g2^6*t^8.98*y)/g1^6 + (4*g2^3*t^8.99*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
774 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_2M_5$ + $ M_1M_5$ + $ M_5M_6$ 0.6895 0.8745 0.7885 [X:[], M:[0.6972, 0.6972, 0.6907, 0.6929, 1.3028, 0.6972], q:[0.823, 0.8295], qb:[0.4798, 0.4777], phi:[0.3475]] t^2.07 + t^2.08 + 3*t^2.09 + t^2.87 + t^3.9 + t^3.91 + t^3.92 + t^4.14 + t^4.15 + 5*t^4.16 + 3*t^4.17 + 5*t^4.18 + t^4.94 + t^4.95 + 4*t^4.96 + t^5.74 + t^5.97 + t^5.98 + 3*t^5.99 - t^6. - t^4.04/y - t^4.04*y detail