Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
45838 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ | 0.7406 | 0.8961 | 0.8265 | [X:[], M:[0.7808, 0.7808], q:[0.6298, 0.5894], qb:[0.5894, 0.5527], phi:[0.4097]] | [X:[], M:[[-4, -4, 0, 0], [-4, 0, -4, 0]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ \phi_1^2$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1^4$, $ \phi_1q_1^2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$ | . | -6 | 2*t^2.34 + t^2.46 + 2*t^3.43 + t^3.54 + t^3.55 + t^4.54 + 2*t^4.66 + 3*t^4.68 + 3*t^4.77 + t^4.78 + 2*t^4.8 + 2*t^4.89 + t^4.92 + t^5.01 + 3*t^5.77 + 2*t^5.88 + t^5.99 - 6*t^6. + t^6.01 - 2*t^6.11 - 2*t^6.12 - t^6.23 + 3*t^6.85 + 2*t^6.89 + 2*t^6.96 + 2*t^6.97 + 4*t^7. + 4*t^7.03 + t^7.07 + t^7.09 + 6*t^7.11 + 3*t^7.14 + 3*t^7.22 + 2*t^7.26 + t^7.37 - t^7.46 + t^7.47 + 2*t^7.97 + 4*t^8.08 + 4*t^8.11 + 6*t^8.19 + 2*t^8.23 + 3*t^8.3 - 8*t^8.34 - 2*t^8.45 - 6*t^8.46 - t^8.55 + t^8.56 - 2*t^8.57 - 2*t^8.58 + t^8.68 - t^8.69 - t^4.23/y - (2*t^6.57)/y - t^6.69/y + t^7.68/y + t^7.77/y + (2*t^7.8)/y + (2*t^7.89)/y + (4*t^8.77)/y + (4*t^8.88)/y + (2*t^8.89)/y - (3*t^8.91)/y + t^8.99/y - t^4.23*y - 2*t^6.57*y - t^6.69*y + t^7.68*y + t^7.77*y + 2*t^7.8*y + 2*t^7.89*y + 4*t^8.77*y + 4*t^8.88*y + 2*t^8.89*y - 3*t^8.91*y + t^8.99*y | t^2.34/(g1^4*g2^4) + t^2.34/(g1^4*g3^4) + t^2.46/(g1^2*g2^2*g3^2*g4^2) + g2^4*g4^4*t^3.43 + g3^4*g4^4*t^3.43 + g2^4*g3^4*t^3.54 + g1^4*g4^4*t^3.55 + (g4^7*t^4.54)/(g1*g2*g3) + (g2^3*g4^3*t^4.66)/(g1*g3) + (g3^3*g4^3*t^4.66)/(g1*g2) + t^4.68/(g1^8*g2^8) + t^4.68/(g1^8*g3^8) + t^4.68/(g1^8*g2^4*g3^4) + (g2^7*t^4.77)/(g1*g3*g4) + (g2^3*g3^3*t^4.77)/(g1*g4) + (g3^7*t^4.77)/(g1*g2*g4) + (g1^3*g4^3*t^4.78)/(g2*g3) + t^4.8/(g1^6*g2^2*g3^6*g4^2) + t^4.8/(g1^6*g2^6*g3^2*g4^2) + (g1^3*g2^3*t^4.89)/(g3*g4) + (g1^3*g3^3*t^4.89)/(g2*g4) + t^4.92/(g1^4*g2^4*g3^4*g4^4) + (g1^7*t^5.01)/(g2*g3*g4) + (g4^4*t^5.77)/g1^4 + (g2^4*g4^4*t^5.77)/(g1^4*g3^4) + (g3^4*g4^4*t^5.77)/(g1^4*g2^4) + (g2^2*g4^2*t^5.88)/(g1^2*g3^2) + (g3^2*g4^2*t^5.88)/(g1^2*g2^2) + (g2^2*g3^2*t^5.99)/(g1^2*g4^2) - 