Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45849 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 0.7576 0.9264 0.8177 [M:[0.7673, 0.7673, 0.7673], q:[0.6164, 0.6164], qb:[0.6164, 0.5482], phi:[0.4007]] [M:[[-4, -4, 0, 0], [-4, 0, -4, 0], [0, -4, -4, 0]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -10 3*t^2.302 + t^2.404 + 3*t^3.494 + t^4.491 + 6*t^4.604 + 3*t^4.696 + 3*t^4.706 + t^4.808 + 6*t^4.9 + 6*t^5.795 + 3*t^5.898 - 10*t^6. - 3*t^6.205 + 3*t^6.793 + t^6.895 + 10*t^6.906 + 6*t^6.987 + 6*t^6.998 + 6*t^7.008 + 3*t^7.1 + 3*t^7.11 - t^7.192 + 9*t^7.202 + t^7.212 + 6*t^7.304 - 3*t^7.407 + 3*t^7.985 - t^8.087 + 9*t^8.097 + 6*t^8.189 + 6*t^8.2 - 3*t^8.292 - 21*t^8.302 + 9*t^8.394 - 10*t^8.404 - 6*t^8.496 - 6*t^8.506 - 3*t^8.598 - 3*t^8.609 + t^8.711 + t^8.982 - t^4.202/y - (3*t^6.504)/y - t^6.606/y + (3*t^7.604)/y + (3*t^7.706)/y + t^7.798/y + (3*t^7.9)/y + (9*t^8.795)/y - (6*t^8.806)/y + (3*t^8.898)/y - (3*t^8.908)/y - t^4.202*y - 3*t^6.504*y - t^6.606*y + 3*t^7.604*y + 3*t^7.706*y + t^7.798*y + 3*t^7.9*y + 9*t^8.795*y - 6*t^8.806*y + 3*t^8.898*y - 3*t^8.908*y t^2.302/(g1^4*g2^4) + t^2.302/(g1^4*g3^4) + t^2.302/(g2^4*g3^4) + t^2.404/(g1^2*g2^2*g3^2*g4^2) + g1^4*g4^4*t^3.494 + g2^4*g4^4*t^3.494 + g3^4*g4^4*t^3.494 + (g4^7*t^4.491)/(g1*g2*g3) + t^4.604/(g1^8*g2^8) + t^4.604/(g1^8*g3^8) + t^4.604/(g2^8*g3^8) + t^4.604/(g1^4*g2^4*g3^8) + t^4.604/(g1^4*g2^8*g3^4) + t^4.604/(g1^8*g2^4*g3^4) + (g1^3*g4^3*t^4.696)/(g2*g3) + (g2^3*g4^3*t^4.696)/(g1*g3) + (g3^3*g4^3*t^4.696)/(g1*g2) + t^4.706/(g1^2*g2^6*g3^6*g4^2) + t^4.706/(g1^6*g2^2*g3^6*g4^2) + t^4.706/(g1^6*g2^6*g3^2*g4^2) + t^4.808/(g1^4*g2^4*g3^4*g4^4) + (g1^7*t^4.9)/(g2*g3*g4) + (g1^3*g2^3*t^4.9)/(g3*g4) + (g2^7*t^4.9)/(g1*g3*g4) + (g1^3*g3^3*t^4.9)/(g2*g4) + (g2^3*g3^3*t^4.9)/(g1*g4) + (g3^7*t^4.9)/(g1*g2*g4) + (g4^4*t^5.795)/g1^4 + (g4^4*t^5.795)/g2^4 + (g4^4*t^5.795)/g3^4 + (g1^4*g4^4*t^5.795)/(g2^4*g3^4) + (g2^4*g4^4*t^5.795)/(g1^4*g3^4) + (g3^4*g4^4*t^5.795)/(g1^4*g2^4) + (g1^2*g4^2*t^5.898)/(g2^2*g3^2) + (g2^2*g4^2*t^5.898)/(g1^2*g3^2) + (g3^2*g4^2*t^5.898)/(g1^2*g2^2) - 4*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g1^4*t^6.)/g3^4 - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g1^4 - (g3^4*t^6.)