Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
137 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{4}$ 0.7406 0.8961 0.8265 [M:[0.8579, 0.7808, 0.7808, 1.1421], q:[0.5894, 0.5527], qb:[0.6298, 0.5894], phi:[0.4097]] [M:[[-4, -4, 0, 0], [0, 0, -4, -4], [-4, 0, -4, 0], [4, 4, 0, 0]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{2}M_{4}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$ ${}$ -6 2*t^2.342 + t^2.458 + 2*t^3.426 + t^3.536 + t^3.547 + t^4.545 + 2*t^4.655 + 3*t^4.685 + 3*t^4.765 + t^4.776 + 2*t^4.801 + 2*t^4.887 + t^4.916 + t^5.008 + 3*t^5.769 + 2*t^5.884 + t^5.995 - 6*t^6. + t^6.005 - 2*t^6.11 - 2*t^6.121 - t^6.231 + 3*t^6.852 + 2*t^6.887 + 2*t^6.963 + 2*t^6.973 + 3*t^6.998 + t^7.003 + 4*t^7.027 + t^7.073 + t^7.095 + 4*t^7.108 + 2*t^7.113 + 3*t^7.143 + 3*t^7.224 - t^7.229 + t^7.235 + 2*t^7.259 - 2*t^7.339 + 2*t^7.345 + t^7.374 - t^7.46 + t^7.466 + 2*t^7.971 + 4*t^8.081 - t^8.087 + t^8.092 + 4*t^8.111 + 6*t^8.192 - 2*t^8.197 + 2*t^8.203 + 3*t^8.227 - t^8.232 + 3*t^8.302 - 3*t^8.307 + 3*t^8.313 - t^8.318 + t^8.324 - 8*t^8.342 - 2*t^8.429 + 2*t^8.434 - 2*t^8.453 - 6*t^8.458 - t^8.55 + t^8.555 - 2*t^8.568 - 2*t^8.579 + t^8.684 - t^8.69 - t^4.229/y - (2*t^6.571)/y - t^6.687/y + t^7.685/y + t^7.771/y + (2*t^7.801)/y + (2*t^7.887)/y + (4*t^8.769)/y + (2*t^8.879)/y + (2*t^8.884)/y + (2*t^8.89)/y - (3*t^8.914)/y + t^8.995/y - t^4.229*y - 2*t^6.571*y - t^6.687*y + t^7.685*y + t^7.771*y + 2*t^7.801*y + 2*t^7.887*y + 4*t^8.769*y + 2*t^8.879*y + 2*t^8.884*y + 2*t^8.89*y - 3*t^8.914*y + t^8.995*y t^2.342/(g1^4*g3^4) + t^2.342/(g3^4*g4^4) + t^2.458/(g1^2*g2^2*g3^2*g4^2) + g1^4*g2^4*t^3.426 + g2^4*g4^4*t^3.426 + g1^4*g4^4*t^3.536 + g2^4*g3^4*t^3.547 + (g2^7*t^4.545)/(g1*g3*g4) + (g1^3*g2^3*t^4.655)/(g3*g4) + (g2^3*g4^3*t^4.655)/(g1*g3) + t^4.685/(g1^8*g3^8) + t^4.685/(g3^8*g4^8) + t^4.685/(g1^4*g3^8*g4^4) + (g1^7*t^4.765)/(g2*g3*g4) + (g1^3*g4^3*t^4.765)/(g2*g3) + (g4^7*t^4.765)/(g1*g2*g3) + (g2^3*g3^3*t^4.776)/(g1*g4) + t^4.801/(g1^2*g2^2*g3^6*g4^6) + t^4.801/(g1^6*g2^2*g3^6*g4^2) + (g1^3*g3^3*t^4.887)/(g2*g4) + (g3^3*g4^3*t^4.887)/(g1*g2) + t^4.916/(g1^4*g2^4*g3^4*g4^4) + (g3^7*t^5.008)/(g1*g2*g4) + (g2^4*t^5.769)/g3^4 + (g1^4*g2^4*t^5.769)/(g3^4*g4^4) + (g2^4*g4^4*t^5.769)/(g1^4*g3^4) + (g1^2*g2^2*t^5.884)/(g3^2*g4^2) + (g2^2*g4^2*t^5.884)/(g1^2*g3^2) + (g1^2*g4^2*t^5.995)/(g2^2*g3^2) - 4*t^6. - (g1^4*t^6.)/g4^4 - (g4^4*t^6.)