Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45846 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ 0.7556 0.9204 0.821 [X:[], M:[0.7942, 0.7604, 0.7942], q:[0.6198, 0.586], qb:[0.6198, 0.586], phi:[0.3971]] [X:[], M:[[-4, -4, 0, 0], [-4, 0, -4, 0], [0, 0, -4, -4]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ M_3$, $ \phi_1^2$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_2^2$, $ M_1M_2$, $ M_2M_3$, $ M_2\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_1^2$, $ M_3^2$, $ M_3\phi_1^2$, $ M_1M_3$, $ \phi_1^4$, $ M_1\phi_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_2q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$ $\phi_1^2q_2\tilde{q}_1$, $ M_3q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$ -2 t^2.28 + 3*t^2.38 + t^3.52 + 2*t^3.62 + t^4.56 + 3*t^4.66 + 3*t^4.71 + 6*t^4.77 + 4*t^4.81 + 3*t^4.91 + t^5.8 + t^5.9 - 2*t^6. - 4*t^6.1 + t^6.84 + 3*t^6.94 + 3*t^6.99 + t^7.03 + 6*t^7.05 + 9*t^7.09 + 2*t^7.13 + 10*t^7.15 + 8*t^7.19 + 2*t^7.23 + 5*t^7.29 + t^8.08 + t^8.18 + 3*t^8.22 - 5*t^8.28 + 3*t^8.32 - 12*t^8.38 - 9*t^8.48 - t^8.53 - t^4.19/y - t^6.47/y - (3*t^6.57)/y + (3*t^7.66)/y + (3*t^7.77)/y + (3*t^7.81)/y + t^7.91/y - t^8.75/y + t^8.8/y - (3*t^8.85)/y + (5*t^8.9)/y - (6*t^8.96)/y - t^4.19*y - t^6.47*y - 3*t^6.57*y + 3*t^7.66*y + 3*t^7.77*y + 3*t^7.81*y + t^7.91*y - t^8.75*y + t^8.8*y - 3*t^8.85*y + 5*t^8.9*y - 6*t^8.96*y t^2.28/(g1^4*g3^4) + t^2.38/(g1^4*g2^4) + t^2.38/(g3^4*g4^4) + t^2.38/(g1^2*g2^2*g3^2*g4^2) + g2^4*g4^4*t^3.52 + g2^4*g3^4*t^3.62 + g1^4*g4^4*t^3.62 + t^4.56/(g1^8*g3^8) + t^4.66/(g1^8*g2^4*g3^4) + t^4.66/(g1^4*g3^8*g4^4) + t^4.66/(g1^6*g2^2*g3^6*g4^2) + (g2^7*t^4.71)/(g1*g3*g4) + (g2^3*g4^3*t^4.71)/(g1*g3) + (g4^7*t^4.71)/(g1*g2*g3) + t^4.77/(g1^8*g2^8) + t^4.77/(g3^8*g4^8) + t^4.77/(g1^2*g2^2*g3^6*g4^6) + (2*t^4.77)/(g1^4*g2^4*g3^4*g4^4) + t^4.77/(g1^6*g2^6*g3^2*g4^2) + (g1^3*g2^3*t^4.81)/(g3*g4) + (g2^3*g3^3*t^4.81)/(g1*g4) + (g1^3*g4^3*t^4.81)/(g2*g3) + (g3^3*g4^3*t^4.81)/(g1*g2) + (g1^7*t^4.91)/(g2*g3*g4) + (g1^3*g3^3*t^4.91)/(g2*g4) + (g3^7*t^4.91)/(g1*g2*g4) + (g2^4*g4^4*t^5.8)/(g1^4*g3^4) + (g2^2*g4^2*t^5.9)/(g1^2*g3^2) - 4*t^6. + (g2^2*g3^2*t^6.)