4*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 + (g1^2*g4^2*t^6.01)/(g2^2*g3^2) - (g2^4*t^6.11)/g4^4 - (g3^4*t^6.11)/g4^4 - (g1^4*t^6.12)/g2^4 - (g1^4*t^6.12)/g3^4 - (g1^4*t^6.23)/g4^4 + g2^8*g4^8*t^6.85 + g2^4*g3^4*g4^8*t^6.85 + g3^8*g4^8*t^6.85 + (g4^7*t^6.89)/(g1^5*g2*g3^5) + (g4^7*t^6.89)/(g1^5*g2^5*g3) + g2^8*g3^4*g4^4*t^6.96 + g2^4*g3^8*g4^4*t^6.96 + g1^4*g2^4*g4^8*t^6.97 + g1^4*g3^4*g4^8*t^6.97 + (g2^3*g4^3*t^7.)/(g1^5*g3^5) + (g4^3*t^7.)/(g1^5*g2*g3) + (g3^3*g4^3*t^7.)/(g1^5*g2^5) + (g4^5*t^7.)/(g1^3*g2^3*g3^3) + t^7.03/(g1^12*g2^12) + t^7.03/(g1^12*g3^12) + t^7.03/(g1^12*g2^4*g3^8) + t^7.03/(g1^12*g2^8*g3^4) + g2^8*g3^8*t^7.07 + g1^8*g4^8*t^7.09 + (g2^7*t^7.11)/(g1^5*g3^5*g4) + (g2^3*t^7.11)/(g1^5*g3*g4) + (g3^3*t^7.11)/(g1^5*g2*g4) + (g3^7*t^7.11)/(g1^5*g2^5*g4) + (g2*g4*t^7.11)/(g1^3*g3^3) + (g3*g4*t^7.11)/(g1^3*g2^3) + t^7.14/(g1^10*g2^2*g3^10*g4^2) + t^7.14/(g1^10*g2^6*g3^6*g4^2) + t^7.14/(g1^10*g2^10*g3^2*g4^2) + (g2^5*t^7.22)/(g1^3*g3^3*g4^3) + (g2*g3*t^7.22)/(g1^3*g4^3) + (g3^5*t^7.22)/(g1^3*g2^3*g4^3) - t^7.23/(g1*g2*g3*g4) + (g1*g4*t^7.23)/(g2^3*g3^3) + t^7.26/(g1^8*g2^4*g3^8*g4^4) + t^7.26/(g1^8*g2^8*g3^4*g4^4) - (g2^3*t^7.34)/(g1*g3*g4^5) - (g3^3*t^7.34)/(g1*g2*g4^5) + (g1*g2*t^7.34)/(g3^3*g4^3) + (g1*g3*t^7.34)/(g2^3*g4^3) + t^7.37/(g1^6*g2^6*g3^6*g4^6) - (g1^3*t^7.46)/(g2*g3*g4^5) + (g1^5*t^7.47)/(g2^3*g3^3*g4^3) + (g2^3*g4^11*t^7.97)/(g1*g3) + (g3^3*g4^11*t^7.97)/(g1*g2) + (g2^7*g4^7*t^8.08)/(g1*g3) + (2*g2^3*g3^3*g4^7*t^8.08)/g1 + (g3^7*g4^7*t^8.08)/(g1*g2) - g1*g2*g3*g4^9*t^8.09 + (g1^3*g4^11*t^8.09)/(g2*g3) + (g4^4*t^8.11)/(g1^8*g2^4) + (g2^4*g4^4*t^8.11)/(g1^8*g3^8) + (g4^4*t^8.11)/(g1^8*g3^4) + (g3^4*g4^4*t^8.11)/(g1^8*g2^8) + (g2^11*g4^3*t^8.19)/(g1*g3) + (2*g2^7*g3^3*g4^3*t^8.19)/g1 + (2*g2^3*g3^7*g4^3*t^8.19)/g1 + (g3^11*g4^3*t^8.19)/(g1*g2) - g1*g2^5*g3*g4^5*t^8.2 - g1*g2*g3^5*g4^5*t^8.2 + (g1^3*g2^3*g4^7*t^8.2)/g3 + (g1^3*g3^3*g4^7*t^8.2)/g2 + (g2^2*g4^2*t^8.23)/(g1^6*g3^6) + (g4^2*t^8.23)/(g1^6*g2^2*g3^2) + (g3^2*g4^2*t^8.23)/(g1^6*g2^6) - (g4^4*t^8.23)/(g1^4*g2^4*g3^4) + (g2^11*g3^3*t^8.3)/(g1*g4) + (g2^7*g3^7*t^8.3)/(g1*g4) + (g2^3*g3^11*t^8.3)/(g1*g4) - g1*g2^9*g3*g4*t^8.31 - g1*g2^5*g3^5*g4*t^8.31 - g1*g2*g3^9*g4*t^8.31 + (g1^3*g2^7*g4^3*t^8.31)/g3 + g1^3*g2^3*g3^3*g4^3*t^8.31 + (g1^3*g3^7*g4^3*t^8.31)/g2 - g1^5*g2*g3*g4^5*t^8.32 + (g1^7*g4^7*t^8.32)/(g2*g3) - (3*t^8.34)/(g1^4*g2^4) - (g2^4*t^8.34)/(g1^4*g3^8) - (3*t^8.34)/(g1^4*g3^4) - (g3^4*t^8.34)/(g1^4*g2^8) - g1^5*g2^5*g3*g4*t^8.43 - g1^5*g2*g3^5*g4*t^8.43 + (g1^7*g2^3*g4^3*t^8.43)/g3 + (g1^7*g3^3*g4^3*t^8.43)/g2 - (g2^4*t^8.45)/(g1^4*g3^4*g4^4) - (g3^4*t^8.45)/(g1^4*g2^4*g4^4) - (g2^2*t^8.46)/(g1^2*g3^6*g4^2) - (4*t^8.46)/(g1^2*g2^2*g3^2*g4^2) - (g3^2*t^8.46)/(g1^2*g2^6*g4^2) - g1^9*g2*g3*g4*t^8.55 + (g1^11*g4^3*t^8.56)/(g2*g3) - (g2^2*t^8.57)/(g1^2*g3^2*g4^6) - (g3^2*t^8.57)/(g1^2*g2^2*g4^6) - (g1^2*t^8.58)/(g2^2*g3^6*g4^2) - (g1^2*t^8.58)/(g2^6*g3^2*g4^2) + t^8.68/g4^8 - (g1^2*t^8.69)/(g2^2*g3^2*g4^6) - t^4.23/(g1*g2*g3*g4*y) - t^6.57/(g1^5*g2*g3^5*g4*y) - t^6.57/(g1^5*g2^5*g3*g4*y) - t^6.69/(g1^3*g2^3*g3^3*g4^3*y) + t^7.68/(g1^8*g2^4*g3^4*y) + (g1*g2*g3*g4*t^7.77)/y + t^7.8/(g1^6*g2^2*g3^6*g4^2*y) + t^7.8/(g1^6*g2^6*g3^2*g4^2*y) + (g1^3*g2^3*t^7.89)/(g3*g4*y) + (g1^3*g3^3*t^7.89)/(g2*g4*y) + (2*g4^4*t^8.77)/(g1^4*y) + (g2^4*g4^4*t^8.77)/(g1^4*g3^4*y) + (g3^4*g4^4*t^8.77)/(g1^4*g2^4*y) + (g2^4*t^8.88)/(g1^4*y) + (g3^4*t^8.88)/(g1^4*y) + (g2^2*g4^2*t^8.88)/(g1^2*g3^2*y) + (g3^2*g4^2*t^8.88)/(g1^2*g2^2*y) + (g4^4*t^8.89)/(g2^4*y) + (g4^4*t^8.89)/(g3^4*y) - t^8.91/(g1^9*g2*g3^9*g4*y) - t^8.91/(g1^9*g2^5*g3^5*g4*y) - t^8.91/(g1^9*g2^9*g3*g4*y) + (g2^2*g3^2*t^8.99)/(g1^2*g4^2*y) - (t^4.23*y)/(g1*g2*g3*g4) - (t^6.57*y)/(g1^5*g2*g3^5*g4) - (t^6.57*y)/(g1^5*g2^5*g3*g4) - (t^6.69*y)/(g1^3*g2^3*g3^3*g4^3) + (t^7.68*y)/(g1^8*g2^4*g3^4) + g1*g2*g3*g4*t^7.77*y + (t^7.8*y)/(g1^6*g2^2*g3^6*g4^2) + (t^7.8*y)/(g1^6*g2^6*g3^2*g4^2) + (g1^3*g2^3*t^7.89*y)/(g3*g4) + (g1^3*g3^3*t^7.89*y)/(g2*g4) + (2*g4^4*t^8.77*y)/g1^4 + (g2^4*g4^4*t^8.77*y)/(g1^4*g3^4) + (g3^4*g4^4*t^8.77*y)/(g1^4*g2^4) + (g2^4*t^8.88*y)/g1^4 + (g3^4*t^8.88*y)/g1^4 + (g2^2*g4^2*t^8.88*y)/(g1^2*g3^2) + (g3^2*g4^2*t^8.88*y)/(g1^2*g2^2) + (g4^4*t^8.89*y)/g2^4 + (g4^4*t^8.89*y)/g3^4 - (t^8.91*y)/(g1^9*g2*g3^9*g4) - (t^8.91*y)/(g1^9*g2^5*g3^5*g4) - (t^8.91*y)/(g1^9*g2^9*g3*g4) + (g2^2*g3^2*t^8.99*y)/(g1^2*g4^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
45843 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ | 0.7577 | 0.9271 | 0.8174 | [X:[], M:[0.7655, 0.7655, 0.7655], q:[0.6539, 0.5806], qb:[0.5806, 0.5806], phi:[0.4011]] | 3*t^2.3 + t^2.41 + 3*t^3.48 + 6*t^4.59 + 6*t^4.69 + 3*t^4.7 + t^4.81 + 3*t^4.91 + t^5.13 + 6*t^5.78 + 3*t^5.89 - 10*t^6. - t^4.2/y - t^4.2*y | detail | |
45849 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ | 0.7576 | 0.9264 | 0.8177 | [X:[], M:[0.7673, 0.7673, 0.7673], q:[0.6164, 0.6164], qb:[0.6164, 0.5482], phi:[0.4007]] | 3*t^2.3 + t^2.4 + 3*t^3.49 + t^4.49 + 6*t^4.6 + 3*t^4.7 + 3*t^4.71 + t^4.81 + 6*t^4.9 + 6*t^5.8 + 3*t^5.9 - 10*t^6. - t^4.2/y - t^4.2*y | detail | |
45846 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ | 0.7556 | 0.9204 | 0.821 | [X:[], M:[0.7942, 0.7604, 0.7942], q:[0.6198, 0.586], qb:[0.6198, 0.586], phi:[0.3971]] | t^2.28 + 3*t^2.38 + t^3.52 + 2*t^3.62 + t^4.56 + 3*t^4.66 + 3*t^4.71 + 6*t^4.77 + 4*t^4.81 + 3*t^4.91 + t^5.8 + t^5.9 - 2*t^6. - t^4.19/y - t^4.19*y | detail | |
45854 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1\tilde{q}_2$ | 0.6487 | 0.7983 | 0.8127 | [X:[], M:[0.6881, 0.6881], q:[0.8426, 0.4693], qb:[0.4693, 0.8036], phi:[0.3538]] | 2*t^2.06 + t^2.12 + t^2.82 + 2*t^3.82 + 3*t^3.88 + 3*t^4.13 + 2*t^4.19 + t^4.25 + 2*t^4.88 + 2*t^4.94 + t^5.63 + 4*t^5.88 + 6*t^5.94 - 2*t^6. - t^4.06/y - t^4.06*y | detail | |
45868 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ | 0.7148 | 0.8821 | 0.8104 | [X:[], M:[0.6739, 0.6739], q:[0.7976, 0.5285], qb:[0.5285, 0.526], phi:[0.4048]] | 2*t^2.02 + t^2.43 + 2*t^3.16 + t^3.17 + t^3.97 + 3*t^4.04 + t^4.37 + 2*t^4.38 + 3*t^4.39 + 2*t^4.45 + t^4.86 + 6*t^5.19 + 2*t^5.59 + t^5.6 - 5*t^6. - t^4.21/y - t^4.21*y | detail | |
