Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2003 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{1}M_{5}$ + ${ }M_{5}M_{6}$ + ${ }M_{7}q_{2}\tilde{q}_{2}$ 0.7102 0.9149 0.7762 [M:[0.6964, 0.6964, 0.6854, 0.6891, 1.3036, 0.6964, 0.6891], q:[0.8213, 0.8323], qb:[0.4823, 0.4786], phi:[0.3464]] [M:[[1, -5], [1, -5], [-8, 4], [-5, 1], [-1, 5], [1, -5], [-5, 1]], q:[[-4, 5], [5, -4]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{4}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{6}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{7}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ ${}\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}$ -2 t^2.056 + 2*t^2.067 + t^2.078 + 2*t^2.089 + t^2.883 + t^3.9 + t^3.922 + t^4.112 + 2*t^4.123 + 4*t^4.134 + 4*t^4.145 + 5*t^4.156 + 2*t^4.167 + 3*t^4.178 + t^4.939 + 2*t^4.95 + 2*t^4.961 + 2*t^4.972 + t^5.766 + t^5.956 + 2*t^5.967 + t^5.978 + 2*t^5.989 - 2*t^6. - t^6.022 + t^6.168 + 2*t^6.179 + 4*t^6.19 + 8*t^6.201 + 8*t^6.212 + 10*t^6.223 + 8*t^6.234 + 8*t^6.246 + 3*t^6.257 + 4*t^6.268 + t^6.783 + t^6.805 + t^6.995 + 2*t^7.006 + 4*t^7.017 + 4*t^7.028 + 4*t^7.039 + 2*t^7.05 + 2*t^7.061 + t^7.8 + t^7.822 - t^7.866 + t^8.012 + 2*t^8.023 + 4*t^8.034 + 2*t^8.045 + t^8.056 - 6*t^8.067 - 3*t^8.078 - 8*t^8.089 - 2*t^8.1 - 2*t^8.111 + t^8.225 + 2*t^8.236 + 4*t^8.247 + 8*t^8.258 + 13*t^8.269 + 14*t^8.28 + 19*t^8.291 + 16*t^8.302 + 17*t^8.313 + 12*t^8.324 + 11*t^8.335 + 4*t^8.346 + 5*t^8.357 + t^8.648 + t^8.839 + 2*t^8.85 + t^8.861 - 3*t^8.883 - 2*t^8.894 - 2*t^8.905 - t^4.039/y - t^6.095/y - (2*t^6.106)/y - t^6.117/y - (2*t^6.128)/y + (2*t^7.123)/y + (2*t^7.134)/y + (4*t^7.145)/y + (4*t^7.156)/y + (2*t^7.167)/y + t^7.178/y + t^7.939/y + (4*t^7.95)/y + (2*t^7.961)/y + (4*t^7.972)/y + t^7.983/y - t^8.151/y - (2*t^8.162)/y - (4*t^8.173)/y - (4*t^8.184)/y - (5*t^8.195)/y - (2*t^8.206)/y - (3*t^8.217)/y + t^8.956/y + (2*t^8.967)/y + (2*t^8.978)/y + (4*t^8.989)/y - t^4.039*y - t^6.095*y - 2*t^6.106*y - t^6.117*y - 2*t^6.128*y + 2*t^7.123*y + 2*t^7.134*y + 4*t^7.145*y + 4*t^7.156*y + 2*t^7.167*y + t^7.178*y + t^7.939*y + 4*t^7.95*y + 2*t^7.961*y + 4*t^7.972*y + t^7.983*y - t^8.151*y - 2*t^8.162*y - 4*t^8.173*y - 4*t^8.184*y - 5*t^8.195*y - 2*t^8.206*y - 3*t^8.217*y + t^8.956*y + 2*t^8.967*y + 2*t^8.978*y + 4*t^8.989*y (g2^4*t^2.056)/g1^8 + (2*g2*t^2.067)/g1^5 + t^2.078/(g1^2*g2^2) + (2*g1*t^2.089)/g2^5 + g1^3*g2^3*t^2.883 + (g2^8*t^3.9)/g1^4 + g1^2*g2^2*t^3.922 + (g2^8*t^4.112)/g1^16 + (2*g2^5*t^4.123)/g1^13 + (4*g2^2*t^4.134)/g1^10 + (4*t^4.145)/(g1^7*g2) + (5*t^4.156)/(g1^4*g2^4) + (2*t^4.167)/(g1*g2^7) + (3*g1^2*t^4.178)/g2^10 + (g2^7*t^4.939)/g1^5 + (2*g2^4*t^4.95)/g1^2 + 2*g1*g2*t^4.961 + (2*g1^4*t^4.972)/g2^2 + g1^6*g2^6*t^5.766 + (g2^12*t^5.956)/g1^12 + (2*g2^9*t^5.967)/g1^9 + (g2^6*t^5.978)/g1^6 + (2*g2^3*t^5.989)/g1^3 - 2*t^6. - (g1^6*t^6.022)/g2^6 + (g2^12*t^6.168)/g1^24 + (2*g2^9*t^6.179)/g1^21 + (4*g2^6*t^6.19)/g1^18 + (8*g2^3*t^6.201)/g1^15 + (8*t^6.212)/g1^12 + (10*t^6.223)/(g1^9*g2^3) + (8*t^6.234)/(g1^6*g2^6) + (8*t^6.246)/(g1^3*g2^9) + (3*t^6.257)/g2^12 + (4*g1^3*t^6.268)/g2^15 + (g2^11*t^6.783)/g1 + g1^5*g2^5*t^6.805 + (g2^11*t^6.995)/g1^13 + (2*g2^8*t^7.006)/g1^10 + (4*g2^5*t^7.017)/g1^7 + (4*g2^2*t^7.028)/g1^4 + (4*t^7.039)/(g1*g2) + (2*g1^2*t^7.05)/g2^4 + (2*g1^5*t^7.061)/g2^7 + (g2^16*t^7.8)/g1^8 + (g2^10*t^7.822)/g1^2 - (g1^10*t^7.866)/g2^2 + (g2^16*t^8.012)/g1^20 + (2*g2^13*t^8.023)/g1^17 + (4*g2^10*t^8.034)/g1^14 + (2*g2^7*t^8.045)/g1^11 + (g2^4*t^8.056)/g1^8 - (6*g2*t^8.067)/g1^5 - (3*t^8.078)/(g1^2*g2^2) - (8*g1*t^8.089)/g2^5 - (2*g1^4*t^8.1)/g2^8 - (2*g1^7*t^8.111)/g2^11 + (g2^16*t^8.225)/g1^32 + (2*g2^13*t^8.236)/g1^29 + (4*g2^10*t^8.247)/g1^26 + (8*g2^7*t^8.258)/g1^23 + (13*g2^4*t^8.269)/g1^20 + (14*g2*t^8.28)/g1^17 + (19*t^8.291)/(g1^14*g2^2) + (16*t^8.302)/(g1^11*g2^5) + (17*t^8.313)/(g1^8*g2^8) + (12*t^8.324)/(g1^5*g2^11) + (11*t^8.335)/(g1^2*g2^14) + (4*g1*t^8.346)/g2^17 + (5*g1^4*t^8.357)/g2^20 + g1^9*g2^9*t^8.648 + (g2^15*t^8.839)/g1^9 + (2*g2^12*t^8.85)/g1^6 + (g2^9*t^8.861)/g1^3 - 3*g1^3*g2^3*t^8.883 - 2*g1^6*t^8.894 - (2*g1^9*t^8.905)/g2^3 - t^4.039/(g1*g2*y) - (g2^3*t^6.095)/(g1^9*y) - (2*t^6.106)/(g1^6*y) - t^6.117/(g1^3*g2^3*y) - (2*t^6.128)/(g2^6*y) + (2*g2^5*t^7.123)/(g1^13*y) + (2*g2^2*t^7.134)/(g1^10*y) + (4*t^7.145)/(g1^7*g2*y) + (4*t^7.156)/(g1^4*g2^4*y) + (2*t^7.167)/(g1*g2^7*y) + (g1^2*t^7.178)/(g2^10*y) + (g2^7*t^7.939)/(g1^5*y) + (4*g2^4*t^7.95)/(g1^2*y) + (2*g1*g2*t^7.961)/y + (4*g1^4*t^7.972)/(g2^2*y) + (g1^7*t^7.983)/(g2^5*y) - (g2^7*t^8.151)/(g1^17*y) - (2*g2^4*t^8.162)/(g1^14*y) - (4*g2*t^8.173)/(g1^11*y) - (4*t^8.184)/(g1^8*g2^2*y) - (5*t^8.195)/(g1^5*g2^5*y) - (2*t^8.206)/(g1^2*g2^8*y) - (3*g1*t^8.217)/(g2^11*y) + (g2^12*t^8.956)/(g1^12*y) + (2*g2^9*t^8.967)/(g1^9*y) + (2*g2^6*t^8.978)/(g1^6*y) + (4*g2^3*t^8.989)/(g1^3*y) - (t^4.039*y)/(g1*g2) - (g2^3*t^6.095*y)/g1^9 - (2*t^6.106*y)/g1^6 - (t^6.117*y)/(g1^3*g2^3) - (2*t^6.128*y)/g2^6 + (2*g2^5*t^7.123*y)/g1^13 + (2*g2^2*t^7.134*y)/g1^10 + (4*t^7.145*y)/(g1^7*g2) + (4*t^7.156*y)/(g1^4*g2^4) + (2*t^7.167*y)/(g1*g2^7) + (g1^2*t^7.178*y)/g2^10 + (g2^7*t^7.939*y)/g1^5 + (4*g2^4*t^7.95*y)/g1^2 + 2*g1*g2*t^7.961*y + (4*g1^4*t^7.972*y)/g2^2 + (g1^7*t^7.983*y)/g2^5 - (g2^7*t^8.151*y)/g1^17 - (2*g2^4*t^8.162*y)/g1^14 - (4*g2*t^8.173*y)/g1^11 - (4*t^8.184*y)/(g1^8*g2^2) - (5*t^8.195*y)/(g1^5*g2^5) - (2*t^8.206*y)/(g1^2*g2^8) - (3*g1*t^8.217*y)/g2^11 + (g2^12*t^8.956*y)/g1^12 + (2*g2^9*t^8.967*y)/g1^9 + (2*g2^6*t^8.978*y)/g1^6 + (4*g2^3*t^8.989*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
774 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{1}M_{5}$ + ${ }M_{5}M_{6}$ 0.6895 0.8745 0.7885 [M:[0.6972, 0.6972, 0.6907, 0.6929, 1.3028, 0.6972], q:[0.823, 0.8295], qb:[0.4798, 0.4777], phi:[0.3475]] t^2.072 + t^2.079 + t^2.085 + 2*t^2.091 + t^2.872 + t^3.902 + t^3.915 + t^3.921 + t^4.144 + t^4.151 + 2*t^4.157 + 3*t^4.164 + 3*t^4.17 + 2*t^4.177 + 3*t^4.183 + t^4.945 + t^4.951 + 2*t^4.957 + 2*t^4.964 + t^5.745 + t^5.974 + t^5.981 + t^5.987 + 2*t^5.994 - t^6. - t^4.043/y - t^4.043*y detail