/(g1^2*g4^2) + (g1^2*g4^2*t^6.)/(g2^2*g3^2) - (g1^4*t^6.1)/g2^4 - (g3^4*t^6.1)/g2^4 - (g1^4*t^6.1)/g4^4 - (g3^4*t^6.1)/g4^4 + t^6.84/(g1^12*g3^12) + t^6.94/(g1^12*g2^4*g3^8) + t^6.94/(g1^8*g3^12*g4^4) + t^6.94/(g1^10*g2^2*g3^10*g4^2) + (g2^7*t^6.99)/(g1^5*g3^5*g4) + (g2^3*g4^3*t^6.99)/(g1^5*g3^5) + (g4^7*t^6.99)/(g1^5*g2*g3^5) + g2^8*g4^8*t^7.03 + t^7.05/(g1^12*g2^8*g3^4) + t^7.05/(g1^4*g3^12*g4^8) + t^7.05/(g1^6*g2^2*g3^10*g4^6) + (2*t^7.05)/(g1^8*g2^4*g3^8*g4^4) + t^7.05/(g1^10*g2^6*g3^6*g4^2) + (g2^7*t^7.09)/(g1*g3^5*g4^5) + (g2^5*t^7.09)/(g1^3*g3^3*g4^3) + (g2^3*t^7.09)/(g1*g3^5*g4) + (g2^3*t^7.09)/(g1^5*g3*g4) + (g2*g4*t^7.09)/(g1^3*g3^3) + (g4^3*t^7.09)/(g1*g2*g3^5) + (g4^3*t^7.09)/(g1^5*g2*g3) + (g4^5*t^7.09)/(g1^3*g2^3*g3^3) + (g4^7*t^7.09)/(g1^5*g2^5*g3) + g2^8*g3^4*g4^4*t^7.13 + g1^4*g2^4*g4^8*t^7.13 + t^7.15/(g1^12*g2^12) + t^7.15/(g3^12*g4^12) + t^7.15/(g1^2*g2^2*g3^10*g4^10) + (2*t^7.15)/(g1^4*g2^4*g3^8*g4^8) + (2*t^7.15)/(g1^6*g2^6*g3^6*g4^6) + (2*t^7.15)/(g1^8*g2^8*g3^4*g4^4) + t^7.15/(g1^10*g2^10*g3^2*g4^2) + (g1^3*g2^3*t^7.19)/(g3^5*g4^5) + (g1*g2*t^7.19)/(g3^3*g4^3) + (g2*g3*t^7.19)/(g1^3*g4^3) + (g1^3*t^7.19)/(g2*g3^5*g4) + (g3^3*t^7.19)/(g1^5*g2*g4) + (g1*g4*t^7.19)/(g2^3*g3^3) + (g3*g4*t^7.19)/(g1^3*g2^3) + (g3^3*g4^3*t^7.19)/(g1^5*g2^5) + g2^8*g3^8*t^7.23 + g1^8*g4^8*t^7.23 + (g1^7*t^7.29)/(g2*g3^5*g4^5) + (g1^5*t^7.29)/(g2^3*g3^3*g4^3) + (g1*g3*t^7.29)/(g2^3*g4^3) + (g3^5*t^7.29)/(g1^3*g2^3*g4^3) + (g3^7*t^7.29)/(g1^5*g2^5*g4) + (g2^4*g4^4*t^8.08)/(g1^8*g3^8) + (g2^2*g4^2*t^8.18)/(g1^6*g3^6) + (g2^11*g4^3*t^8.22)/(g1*g3) + (g2^7*g4^7*t^8.22)/(g1*g3) + (g2^3*g4^11*t^8.22)/(g1*g3) - (3*t^8.28)/(g1^4*g3^4) - (g2^4*t^8.28)/(g1^4*g3^4*g4^4) - (g4^4*t^8.28)/(g1^4*g2^4*g3^4) + (g2^11*g3^3*t^8.32)/(g1*g4) - g1*g2^9*g3*g4*t^8.32 + (g1^3*g2^7*g4^3*t^8.32)/g3 + (g2^7*g3^3*g4^3*t^8.32)/g1 - g1*g2^5*g3*g4^5*t^8.32 + (g1^3*g2^3*g4^7*t^8.32)/g3 + (g2^3*g3^3*g4^7*t^8.32)/g1 - g1*g2*g3*g4^9*t^8.32 + (g1^3*g4^11*t^8.32)/(g2*g3) - (4*t^8.38)/(g1^4*g2^4) - (4*t^8.38)/(g3^4*g4^4) - (4*t^8.38)/(g1^2*g2^2*g3^2*g4^2) + (g2^7*g3^7*t^8.43)/(g1*g4) - g1^5*g2^5*g3*g4*t^8.43 - g1*g2^5*g3^5*g4*t^8.43 + (g1^7*g2^3*g4^3*t^8.43)/g3 + (g2^3*g3^7*g4^3*t^8.43)/g1 - g1^5*g2*g3*g4^5*t^8.43 - g1*g2*g3^5*g4^5*t^8.43 + (g1^7*g4^7*t^8.43)/(g2*g3) - (g3^4*t^8.48)/(g1^4*g2^8) - (g1^4*t^8.48)/(g3^4*g4^8) - (g1^2*t^8.48)/(g2^2*g3^2*g4^6) - (g3^2*t^8.48)/(g1^2*g2^2*g4^6) - t^8.48/(g2^4*g4^4) - (g1^4*t^8.48)/(g2^4*g3^4*g4^4) - (g3^4*t^8.48)/(g1^4*g2^4*g4^4) - (g1^2*t^8.48)/(g2^6*g3^2*g4^2) - (g3^2*t^8.48)/(g1^2*g2^6*g4^2) + (g2^3*g3^11*t^8.53)/(g1*g4) - g1^9*g2*g3*g4*t^8.53 - g1^5*g2*g3^5*g4*t^8.53 - g1*g2*g3^9*g4*t^8.53 + (g1^11*g4^3*t^8.53)/(g2*g3) - t^4.19/(g1*g2*g3*g4*y) - t^6.47/(g1^5*g2*g3^5*g4*y) - t^6.57/(g1*g2*g3^5*g4^5*y) - t^6.57/(g1^3*g2^3*g3^3*g4^3*y) - t^6.57/(g1^5*g2^5*g3*g4*y) + t^7.66/(g1^8*g2^4*g3^4*y) + t^7.66/(g1^4*g3^8*g4^4*y) + t^7.66/(g1^6*g2^2*g3^6*g4^2*y) + t^7.77/(g1^2*g2^2*g3^6*g4^6*y) + t^7.77/(g1^4*g2^4*g3^4*g4^4*y) + t^7.77/(g1^6*g2^6*g3^2*g4^2*y) + (g1^3*g2^3*t^7.81)/(g3*g4*y) + (g1*g2*g3*g4*t^7.81)/y + (g3^3*g4^3*t^7.81)/(g1*g2*y) + (g1^3*g3^3*t^7.91)/(g2*g4*y) - t^8.75/(g1^9*g2*g3^9*g4*y) + (g2^4*g4^4*t^8.8)/(g1^4*g3^4*y) - t^8.85/(g1^5*g2*g3^9*g4^5*y) - t^8.85/(g1^7*g2^3*g3^7*g4^3*y) - t^8.85/(g1^9*g2^5*g3^5*g4*y) + (g2^4*t^8.9)/(g1^4*y) + (g2^4*t^8.9)/(g3^4*y) + (g2^2*g4^2*t^8.9)/(g1^2*g3^2*y) + (g4^4*t^8.9)/(g1^4*y) + (g4^4*t^8.9)/(g3^4*y) - t^8.96/(g1*g2*g3^9*g4^9*y) - t^8.96/(g1^3*g2^3*g3^7*g4^7*y) - (2*t^8.96)/(g1^5*g2^5*g3^5*g4^5*y) - t^8.96/(g1^7*g2^7*g3^3*g4^3*y) - t^8.96/(g1^9*g2^9*g3*g4*y) - (t^4.19*y)/(g1*g2*g3*g4) - (t^6.47*y)/(g1^5*g2*g3^5*g4) - (t^6.57*y)/(g1*g2*g3^5*g4^5) - (t^6.57*y)/(g1^3*g2^3*g3^3*g4^3) - (t^6.57*y)/(g1^5*g2^5*g3*g4) + (t^7.66*y)/(g1^8*g2^4*g3^4) + (t^7.66*y)/(g1^4*g3^8*g4^4) + (t^7.66*y)/(g1^6*g2^2*g3^6*g4^2) + (t^7.77*y)/(g1^2*g2^2*g3^6*g4^6) + (t^7.77*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.77*y)/(g1^6*g2^6*g3^2*g4^2) + (g1^3*g2^3*t^7.81*y)/(g3*g4) + g1*g2*g3*g4*t^7.81*y + (g3^3*g4^3*t^7.81*y)/(g1*g2) + (g1^3*g3^3*t^7.91*y)/(g2*g4) - (t^8.75*y)/(g1^9*g2*g3^9*g4) + (g2^4*g4^4*t^8.8*y)/(g1^4*g3^4) - (t^8.85*y)/(g1^5*g2*g3^9*g4^5) - (t^8.85*y)/(g1^7*g2^3*g3^7*g4^3) - (t^8.85*y)/(g1^9*g2^5*g3^5*g4) + (g2^4*t^8.9*y)/g1^4 + (g2^4*t^8.9*y)/g3^4 + (g2^2*g4^2*t^8.9*y)/(g1^2*g3^2) + (g4^4*t^8.9*y)/g1^4 + (g4^4*t^8.9*y)/g3^4 - (t^8.96*y)/(g1*g2*g3^9*g4^9) - (t^8.96*y)/(g1^3*g2^3*g3^7*g4^7) - (2*t^8.96*y)/(g1^5*g2^5*g3^5*g4^5) - (t^8.96*y)/(g1^7*g2^7*g3^3*g4^3) - (t^8.96*y)/(g1^9*g2^9*g3*g4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45889 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4\phi_1^2$ 0.7394 0.8922 0.8287 [X:[], M:[0.8151, 0.7774, 0.8151, 1.1849], q:[0.6113, 0.5736], qb:[0.6113, 0.5736], phi:[0.4075]] t^2.33 + 2*t^2.45 + t^3.44 + 3*t^3.55 + 4*t^4.66 + 6*t^4.78 + 6*t^4.89 + t^5.77 + t^5.89 - 2*t^6. - t^4.22/y - t^4.22*y detail
45934 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ 0.7722 0.9495 0.8132 [X:[], M:[0.7745, 0.7745, 0.7745, 0.7745], q:[0.6127, 0.6127], qb:[0.6127, 0.6127], phi:[0.3873]] 5*t^2.32 + 2*t^3.68 + 15*t^4.65 + 10*t^4.84 - 6*t^6. - t^4.16/y - t^4.16*y detail
45892 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1^2q_2\tilde{q}_2$ 0.7546 0.9174 0.8226 [X:[], M:[0.7904, 0.7904, 0.7904], q:[0.6048, 0.6048], qb:[0.6048, 0.6048], phi:[0.3952]] 4*t^2.37 + 3*t^3.63 + 10*t^4.74 + 10*t^4.81 - 4*t^6. - t^4.19/y - t^4.19*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45838 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ 0.7406 0.8961 0.8265 [X:[], M:[0.7808, 0.7808], q:[0.6298, 0.5894], qb:[0.5894, 0.5527], phi:[0.4097]] 2*t^2.34 + t^2.46 + 2*t^3.43 + t^3.54 + t^3.55 + t^4.54 + 2*t^4.66 + 3*t^4.68 + 3*t^4.77 + t^4.78 + 2*t^4.8 + 2*t^4.89 + t^4.92 + t^5.01 + 3*t^5.77 + 2*t^5.88 + t^5.99 - 6*t^6. - t^4.23/y - t^4.23*y detail