45860 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ | 0.6485 | 0.7967 | 0.8141 | [X:[], M:[0.696, 0.696], q:[0.4802, 0.8238], qb:[0.8238, 0.4626], phi:[0.3524]] | 2*t^2.09 + t^2.11 + t^2.83 + t^3.83 + 2*t^3.86 + t^3.89 + t^3.94 + 3*t^4.18 + 2*t^4.2 + t^4.23 + 2*t^4.92 + 2*t^4.94 + t^5.66 + 2*t^5.92 + 4*t^5.95 + 2*t^5.97 - 2*t^6. - t^4.06/y - t^4.06*y | detail | |
45848 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1^2q_2\tilde{q}_1$ | 0.7406 | 0.896 | 0.8266 | [X:[], M:[0.7809, 0.7809], q:[0.6288, 0.5903], qb:[0.5903, 0.5518], phi:[0.4097]] | 2*t^2.34 + t^2.46 + 2*t^3.43 + 2*t^3.54 + t^4.54 + 2*t^4.66 + 3*t^4.69 + 4*t^4.77 + 2*t^4.8 + 2*t^4.89 + t^4.92 + t^5. + 3*t^5.77 + 2*t^5.88 - 4*t^6. - t^4.23/y - t^4.23*y | detail | |
45862 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1^4$ | 0.6965 | 0.8596 | 0.8103 | [X:[], M:[0.9458, 0.9458], q:[0.5557, 0.4985], qb:[0.4985, 0.4472], phi:[0.5]] | 4*t^2.84 + t^2.99 + t^3. + t^3.01 + t^4.18 + 2*t^4.34 + 3*t^4.49 + t^4.51 + 2*t^4.66 + t^4.83 + 9*t^5.67 + 2*t^5.83 + 4*t^5.84 + 2*t^5.85 + t^5.98 + t^5.99 - 5*t^6. - t^4.5/y - t^4.5*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55739 | SU2adj1nf3 | $\phi_1q_1^2$ + $ M_1q_2q_3$ + $ M_2q_2\tilde{q}_1$ + $ q_1\tilde{q}_2$ | 0.7406 | 0.8961 | 0.8265 | [X:[], M:[0.7808, 0.7808], q:[0.7952, 0.6298, 0.5894], qb:[0.5894, 1.2048, 0.5527], phi:[0.4097]] | 2*t^2.34 + t^2.46 + 2*t^3.43 + t^3.54 + t^3.55 + t^4.54 + 2*t^4.66 + 3*t^4.68 + 3*t^4.77 + t^4.78 + 2*t^4.8 + 2*t^4.89 + t^4.92 + t^5.01 + 3*t^5.77 + 2*t^5.88 + t^5.99 - 6*t^6. - t^4.23/y - t^4.23*y | detail |
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
40 | SU2adj1nf2 | $M_1q_1q_2$ | 0.7247 | 0.8687 | 0.8342 | [X:[], M:[0.7995], q:[0.6003, 0.6003], qb:[0.5581, 0.5581], phi:[0.4208]] | t^2.4 + t^2.52 + t^3.35 + 4*t^3.48 + 3*t^4.61 + 4*t^4.74 + t^4.8 + 3*t^4.86 + t^4.92 + t^5.05 + t^5.75 + t^5.87 - 4*t^6. - t^4.26/y - t^4.26*y | detail |