/g1^4 + (g2^2*g3^2*t^6.005)/(g1^2*g4^2) - (g1^4*t^6.11)/g2^4 - (g4^4*t^6.11)/g2^4 - (g3^4*t^6.121)/g1^4 - (g3^4*t^6.121)/g4^4 - (g3^4*t^6.231)/g2^4 + g1^8*g2^8*t^6.852 + g1^4*g2^8*g4^4*t^6.852 + g2^8*g4^8*t^6.852 + (g2^7*t^6.887)/(g1*g3^5*g4^5) + (g2^7*t^6.887)/(g1^5*g3^5*g4) + g1^8*g2^4*g4^4*t^6.963 + g1^4*g2^4*g4^8*t^6.963 + g1^4*g2^8*g3^4*t^6.973 + g2^8*g3^4*g4^4*t^6.973 + (g1^3*g2^3*t^6.998)/(g3^5*g4^5) + (g2^3*t^6.998)/(g1*g3^5*g4) + (g2^3*g4^3*t^6.998)/(g1^5*g3^5) + (g2^5*t^7.003)/(g1^3*g3^3*g4^3) + t^7.027/(g1^12*g3^12) + t^7.027/(g3^12*g4^12) + t^7.027/(g1^4*g3^12*g4^8) + t^7.027/(g1^8*g3^12*g4^4) + g1^8*g4^8*t^7.073 + g2^8*g3^8*t^7.095 + (g1^7*t^7.108)/(g2*g3^5*g4^5) + (g1^3*t^7.108)/(g2*g3^5*g4) + (g4^3*t^7.108)/(g1*g2*g3^5) + (g4^7*t^7.108)/(g1^5*g2*g3^5) + (g1*g2*t^7.113)/(g3^3*g4^3) + (g2*g4*t^7.113)/(g1^3*g3^3) + t^7.143/(g1^2*g2^2*g3^10*g4^10) + t^7.143/(g1^6*g2^2*g3^10*g4^6) + t^7.143/(g1^10*g2^2*g3^10*g4^2) + (g1^5*t^7.224)/(g2^3*g3^3*g4^3) + (g1*g4*t^7.224)/(g2^3*g3^3) + (g4^5*t^7.224)/(g1^3*g2^3*g3^3) - t^7.229/(g1*g2*g3*g4) + (g2*g3*t^7.235)/(g1^3*g4^3) + t^7.259/(g1^4*g2^4*g3^8*g4^8) + t^7.259/(g1^8*g2^4*g3^8*g4^4) - (g1^3*t^7.339)/(g2^5*g3*g4) - (g4^3*t^7.339)/(g1*g2^5*g3) + (g1*g3*t^7.345)/(g2^3*g4^3) + (g3*g4*t^7.345)/(g1^3*g2^3) + t^7.374/(g1^6*g2^6*g3^6*g4^6) - (g3^3*t^7.46)/(g1*g2^5*g4) + (g3^5*t^7.466)/(g1^3*g2^3*g4^3) + (g1^3*g2^11*t^7.971)/(g3*g4) + (g2^11*g4^3*t^7.971)/(g1*g3) + (g1^7*g2^7*t^8.081)/(g3*g4) + (2*g1^3*g2^7*g4^3*t^8.081)/g3 + (g2^7*g4^7*t^8.081)/(g1*g3) - g1*g2^9*g3*g4*t^8.087 + (g2^11*g3^3*t^8.092)/(g1*g4) + (g2^4*t^8.111)/(g1^4*g3^8) + (g1^4*g2^4*t^8.111)/(g3^8*g4^8) + (g2^4*t^8.111)/(g3^8*g4^4) + (g2^4*g4^4*t^8.111)/(g1^8*g3^8) + (g1^11*g2^3*t^8.192)/(g3*g4) + (2*g1^7*g2^3*g4^3*t^8.192)/g3 + (2*g1^3*g2^3*g4^7*t^8.192)/g3 + (g2^3*g4^11*t^8.192)/(g1*g3) - g1^5*g2^5*g3*g4*t^8.197 - g1*g2^5*g3*g4^5*t^8.197 + (g1^3*g2^7*g3^3*t^8.203)/g4 + (g2^7*g3^3*g4^3*t^8.203)/g1 + (g1^2*g2^2*t^8.227)/(g3^6*g4^6) + (g2^2*t^8.227)/(g1^2*g3^6*g4^2) + (g2^2*g4^2*t^8.227)/(g1^6*g3^6) - (g2^4*t^8.232)/(g1^4*g3^4*g4^4) + (g1^11*g4^3*t^8.302)/(g2*g3) + (g1^7*g4^7*t^8.302)/(g2*g3) + (g1^3*g4^11*t^8.302)/(g2*g3) - g1^9*g2*g3*g4*t^8.307 - g1^5*g2*g3*g4^5*t^8.307 - g1*g2*g3*g4^9*t^8.307 + (g1^7*g2^3*g3^3*t^8.313)/g4 + g1^3*g2^3*g3^3*g4^3*t^8.313 + (g2^3*g3^3*g4^7*t^8.313)/g1 - g1*g2^5*g3^5*g4*t^8.318 + (g2^7*g3^7*t^8.324)/(g1*g4) - (3*t^8.342)/(g1^4*g3^4) - (g1^4*t^8.342)/(g3^4*g4^8) - (3*t^8.342)/(g3^4*g4^4) - (g4^4*t^8.342)/(g1^8*g3^4) - g1^5*g2*g3^5*g4*t^8.429 - g1*g2*g3^5*g4^5*t^8.429 + (g1^3*g2^3*g3^7*t^8.434)/g4 + (g2^3*g3^7*g4^3*t^8.434)/g1 - (g1^4*t^8.453)/(g2^4*g3^4*g4^4) - (g4^4*t^8.453)/(g1^4*g2^4*g3^4) - (g1^2*t^8.458)/(g2^2*g3^2*g4^6) - (4*t^8.458)/(g1^2*g2^2*g3^2*g4^2) - (g4^2*t^8.458)/(g1^6*g2^2*g3^2) - g1*g2*g3^9*g4*t^8.55 + (g2^3*g3^11*t^8.555)/(g1*g4) - (g1^2*t^8.568)/(g2^6*g3^2*g4^2) - (g4^2*t^8.568)/(g1^2*g2^6*g3^2) - (g3^2*t^8.579)/(g1^2*g2^2*g4^6) - (g3^2*t^8.579)/(g1^6*g2^2*g4^2) + t^8.684/g2^8 - (g3^2*t^8.69)/(g1^2*g2^6*g4^2) - t^4.229/(g1*g2*g3*g4*y) - t^6.571/(g1*g2*g3^5*g4^5*y) - t^6.571/(g1^5*g2*g3^5*g4*y) - t^6.687/(g1^3*g2^3*g3^3*g4^3*y) + t^7.685/(g1^4*g3^8*g4^4*y) + (g1*g2*g3*g4*t^7.771)/y + t^7.801/(g1^2*g2^2*g3^6*g4^6*y) + t^7.801/(g1^6*g2^2*g3^6*g4^2*y) + (g1^3*g3^3*t^7.887)/(g2*g4*y) + (g3^3*g4^3*t^7.887)/(g1*g2*y) + (2*g2^4*t^8.769)/(g3^4*y) + (g1^4*g2^4*t^8.769)/(g3^4*g4^4*y) + (g2^4*g4^4*t^8.769)/(g1^4*g3^4*y) + (g1^4*t^8.879)/(g3^4*y) + (g4^4*t^8.879)/(g3^4*y) + (g1^2*g2^2*t^8.884)/(g3^2*g4^2*y) + (g2^2*g4^2*t^8.884)/(g1^2*g3^2*y) + (g2^4*t^8.89)/(g1^4*y) + (g2^4*t^8.89)/(g4^4*y) - t^8.914/(g1*g2*g3^9*g4^9*y) - t^8.914/(g1^5*g2*g3^9*g4^5*y) - t^8.914/(g1^9*g2*g3^9*g4*y) + (g1^2*g4^2*t^8.995)/(g2^2*g3^2*y) - (t^4.229*y)/(g1*g2*g3*g4) - (t^6.571*y)/(g1*g2*g3^5*g4^5) - (t^6.571*y)/(g1^5*g2*g3^5*g4) - (t^6.687*y)/(g1^3*g2^3*g3^3*g4^3) + (t^7.685*y)/(g1^4*g3^8*g4^4) + g1*g2*g3*g4*t^7.771*y + (t^7.801*y)/(g1^2*g2^2*g3^6*g4^6) + (t^7.801*y)/(g1^6*g2^2*g3^6*g4^2) + (g1^3*g3^3*t^7.887*y)/(g2*g4) + (g3^3*g4^3*t^7.887*y)/(g1*g2) + (2*g2^4*t^8.769*y)/g3^4 + (g1^4*g2^4*t^8.769*y)/(g3^4*g4^4) + (g2^4*g4^4*t^8.769*y)/(g1^4*g3^4) + (g1^4*t^8.879*y)/g3^4 + (g4^4*t^8.879*y)/g3^4 + (g1^2*g2^2*t^8.884*y)/(g3^2*g4^2) + (g2^2*g4^2*t^8.884*y)/(g1^2*g3^2) + (g2^4*t^8.89*y)/g1^4 + (g2^4*t^8.89*y)/g4^4 - (t^8.914*y)/(g1*g2*g3^9*g4^9) - (t^8.914*y)/(g1^5*g2*g3^9*g4^5) - (t^8.914*y)/(g1^9*g2*g3^9*g4) + (g1^2*g4^2*t^8.995*y)/(g2^2*g3^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
226 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{4}$ + ${ }\phi_{1}^{4}$ 0.6965 0.8596 0.8103 [M:[1.0542, 0.9458, 0.9458, 0.9458], q:[0.4985, 0.4472], qb:[0.5557, 0.4985], phi:[0.5]] 4*t^2.837 + t^2.991 + t^3. + t^3.009 + t^4.183 + 2*t^4.337 + 3*t^4.491 + t^4.509 + 2*t^4.663 + t^4.834 + 9*t^5.675 + 2*t^5.828 + 4*t^5.837 + 2*t^5.846 + t^5.982 + t^5.991 - 5*t^6. - t^4.5/y - t^4.5*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
84 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ 0.7556 0.9204 0.821 [M:[0.7942, 0.7942, 0.7604], q:[0.6198, 0.586], qb:[0.6198, 0.586], phi:[0.3971]] t^2.281 + 3*t^2.383 + t^3.516 + 2*t^3.617 + t^4.562 + 3*t^4.664 + 3*t^4.707 + 6*t^4.765 + 4*t^4.809 + 3*t^4.91 + t^5.797 + t^5.899 - 2*t^6. - t^4.191/y - t^4.191*y detail