/g2^4 - (g1^4*t^6.205)/g4^4 - (g2^4*t^6.205)/g4^4 - (g3^4*t^6.205)/g4^4 + (g4^7*t^6.793)/(g1*g2^5*g3^5) + (g4^7*t^6.793)/(g1^5*g2*g3^5) + (g4^7*t^6.793)/(g1^5*g2^5*g3) + (g4^5*t^6.895)/(g1^3*g2^3*g3^3) + t^6.906/(g1^12*g2^12) + t^6.906/(g1^12*g3^12) + t^6.906/(g2^12*g3^12) + t^6.906/(g1^4*g2^8*g3^12) + t^6.906/(g1^8*g2^4*g3^12) + t^6.906/(g1^4*g2^12*g3^8) + t^6.906/(g1^8*g2^8*g3^8) + t^6.906/(g1^12*g2^4*g3^8) + t^6.906/(g1^8*g2^12*g3^4) + t^6.906/(g1^12*g2^8*g3^4) + g1^8*g4^8*t^6.987 + g1^4*g2^4*g4^8*t^6.987 + g2^8*g4^8*t^6.987 + g1^4*g3^4*g4^8*t^6.987 + g2^4*g3^4*g4^8*t^6.987 + g3^8*g4^8*t^6.987 + (g1^3*g4^3*t^6.998)/(g2^5*g3^5) + (g4^3*t^6.998)/(g1*g2*g3^5) + (g2^3*g4^3*t^6.998)/(g1^5*g3^5) + (g4^3*t^6.998)/(g1*g2^5*g3) + (g4^3*t^6.998)/(g1^5*g2*g3) + (g3^3*g4^3*t^6.998)/(g1^5*g2^5) + t^7.008/(g1^2*g2^10*g3^10*g4^2) + t^7.008/(g1^6*g2^6*g3^10*g4^2) + t^7.008/(g1^10*g2^2*g3^10*g4^2) + t^7.008/(g1^6*g2^10*g3^6*g4^2) + t^7.008/(g1^10*g2^6*g3^6*g4^2) + t^7.008/(g1^10*g2^10*g3^2*g4^2) + (g1*g4*t^7.1)/(g2^3*g3^3) + (g2*g4*t^7.1)/(g1^3*g3^3) + (g3*g4*t^7.1)/(g1^3*g2^3) + t^7.11/(g1^4*g2^8*g3^8*g4^4) + t^7.11/(g1^8*g2^4*g3^8*g4^4) + t^7.11/(g1^8*g2^8*g3^4*g4^4) - g1^4*g2^4*g3^4*g4^4*t^7.192 + (g1^7*t^7.202)/(g2^5*g3^5*g4) + (g1^3*t^7.202)/(g2*g3^5*g4) + (g2^3*t^7.202)/(g1*g3^5*g4) + (g2^7*t^7.202)/(g1^5*g3^5*g4) + (g1^3*t^7.202)/(g2^5*g3*g4) + (g2^3*t^7.202)/(g1^5*g3*g4) + (g3^3*t^7.202)/(g1*g2^5*g4) + (g3^3*t^7.202)/(g1^5*g2*g4) + (g3^7*t^7.202)/(g1^5*g2^5*g4) + t^7.212/(g1^6*g2^6*g3^6*g4^6) + (g1^5*t^7.304)/(g2^3*g3^3*g4^3) + (g1*g2*t^7.304)/(g3^3*g4^3) + (g2^5*t^7.304)/(g1^3*g3^3*g4^3) + (g1*g3*t^7.304)/(g2^3*g4^3) + (g2*g3*t^7.304)/(g1^3*g4^3) + (g3^5*t^7.304)/(g1^3*g2^3*g4^3) - (g1^3*t^7.407)/(g2*g3*g4^5) - (g2^3*t^7.407)/(g1*g3*g4^5) - (g3^3*t^7.407)/(g1*g2*g4^5) + (g1^3*g4^11*t^7.985)/(g2*g3) + (g2^3*g4^11*t^7.985)/(g1*g3) + (g3^3*g4^11*t^7.985)/(g1*g2) - g1*g2*g3*g4^9*t^8.087 + (g4^4*t^8.097)/(g1^4*g2^8) + (g4^4*t^8.097)/(g1^8*g2^4) + (g4^4*t^8.097)/(g1^4*g3^8) + (g1^4*g4^4*t^8.097)/(g2^8*g3^8) + (g4^4*t^8.097)/(g2^4*g3^8) + (g2^4*g4^4*t^8.097)/(g1^8*g3^8) + (g4^4*t^8.097)/(g1^8*g3^4) + (g4^4*t^8.097)/(g2^8*g3^4) + (g3^4*g4^4*t^8.097)/(g1^8*g2^8) + (g1^7*g4^7*t^8.189)/(g2*g3) + (g1^3*g2^3*g4^7*t^8.189)/g3 + (g2^7*g4^7*t^8.189)/(g1*g3) + (g1^3*g3^3*g4^7*t^8.189)/g2 + (g2^3*g3^3*g4^7*t^8.189)/g1 + (g3^7*g4^7*t^8.189)/(g1*g2) + (g1^2*g4^2*t^8.2)/(g2^6*g3^6) + (g4^2*t^8.2)/(g1^2*g2^2*g3^6) + (g2^2*g4^2*t^8.2)/(g1^6*g3^6) + (g4^2*t^8.2)/(g1^2*g2^6*g3^2) + (g4^2*t^8.2)/(g1^6*g2^2*g3^2) + (g3^2*g4^2*t^8.2)/(g1^6*g2^6) - g1^5*g2*g3*g4^5*t^8.292 - g1*g2^5*g3*g4^5*t^8.292 - g1*g2*g3^5*g4^5*t^8.292 - t^8.302/g1^8 - t^8.302/g2^8 - (4*t^8.302)/(g1^4*g2^4) - t^8.302/g3^8 - (g1^4*t^8.302)/(g2^4*g3^8) - (g2^4*t^8.302)/(g1^4*g3^8) - (4*t^8.302)/(g1^4*g3^4) - (g1^4*t^8.302)/(g2^8*g3^4) - (4*t^8.302)/(g2^4*g3^4) - (g2^4*t^8.302)/(g1^8*g3^4) - (g3^4*t^8.302)/(g1^4*g2^8) - (g3^4*t^8.302)/(g1^8*g2^4) + (g1^11*g4^3*t^8.394)/(g2*g3) + (g1^7*g2^3*g4^3*t^8.394)/g3 + (g1^3*g2^7*g4^3*t^8.394)/g3 + (g2^11*g4^3*t^8.394)/(g1*g3) + (g1^7*g3^3*g4^3*t^8.394)/g2 + (g2^7*g3^3*g4^3*t^8.394)/g1 + (g1^3*g3^7*g4^3*t^8.394)/g2 + (g2^3*g3^7*g4^3*t^8.394)/g1 + (g3^11*g4^3*t^8.394)/(g1*g2) - (g1^2*t^8.404)/(g2^2*g3^6*g4^2) - (g2^2*t^8.404)/(g1^2*g3^6*g4^2) - (g1^2*t^8.404)/(g2^6*g3^2*g4^2) - (4*t^8.404)/(g1^2*g2^2*g3^2*g4^2) - (g2^2*t^8.404)/(g1^6*g3^2*g4^2) - (g3^2*t^8.404)/(g1^2*g2^6*g4^2) - (g3^2*t^8.404)/(g1^6*g2^2*g4^2) - g1^9*g2*g3*g4*t^8.496 - g1^5*g2^5*g3*g4*t^8.496 - g1*g2^9*g3*g4*t^8.496 - g1^5*g2*g3^5*g4*t^8.496 - g1*g2^5*g3^5*g4*t^8.496 - g1*g2*g3^9*g4*t^8.496 - t^8.506/(g1^4*g4^4) - t^8.506/(g2^4*g4^4) - t^8.506/(g3^4*g4^4) - (g1^4*t^8.506)/(g2^4*g3^4*g4^4) - (g2^4*t^8.506)/(g1^4*g3^4*g4^4) - (g3^4*t^8.506)/(g1^4*g2^4*g4^4) - (g1^7*g2^3*g3^3*t^8.598)/g4 - (g1^3*g2^7*g3^3*t^8.598)/g4 - (g1^3*g2^3*g3^7*t^8.598)/g4 - (g1^2*t^8.609)/(g2^2*g3^2*g4^6) - (g2^2*t^8.609)/(g1^2*g3^2*g4^6) - (g3^2*t^8.609)/(g1^2*g2^2*g4^6) + t^8.711/g4^8 + (g4^14*t^8.982)/(g1^2*g2^2*g3^2) - t^4.202/(g1*g2*g3*g4*y) - t^6.504/(g1*g2^5*g3^5*g4*y) - t^6.504/(g1^5*g2*g3^5*g4*y) - t^6.504/(g1^5*g2^5*g3*g4*y) - t^6.606/(g1^3*g2^3*g3^3*g4^3*y) + t^7.604/(g1^4*g2^4*g3^8*y) + t^7.604/(g1^4*g2^8*g3^4*y) + t^7.604/(g1^8*g2^4*g3^4*y) + t^7.706/(g1^2*g2^6*g3^6*g4^2*y) + t^7.706/(g1^6*g2^2*g3^6*g4^2*y) + t^7.706/(g1^6*g2^6*g3^2*g4^2*y) + (g1*g2*g3*g4*t^7.798)/y + (g1^3*g2^3*t^7.9)/(g3*g4*y) + (g1^3*g3^3*t^7.9)/(g2*g4*y) + (g2^3*g3^3*t^7.9)/(g1*g4*y) + (2*g4^4*t^8.795)/(g1^4*y) + (2*g4^4*t^8.795)/(g2^4*y) + (2*g4^4*t^8.795)/(g3^4*y) + (g1^4*g4^4*t^8.795)/(g2^4*g3^4*y) + (g2^4*g4^4*t^8.795)/(g1^4*g3^4*y) + (g3^4*g4^4*t^8.795)/(g1^4*g2^4*y) - t^8.806/(g1*g2^9*g3^9*g4*y) - t^8.806/(g1^5*g2^5*g3^9*g4*y) - t^8.806/(g1^9*g2*g3^9*g4*y) - t^8.806/(g1^5*g2^9*g3^5*g4*y) - t^8.806/(g1^9*g2^5*g3^5*g4*y) - t^8.806/(g1^9*g2^9*g3*g4*y) + (g1^2*g4^2*t^8.898)/(g2^2*g3^2*y) + (g2^2*g4^2*t^8.898)/(g1^2*g3^2*y) + (g3^2*g4^2*t^8.898)/(g1^2*g2^2*y) - t^8.908/(g1^3*g2^7*g3^7*g4^3*y) - t^8.908/(g1^7*g2^3*g3^7*g4^3*y) - t^8.908/(g1^7*g2^7*g3^3*g4^3*y) - (t^4.202*y)/(g1*g2*g3*g4) - (t^6.504*y)/(g1*g2^5*g3^5*g4) - (t^6.504*y)/(g1^5*g2*g3^5*g4) - (t^6.504*y)/(g1^5*g2^5*g3*g4) - (t^6.606*y)/(g1^3*g2^3*g3^3*g4^3) + (t^7.604*y)/(g1^4*g2^4*g3^8) + (t^7.604*y)/(g1^4*g2^8*g3^4) + (t^7.604*y)/(g1^8*g2^4*g3^4) + (t^7.706*y)/(g1^2*g2^6*g3^6*g4^2) + (t^7.706*y)/(g1^6*g2^2*g3^6*g4^2) + (t^7.706*y)/(g1^6*g2^6*g3^2*g4^2) + g1*g2*g3*g4*t^7.798*y + (g1^3*g2^3*t^7.9*y)/(g3*g4) + (g1^3*g3^3*t^7.9*y)/(g2*g4) + (g2^3*g3^3*t^7.9*y)/(g1*g4) + (2*g4^4*t^8.795*y)/g1^4 + (2*g4^4*t^8.795*y)/g2^4 + (2*g4^4*t^8.795*y)/g3^4 + (g1^4*g4^4*t^8.795*y)/(g2^4*g3^4) + (g2^4*g4^4*t^8.795*y)/(g1^4*g3^4) + (g3^4*g4^4*t^8.795*y)/(g1^4*g2^4) - (t^8.806*y)/(g1*g2^9*g3^9*g4) - (t^8.806*y)/(g1^5*g2^5*g3^9*g4) - (t^8.806*y)/(g1^9*g2*g3^9*g4) - (t^8.806*y)/(g1^5*g2^9*g3^5*g4) - (t^8.806*y)/(g1^9*g2^5*g3^5*g4) - (t^8.806*y)/(g1^9*g2^9*g3*g4) + (g1^2*g4^2*t^8.898*y)/(g2^2*g3^2) + (g2^2*g4^2*t^8.898*y)/(g1^2*g3^2) + (g3^2*g4^2*t^8.898*y)/(g1^2*g2^2) - (t^8.908*y)/(g1^3*g2^7*g3^7*g4^3) - (t^8.908*y)/(g1^7*g2^3*g3^7*g4^3) - (t^8.908*y)/(g1^7*g2^7*g3^3*g4^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45894 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ 0.7047 0.8479 0.8312 [M:[0.8283, 0.8283, 0.8283], q:[0.5858, 0.5858], qb:[0.5858, 0.8225], phi:[0.355]] t^2.13 + 3*t^2.485 + 3*t^4.225 + t^4.26 + 6*t^4.58 + 3*t^4.615 + 6*t^4.97 - 9*t^6. - t^4.065/y - t^4.065*y detail
45906 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ 0.6988 0.8648 0.8081 [M:[0.9484, 0.9484, 0.9484], q:[0.5258, 0.5258], qb:[0.5258, 0.4226], phi:[0.5]] 6*t^2.845 + t^3. + t^4.036 + 3*t^4.345 + 6*t^4.655 + 18*t^5.691 + 6*t^5.845 - 10*t^6. - t^4.5/y - t^4.5*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45838 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 0.7406 0.8961 0.8265 [M:[0.7808, 0.7808], q:[0.6298, 0.5894], qb:[0.5894, 0.5527], phi:[0.4097]] 2*t^2.342 + t^2.458 + 2*t^3.426 + t^3.536 + t^3.547 + t^4.545 + 2*t^4.655 + 3*t^4.685 + 3*t^4.765 + t^4.776 + 2*t^4.801 + 2*t^4.887 + t^4.916 + t^5.008 + 3*t^5.769 + 2*t^5.884 + t^5.995 - 6*t^6. - t^4.229/y - t^4.229*y detail